Abstract
The main purpose of this paper is, using the method of trigonometric sums and the properties of Gauss sums, to study the computational problem of one kind of congruence equation modulo an odd prime and give some interesting fourth-order linear recurrence formulas.
Similar content being viewed by others
1 Introduction
Let \(q \ge3\) be a positive integer. For any positive integer k and integer m, the kth Gauss sums \(G(m, k; q)\) are defined as
where \(e(y) = e^{2\pi i y}\).
Concerning these sums, many authors had studied their properties and obtained a series of interesting results, see [1, 2]. In fact, from Weil’s important work [1], one can get the upper bound estimate
where p is an odd prime, χ denotes a Dirichlet character modp and \(\ll_{k}\) denotes the Big O notation dependent on k.
We also mention that the fourth power mean value of \(G(m,k;q)\) was well explored by Zhang and Liu [2], in which some sharp asymptotic formulas can be found.
On the other hand, Yang and Tang [3] studied a number of solutions of the congruence equation
and gave an exact computational formula for it.
Let s be a positive integer and p be an odd prime with \(p\equiv 1\operatorname{mod}3\). Let \(M_{s}\) denote a number of solutions of the equation
in the finite field \(GF(p)\), and let \(U_{s}=M_{s}-p^{s-1}\). Chowla et al. [4] proved that \(U_{s}\) satisfies the linear recurrence
where \(U_{1}=0\), \(U_{2}=2p-2\) and \(U_{3}=(p-1)d\) with d being uniquely determined by \(4p=d^{2}+27b^{2}\) and \(d\equiv1\operatorname{mod}3\).
Some related results can also be found in [5–7].
Now we consider a similar problem: Let n be a positive integer and p be an odd prime with \(p\equiv1\operatorname{mod}4\). Let \(M_{n}(p)\) denote a number of solutions of the congruence equation
where \(0\leq x_{i}\leq p-1\), \(i=1, 2, \ldots, n\).
It is natural to ask whether there exists an exact computational formula for \(M_{n}(p)\) when n is a positive integer and p is an odd prime?
As far as we know, it seems that no one has studied this problem yet, at least we have not seen any related result before. The problem is interesting because it can help us to understand more accurate information of the quartic Gauss sums.
In this paper, we shall use the method of trigonometric sums and the properties of Gauss sums to study this problem and give some interesting computational formulas. For the sake of convenience, first we let \(B(p)=\sum_{a=1}^{p-1} (\frac{a+\overline{a}}{p} ) \), a̅ denotes the solution of the equation \(ax\equiv 1\operatorname{mod} p\), and \((\frac{*}{p} )\) denotes the Legendre symbol modp. Then we have the following theorem.
Theorem 1
Let \(p=8k+5\) be a prime, \(U_{n}(p)=M_{n}(p)-p^{n-1}\). Then, for any positive integer \(n\geq5\), we have the fourth-order linear recurrence formula
where the first four terms are \(U_{1}(p)=0, U_{2}(p)=-(p-1), U_{3}(p)= 3(p-1)B(p)\) and \(U_{4}(p)=-7p(p-1)+(p-1)B^{2}(p)\).
Theorem 2
Let \(p=8k+1\) be a prime, \(U_{n}(p)=M_{n}(p)-p^{n-1}\). Then, for any positive integer \(n\geq5\), we have the fourth-order linear recurrence formula
where the first four terms are \(U_{1}(p)=0, U_{2}(p)=3(p-1), U_{3}(p)= 3(p-1)B(p)\) and \(U_{4}(p)=17p(p-1)+ (p-1)B^{2}(p)\).
From these theorems we may immediately deduce the following two corollaries.
Corollary 1
Let \(p=8k+5\) be an odd prime. Then we have
Corollary 2
Let \(p=8k+1\) be an odd prime. Then we have
Note the estimate for character sums
from Corollary 1 and Corollary 2 we can also deduce the following corollary.
Corollary 3
Let p be an odd prime with \(p\equiv1\operatorname{mod}4\). Then we have the asymptotic formulas
Remark
Let p be an odd prime with \(p\equiv1\operatorname{mod}4\), it is clear that we have the identity (see Theorems 4-11 in [8])
where r is a quadratic non-residue modp, that is to say, \((\frac{r}{p} )=-1\). The above identity implies that \(|B(p)|\) is a constant depending only on p and \(|B(p)|\leq 2\sqrt{p}\).
For prime \(p=4k+3\) and positive b with \(1\leq b\leq p-1\), we have the identity
It is very easy to prove that \(M_{2n-1}(p)=p^{2n-2}\) and
2 Several lemmas
In this section, we give some lemmas which are necessary in the proofs of our theorems. Hereinafter, we shall use some properties of the classical Gauss sums, all of them can be found in reference [9], so they will not be repeated here. First we have the following lemma.
Lemma 1
Let p be an odd prime with \(p\equiv1\operatorname{mod}4\), \((\frac{*}{p} )=\chi_{2}\) denotes the Legendre symbol modp. Then, for any integer b with \((b, p)=1\), we have the identities
where \(R(p)= -1\), if \(p=8k+5\); and \(R(p)=3\), if \(p=8k+1\).
Proof
From the definition of the quadratic residue modp and the properties of the Legendre symbol, we have
Since \(p\equiv1\operatorname{mod}4\), from [9] (see formula (29) of Section 9.10) we know that
From (2) and (3) we may immediately deduce formula (I) of Lemma 1.
Now we prove formula (II) of Lemma 1. It is clear that from (I) we have
From the properties of the reduced residue system modp and (3), we have
where \(I(p)=-2\), if \(p=8k+5\); and \(I(p)=2\), if \(p=8k+1\).
Combining (4) and (5), we have the identity
This proves formula (II) of Lemma 1.
Similarly, from (I) and (5) we can also prove that if \(p=8k+1\), then we have
If \(p=8k+5\), then we have
□
Lemma 2
Let p be an odd prime with \(p \equiv1\operatorname{mod}4\), \(A(p)\) is defined as in the above lemma, and let
Then we have the identities
where \(R(p)= -1\), if \(p=8k+5\); and \(R(p)=3\), if \(p=8k+1\).
Proof
Note the trigonometric identity
and
From Lemma 1 and the properties of Gauss sums we have
Similarly, from (6) and (7) we have
where we have used the identity
Now Lemma 2 follows from (9), (10) and (11). □
Lemma 3
Let p be an odd prime with \(4|(p-1)\), then, for \(p=8k+5\), we have
If \(p=8k+1\), then we have
Proof
First, for any integer \(1\leq b\leq p-1\), from (5) and (II) of Lemma 1 we have
From (12), the definitions of \(R(p)\) and \(I(p)\) we know that if \(p=8k+5\), then
If \(p=8k+1\), then we have
Now Lemma 3 follows from (13) and (14). □
It is clear that our Lemma 3 obtained a fourth-order linear recurrence formula for the quartic Gauss sums \(A(b)\).
3 Proofs of the theorems
Now we shall complete the proofs of our main results. First we prove Theorem 1. If \(p=8k+5\) is an odd prime, then, for any positive integer n, from (8) and the definition of \(M_{n}(p)\) we have
So from (15) and Lemma 2 we have
From Lemma 3 we have
If \(k\geq5\), then from (15) and Lemma 3 we have
Now Theorem 1 follows from formulas (16)-(20).
If \(p=8k+1\), then from (15) and Lemma 2 we have
From Lemma 3 we also have
If \(k\geq5\), then from (15) and Lemma 3 we also have
References
Weil, A: On some exponential sums. Proc. Natl. Acad. Sci. USA 34, 204-207 (1948)
Zhang, W, Liu, H: On the general Gauss sums and their fourth power mean. Osaka J. Math. 42, 189-199 (2005)
Yang, QH, Tang, M: On the addition of squares of units and nonunits modulo n. J. Number Theory 155, 1-12 (2015)
Chowla, S, Cowles, J, Cowles, M: On the number of zeros of diagonal cubic forms. J. Number Theory 9, 502-506 (1977)
Sander, JW: On the addition of units and nonunits modm. J. Number Theory 129, 2260-2266 (2009)
Golomb, S: On the algebraic construction for Costas arrays. J. Comb. Theory, Ser. A 37, 13-21 (1984)
Cohen, SD, Zhang, W: Sums of two exact powers. Finite Fields Appl. 8, 471-477 (2002)
Zhang, W, Li, H: Elementary Number Theory. Shaanxi Normal University Press, Xi’an (2013)
Apostol, TM: Introduction to Analytic Number Theory. Springer, New York (1976)
Acknowledgements
The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work is supported by the N.S.F. (11371291) of P.R. China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Authors’ contributions
WPZ put forward the main ideas, and SMS carried on the actual operation and finishing process. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Shen, S., Zhang, W. On the quartic Gauss sums and their recurrence property. Adv Differ Equ 2017, 43 (2017). https://doi.org/10.1186/s13662-017-1097-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1097-2