1 Introduction

Studying concrete nonlinear difference equations and systems is a topic of a great recent interest (see, e.g., [146] and the references therein). Studying systems of difference equations, especially symmetric and close to symmetric ones, is a topic of considerable interest (see, e.g., [2, 6, 7, 10, 1216, 18, 19, 23, 24, 2629, 3138, 40, 41, 44, 46]). Another topic of interest is solvable difference equations and systems and their applications (see, e.g., [15, 7, 17, 20, 21, 2327, 2937, 3946]). Renewed interest in the area started after the publication of [20] where a formula for a solution of a difference equation was theoretically explained. The most interesting thing in [20] was a change of variables which reduced the equation to a linear one with constant coefficients. Related ideas were later used, e.g., in [1, 4, 7, 17, 21, 2327, 2937, 3945].

Quite recently in [2] the following systems of difference equations were presented:

$$ \begin{aligned} &x_{n}=\frac{y_{n-1}y_{n-2}}{x_{n-1}(\pm1\pm y_{n-1}y_{n-2})},\\ &y_{n}= \frac{x_{n-1}x_{n-2}}{y_{n-1}(\pm1\pm x_{n-1}x_{n-2})},\quad n\in \mathbb {N}_{0}, \end{aligned} $$
(1)

where \(x_{-i}\), \(y_{-i}\), \(i\in\{1,2\}\) are real numbers, and some formulas for their solutions are given, some of which are proved by induction.

The next system of difference equations

$$ \begin{aligned} &x_{n}=\frac{y_{n-1}y_{n-2}}{x_{n-1}(a_{n}+b_{n}y_{n-1}y_{n-2})},\\ &y_{n}=\frac{x_{n-1}x_{n-2}}{y_{n-1}(\alpha _{n}+\beta _{n}x_{n-1}x_{n-2})},\quad n\in \mathbb {N}_{0}, \end{aligned} $$
(2)

where \(a_{n}\), \(b_{n}\), \(\alpha _{n}\), \(\beta _{n}\), \(n\in \mathbb {N}_{0}\), and initial values \(x_{-i}\), \(y_{-i}\), \(i\in\{1,2\}\), are real numbers, is a generalization of the system in (1). Our aim is to show that more general system (2) is solvable by giving a natural method for getting its solutions. The domain of undefinable solutions to the system is also described. For the case when \(a_{n}\), \(b_{n}\), \(\alpha _{n}\), \(\beta _{n}\), \(n\in \mathbb {N}_{0}\), are constant, the long-term behavior of its solutions is investigated in detail.

A solution \((x_{n}, y_{n})_{n\ge-2}\) of system (2) is called periodic, or eventually periodic, with period p if there is \(n_{0}\ge-2\) such that

$$x_{n+p}=x_{n}\quad \mbox{and}\quad y_{n+p}=y_{n} \quad \mbox{for } n\ge n_{0}. $$

For some results in the area, see, e.g., [6, 911, 19, 21, 22, 28].

2 Solutions to system (2) in closed form

Assume first that \(x_{-i}\ne0\), \(y_{-i}\ne0\), \(i\in\{1,2\}\). Then, by the method of induction and the equations in (2), it follows that for every well-defined solution to system (2), \(x_{n}\ne0\) and \(y_{n}\ne0\), for every \(n\in \mathbb {N}_{0}\). On the other hand, if \(x_{n_{0}}=0\) for some \(n_{0}\in \mathbb {N}\), then the first equation in (2) implies that \(y_{n_{0}-1}=0\) or \(y_{n_{0}-2}=0\). If \(y_{n_{0}-1}=0\), then \(x_{n_{0}-2}=0\) or \(x_{n_{0}-3}=0\), while if \(y_{n_{0}-2}=0\), then \(x_{n_{0}-3}=0\) or \(x_{n_{0}-4}=0\). Repeating this procedure, we get that \(x_{-i}=0\) or \(y_{-i}=0\) for some \(i\in\{1,2\}\). Similarly, if \(y_{n_{1}}=0\) for some \(n_{1}\in \mathbb {N}\), we get \(x_{-i}=0\) or \(y_{-i}=0\) for some \(i\in\{1,2\}\). Hence, for a well-defined solution \((x_{n},y_{n})_{n\ge-2}\) of system (2), we have that

$$\begin{aligned} x_{n}y_{n}\ne0,\quad n\ge-2 \end{aligned}$$
(3)

if and only if \(x_{-i}y_{-i}\ne0\), \(i\in\{1,2\}\).

Assume now that \((x_{n},y_{n})_{n\ge-2}\) is a solution to system (2) such that (3) holds. Then, by multiplying the first equation in (2) by \(x_{n-1}\) and the second one by \(y_{n-1}\), and using the following changes of variables

$$\begin{aligned} u_{n}=\frac{1}{x_{n}x_{n-1}},\qquad v_{n}= \frac{1}{y_{n}y_{n-1}}, \end{aligned}$$
(4)

\(n\ge-1\), system (2) is transformed in the following one:

$$\begin{aligned} u_{n}=a_{n}v_{n-1}+b_{n}, \qquad v_{n}=\alpha _{n}u_{n-1}+\beta _{n},\quad n \in \mathbb {N}_{0}. \end{aligned}$$
(5)

From (5) it follows that

$$\begin{aligned} &u_{n}=a_{n}\alpha _{n-1}u_{n-2}+a_{n} \beta _{n-1}+b_{n}, \end{aligned}$$
(6)
$$\begin{aligned} &v_{n}=\alpha _{n}a_{n-1}v_{n-2}+ \alpha _{n}b_{n-1}+\beta _{n},\quad n\in \mathbb {N}. \end{aligned}$$
(7)

This means that \((u_{2n})_{n\in \mathbb {N}_{0}}\), \((u_{2n-1})_{n\in \mathbb {N}_{0}}\), \((v_{2n})_{n\in \mathbb {N}_{0}}\), and \((v_{2n-1})_{n\in \mathbb {N}_{0}}\) are solutions to two linear first-order difference equations, which are solvable.

Solving these equations, we get

$$\begin{aligned}& u_{2n} =u_{0}\prod_{j=1}^{n}a_{2j} \alpha _{2j-1} +\sum_{i=1}^{n} (a_{2i}\beta _{2i-1}+b_{2i} ) \prod _{s=i+1}^{n}a_{2s}\alpha _{2s-1}, \end{aligned}$$
(8)
$$\begin{aligned}& u_{2n-1} =u_{-1}\prod_{j=1}^{n}a_{2j-1} \alpha _{2j-2} +\sum_{i=1}^{n} (a_{2i-1}\beta _{2i-2}+b_{2i-1} ) \prod _{s=i+1}^{n}a_{2s-1}\alpha _{2s-2}, \end{aligned}$$
(9)
$$\begin{aligned}& v_{2n} =v_{0}\prod_{j=1}^{n} \alpha _{2j}a_{2j-1} +\sum_{i=1}^{n} (\alpha _{2i}b_{2i-1}+\beta _{2i} ) \prod _{s=i+1}^{n}\alpha _{2s}a_{2s-1}, \end{aligned}$$
(10)
$$\begin{aligned}& v_{2n-1} =v_{-1}\prod_{j=1}^{n} \alpha _{2j-1}a_{2j-2} +\sum_{i=1}^{n} (\alpha _{2i-1}b_{2i-2}+\beta _{2i-1} ) \prod _{s=i+1}^{n}\alpha _{2s-1}a_{2s-2}. \end{aligned}$$
(11)

Using (4) we obtain

$$\begin{aligned} x_{2n+i}=\frac{1}{u_{2n+i}x_{2n+i-1}}=\frac {u_{2n+i-1}}{u_{2n+i}}x_{2(n-1)+i},\quad i\in \{0,1\}, \end{aligned}$$

and

$$\begin{aligned} y_{2n+i}=\frac{1}{v_{2n+i}y_{2n+i-1}}=\frac {v_{2n+i-1}}{v_{2n+i}}y_{2(n-1)+i},\quad i\in \{0,1\}, \end{aligned}$$

for \(2n+i\ge0\), from which it follows that

$$\begin{aligned}& x_{2m+i}=x_{i-2}\prod_{j=0}^{m} \frac{u_{2j+i-1}}{u_{2j+i}}, \end{aligned}$$
(12)
$$\begin{aligned}& y_{2m+i}=y_{i-2}\prod_{j=0}^{m} \frac{v_{2j+i-1}}{v_{2j+i}} \end{aligned}$$
(13)

for every \(m\in \mathbb {N}_{0}\), \(i\in\{0,1\}\).

3 Case of constant coefficients

In this section we consider the case when all the coefficients in system (2) are constant, that is, when

$$a_{n}=a, \qquad b_{n}=b,\qquad \alpha _{n}=\alpha ,\qquad \beta _{n}=\beta , \quad n\in \mathbb {N}_{0}. $$

Then (2) is

$$ \begin{aligned} &x_{n}=\frac{y_{n-1}y_{n-2}}{x_{n-1}(a+by_{n-1}y_{n-2})},\\ & y_{n}=\frac{x_{n-1}x_{n-2}}{y_{n-1}(\alpha +\beta x_{n-1}x_{n-2})}, \quad n\in \mathbb {N}_{0}. \end{aligned} $$
(14)

Assume that \((x_{n},y_{n})_{n\ge-2}\) is a solution to system (2) such that (3) holds. Then we have

$$\begin{aligned} u_{n}=av_{n-1}+b, \qquad v_{n}=\alpha u_{n-1}+\beta ,\quad n\in \mathbb {N}_{0}, \end{aligned}$$
(15)

and

$$\begin{aligned}& u_{n}=a\alpha u_{n-2}+a\beta +b, \end{aligned}$$
(16)
$$\begin{aligned}& v_{n}=a\alpha v_{n-2}+\alpha b+\beta ,\quad n\in \mathbb {N}. \end{aligned}$$
(17)

From (8)-(11), we obtain

$$\begin{aligned} u_{2n-l}&=u_{-l}(a\alpha )^{n}+(a\beta +b) \frac{1-(a\alpha )^{n}}{1-a\alpha } \\ &=\frac{a\beta +b+(a\alpha )^{n}(u_{-l}(1-a\alpha )-a\beta -b)}{1-a\alpha } \end{aligned}$$
(18)

for \(n\in \mathbb {N}_{0}\), \(l\in\{0,1\}\) when \(a\alpha \ne 1\), while if \(a\alpha =1\), we have

$$\begin{aligned} u_{2n-l}=u_{-l}+(a\beta +b)n,\quad n\in \mathbb {N}_{0}, l\in\{0,1\}, \end{aligned}$$
(19)

and we also have

$$\begin{aligned} v_{2n-l}&=v_{-l}(a\alpha )^{n}+(\alpha b+\beta ) \frac{1-(a\alpha )^{n}}{1-a\alpha } \\ &=\frac{\alpha b+\beta +(a\alpha )^{n}(v_{-l}(1-a\alpha )-\alpha b-\beta )}{1-a\alpha }, \end{aligned}$$
(20)

\(n\in \mathbb {N}_{0}\), \(l\in\{0,1\}\) if \(a\alpha \ne1\), while if \(a\alpha =1\), we have

$$\begin{aligned} v_{2n-l}=v_{-l}+(\alpha b+\beta )n,\quad n\in \mathbb {N}_{0}, l\in \{0,1\}. \end{aligned}$$
(21)

Now we present formulae for solutions to system (14).

Case \(a\alpha \ne1\). We have

$$\begin{aligned}& x_{2m}= x_{-2}\prod_{j=0}^{m} \frac{u_{2j-1}}{u_{2j}}=x_{-2}\prod_{j=0}^{m} \frac{a\beta +b+(a\alpha )^{j}(u_{-1}(1-a\alpha )-a\beta -b)}{a\beta +b+(a\alpha )^{j}(u_{0}(1-a\alpha )-a\beta -b)}, \end{aligned}$$
(22)
$$\begin{aligned}& x_{2m+1} =x_{-1}\prod_{j=0}^{m} \frac{u_{2j}}{u_{2j+1}}=x_{-1}\prod_{j=0}^{m} \frac{a\beta +b+(a\alpha )^{j}(u_{0}(1-a\alpha )-a\beta -b)}{a\beta +b+(a\alpha )^{j+1}(u_{-1}(1-a\alpha )-a\beta -b)}, \end{aligned}$$
(23)
$$\begin{aligned}& y_{2m} =y_{-2}\prod_{j=0}^{m} \frac{v_{2j-1}}{v_{2j}}=y_{-2}\prod_{j=0}^{m} \frac{\alpha b+\beta +(a\alpha )^{j}(v_{-1}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta +(a\alpha )^{j}(v_{0}(1-a\alpha )-\alpha b-\beta )}, \end{aligned}$$
(24)
$$\begin{aligned}& y_{2m+1} =y_{-1}\prod_{j=0}^{m} \frac{v_{2j}}{v_{2j+1}}=y_{-1}\prod_{j=0}^{m} \frac{\alpha b+\beta +(a\alpha )^{j}(v_{0}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta +(a\alpha )^{j+1}(v_{-1}(1-a\alpha )-\alpha b-\beta )} \end{aligned}$$
(25)

for every \(m\in \mathbb {N}_{0}\).

Case \(a\alpha =1\). We have

$$\begin{aligned}& x_{2m} =x_{-2}\prod_{j=0}^{m} \frac{u_{2j-1}}{u_{2j}}=x_{-2}\prod_{j=0}^{m} \frac{u_{-1}+(a\beta +b)j}{u_{0}+(a\beta +b)j}, \end{aligned}$$
(26)
$$\begin{aligned}& x_{2m+1} =x_{-1}\prod_{j=0}^{m} \frac{u_{2j}}{u_{2j+1}}=x_{-1}\prod_{j=0}^{m} \frac{u_{0}+(a\beta +b)j}{u_{-1}+(a\beta +b)(j+1)}, \end{aligned}$$
(27)
$$\begin{aligned}& y_{2m} =y_{-2}\prod_{j=0}^{m} \frac{v_{2j-1}}{v_{2j}}=y_{-2}\prod_{j=0}^{m} \frac{v_{-1}+(\alpha b+\beta )j}{v_{0}+(\alpha b+\beta )j}, \end{aligned}$$
(28)
$$\begin{aligned}& y_{2m+1}=y_{-1}\prod_{j=0}^{m} \frac{v_{2j}}{v_{2j+1}}=y_{-1}\prod_{j=0}^{m} \frac{v_{0}+(\alpha b+\beta )j}{v_{-1}+(\alpha b+\beta )(j+1)} \end{aligned}$$
(29)

for every \(m\in \mathbb {N}_{0}\).

4 Long-term behavior of solutions to system (14)

Before we formulate and prove the main results regarding the long-term behavior of well-defined solutions to system (14), we quote the following well-known asymptotic formula which will be used in the proofs of the main results:

$$\begin{aligned} (1+x)^{-1}=1-x+O\bigl(x^{2}\bigr),\quad \mbox{as } x\to 0. \end{aligned}$$
(30)

We also define the following quantities:

$$\begin{aligned}& L_{1}:=\frac{u_{-1}(1-a\alpha )-a\beta -b}{u_{0}(1-a\alpha )-a\beta -b},\qquad L_{2}:=\frac {u_{0}(1-a\alpha )-a\beta -b}{a\alpha (u_{-1}(1-a\alpha )-a\beta -b)}, \\& L_{3}:=\frac{v_{-1}(1-a\alpha )-\alpha b-\beta }{v_{0}(1-a\alpha )-\alpha b-\beta }, \qquad L_{4}:= \frac {v_{0}(1-a\alpha )-\alpha b-\beta }{a\alpha (v_{-1}(1-a\alpha )-\alpha b-\beta )}. \end{aligned}$$

Finally, we give another auxiliary result.

Lemma 1

If \(a\alpha \ne1\), \(a\beta +b\ne0\ne \alpha b+\beta \). Then system (14) has two-periodic solutions.

Proof

The equilibrium solution to system (15) is

$$\begin{aligned} u_{n}=\bar{u}=\frac{a\beta +b}{1-a\alpha }\ne0,\qquad v_{n}=\bar{v}= \frac{\alpha b+\beta }{1-a\alpha }\ne0,\quad n\in \mathbb {N}_{0}. \end{aligned}$$
(31)

From (4) and (31) it follows that

$$\begin{aligned} x_{n}=\frac{1-a\alpha }{(a\beta +b)x_{n-1}}=x_{n-2},\quad n\in \mathbb {N}_{0}, \end{aligned}$$
(32)

and

$$\begin{aligned} y_{n}=\frac{1-a\alpha }{(\alpha b+\beta )y_{n-1}}=y_{n-2},\quad n\in \mathbb {N}_{0}, \end{aligned}$$
(33)

as desired. □

The next three results are devoted to the long-term behavior of well-defined solutions to system (14).

Theorem 1

Assume that \(\vert a\alpha \vert \ne1\) and \((x_{n}, y_{n})_{n\ge-2}\) is a well-defined solution to system (14). Then the following statements are true.

  1. (a)

    If \(a\beta +b\ne0\ne \alpha b+\beta \) and \(\vert a\alpha \vert <1\), then \((x_{n},y_{n})\) converges to a, not necessarily prime, two-periodic solution.

  2. (b)

    If \(u_{-1}=u_{0}=(a\beta +b)/(1-a\alpha )\), then the sequences \((x_{2m})_{m\ge-1}\) and \((x_{2m+1})_{m\ge-1}\) are constant.

  3. (c)

    If \(v_{-1}=v_{0}=(\alpha b+\beta )/(1-a\alpha )\), then the sequences \((y_{2m})_{m\ge-1}\) and \((y_{2m+1})_{m\ge-1}\) are constant.

  4. (d)

    If \(\vert a\alpha \vert >1\) and \(u_{-1}=(a\beta +b)/(1-a\alpha )\ne u_{0}\), then \(x_{2m}\to0\) and \(\vert x_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  5. (e)

    If \(\vert a\alpha \vert >1\) and \(u_{-1}\ne(a\beta +b)/(1-a\alpha )=u_{0}\), then \(x_{2m+1}\to0\) and \(\vert x_{2m}\vert \to\infty\), as \(m\to\infty\).

  6. (f)

    If \(\vert a\alpha \vert >1\) and \(v_{-1}=(a\beta +b)/(1-a\alpha )\ne v_{0}\), then \(y_{2m}\to0\) and \(\vert y_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  7. (g)

    If \(\vert a\alpha \vert >1\) and \(v_{-1}\ne(a\beta +b)/(1-a\alpha )=v_{0}\), then \(y_{2m+1}\to0\) and \(\vert y_{2m}\vert \to\infty\), as \(m\to\infty\).

  8. (h)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(\vert L_{1}\vert <1\), then \(x_{2m}\to0\), as \(m\to\infty\).

  9. (i)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(\vert L_{1}\vert >1\), then \(\vert x_{2m}\vert \to\infty\), as \(m\to\infty\).

  10. (j)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(L_{1}=1\), then \((x_{2m})_{m\ge-1}\) is constant.

  11. (k)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(L_{1}=-1\), then \((x_{4m})_{m\ge-1}\) and \((x_{4m+2})_{m\ge-1}\) are convergent.

  12. (l)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(\vert L_{2}\vert <1\), then \(x_{2m+1}\to0\), as \(m\to\infty\).

  13. (m)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(\vert L_{2}\vert >1\), then \(\vert x_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  14. (n)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(L_{2}=1\), then \((x_{2m+1})_{m\ge-1}\) is constant.

  15. (o)

    If \(\vert a\alpha \vert >1\), \(u_{-1}\ne(a\beta +b)/(1-a\alpha )\ne u_{0}\) and \(L_{2}=-1\), then \((x_{4m+1})_{m\ge-1}\) and \((x_{4m+3})_{m\ge-1}\) are convergent.

  16. (p)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(\vert L_{3}\vert <1\), then \(y_{2m}\to0\), as \(m\to\infty\).

  17. (q)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(\vert L_{3}\vert >1\), then \(\vert y_{2m}\vert \to\infty\), as \(m\to\infty\).

  18. (r)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(L_{3}=1\), then \((y_{2m})_{m\ge-1}\) is constant.

  19. (s)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(L_{3}=-1\), then \((y_{4m})_{m\ge-1}\) and \((y_{4m+2})_{m\ge-1}\) are convergent.

  20. (t)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(\vert L_{4}\vert <1\), then \(y_{2m+1}\to0\), as \(m\to\infty\).

  21. (u)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(\vert L_{4}\vert >1\), then \(\vert y_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  22. (v)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(L_{4}=1\), then \((y_{2m+1})_{m\ge-1}\) is constant.

  23. (w)

    If \(\vert a\alpha \vert >1\), \(v_{-1}\ne(\alpha b+\beta )/(1-a\alpha )\ne v_{0}\) and \(L_{4}=-1\), then \((y_{4m+1})_{m\ge-1}\) and \((y_{4m+3})_{m\ge-1}\) are convergent.

Proof

Let

$$\begin{aligned} &p_{m}=\frac{a\beta +b+(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}{a\beta +b+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}, \\ &\hat{p}_{m}=\frac{a\beta +b+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}{a\beta +b+(a\alpha )^{m+1}(u_{-1}(1-a\alpha )-a\beta -b)}, \\ &q_{m}=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta +(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}, \\ &\hat{q}_{m}=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta +(a\alpha )^{m+1}(v_{-1}(1-a\alpha )-\alpha b-\beta )} \end{aligned}$$

for \(m\in \mathbb {N}_{0}\).

(a) By using (30) we have

$$\begin{aligned}& \begin{aligned}[b] p_{m}&=\frac{1+(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)(a\beta +b)^{-1}}{1+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)(a\beta +b)^{-1}} \\ &=1+(u_{-1}-u_{0}) (1-a\alpha ) (a\beta +b)^{-1}(a \alpha )^{m}+o\bigl((a\alpha )^{m}\bigr), \end{aligned} \end{aligned}$$
(34)
$$\begin{aligned}& \begin{aligned}[b] \hat{p}_{m}&=\frac{1+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)(a\beta +b)^{-1}}{1+(a\alpha )^{m+1}(u_{-1}(1-a\alpha )-a\beta -b)(a\beta +b)^{-1}} \\ &=1+\frac{(1-a\alpha )(u_{0}-a\alpha u_{-1}-a\beta -b)}{a\beta +b}(a\alpha )^{m}+o\bigl((a\alpha )^{m} \bigr), \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned}& \begin{aligned}[b] q_{m}&=\frac{1+(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )(\alpha b+\beta )^{-1}}{1+(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )(\alpha b+\beta )^{-1}} \\ &=1+(v_{-1}-v_{0}) (1-a\alpha ) (\alpha b+\beta )^{-1}(a \alpha )^{m}+o\bigl((a\alpha )^{m}\bigr), \end{aligned} \end{aligned}$$
(36)
$$\begin{aligned}& \begin{aligned}[b] \hat{q}_{m}&=\frac{1+(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )(\alpha b+\beta )^{-1}}{1+(a\alpha )^{m+1}(v_{-1}(1-a\alpha )-\alpha b-\beta )(\alpha b+\beta )^{-1}} \\ &=1+\frac{(1-a\alpha )(v_{0}-a\alpha v_{-1}-\alpha b-\beta )}{\alpha b+\beta }(a\alpha )^{m}+o\bigl((a\alpha )^{m} \bigr) \end{aligned} \end{aligned}$$
(37)

for sufficiently large m.

From (34)-(37), by using the condition \(\vert a\alpha \vert <1\) and a well-known criterion for the convergence of products, the statement easily follows.

(b) By using the condition \(u_{-1}=u_{0}=(a\beta +b)/(1-a\alpha )\) in (22) and (23), the statement immediately follows.

(c) By using the condition \(v_{-1}=v_{0}=(\alpha b+\beta )/(1-a\alpha )\) in (24) and (25), the statement immediately follows.

(d) By using the condition \(u_{-1}=(a\beta +b)/(1-a\alpha )\ne u_{0}\), we get

$$\begin{aligned} &p_{m}=\frac{a\beta +b}{a\beta +b+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}, \end{aligned}$$
(38)
$$\begin{aligned} &\hat{p}_{m}=\frac{a\beta +b+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}{a\beta +b}. \end{aligned}$$
(39)

Letting \(m\to\infty\) in (38) and (39) and using the condition \(\vert a\alpha \vert >1\), we have \(p_{m}\to0\) and \(\vert \hat{p}_{m}\vert \to\infty\), from which along with (22) and (23) the statement easily follows.

(e) By using the condition \(u_{-1}\ne(a\beta +b)/(1-a\alpha )=u_{0}\), we get

$$\begin{aligned} &p_{m}=\frac{a\beta +b+(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}{a\beta +b}, \end{aligned}$$
(40)
$$\begin{aligned} &\hat{p}_{m}=\frac{a\beta +b}{a\beta +b+(a\alpha )^{m+1}(u_{-1}(1-a\alpha )-a\beta -b)}. \end{aligned}$$
(41)

Letting \(m\to\infty\) in (40) and (41) and using the condition \(\vert a\alpha \vert >1\), we have \(\vert p_{m}\vert \to\infty\) and \(\hat{p}_{m}\to0\), from which along with (22) and (23) the statement easily follows.

(f) By using the condition \(v_{-1}=(a\beta +b)/(1-a\alpha )\ne v_{0}\), we get

$$\begin{aligned} &q_{m}=\frac{\alpha b+\beta }{\alpha b+\beta +(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}, \end{aligned}$$
(42)
$$\begin{aligned} &\hat{q}_{m}=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta }. \end{aligned}$$
(43)

Letting \(m\to\infty\) in (42) and (43) and using the condition \(\vert a\alpha \vert >1\), we have \(q_{m}\to0\) and \(\vert \hat{q}_{m}\vert \to\infty\), from which along with (24) and (25) the statement easily follows.

(g) By using the condition \(v_{-1}\ne(a\beta +b)/(1-a\alpha )= v_{0}\), we get

$$\begin{aligned} &q_{m}=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta }, \end{aligned}$$
(44)
$$\begin{aligned} &\hat{q}_{m}=\frac{\alpha b+\beta }{\alpha b+\beta +(a\alpha )^{m+1}(v_{-1}(1-a\alpha )-\alpha b-\beta )}. \end{aligned}$$
(45)

Letting \(m\to\infty\) in (44) and (45) and using the condition \(\vert a\alpha \vert >1\), we have \(\vert q_{m}\vert \to\infty\) and \(\hat{q}_{m}\to0\), from which along with (24) and (25) the statement easily follows.

(h), (i) Note that \(\lim_{m\to\infty}p_{m}=L_{1}\). Hence, from the assumptions \(\vert L_{1}\vert <1\), that is, \(\vert L_{1}\vert >1\) along with (22), the statements easily follow.

(j) The statement immediately follows by using the condition \(L_{1}=1\) in (22).

(k) Since \(L_{1}=-1\) and by using (30), we have that

$$\begin{aligned} p_{m}&=\frac{a\beta +b+(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}{a\beta +b-(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)} \\ &=-\frac{1+\frac{a\beta +b}{(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}}{1-\frac {a\beta +b}{(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}} \\ &=- \biggl(1+\frac{2(a\beta +b)}{(a\alpha )^{m}(u_{-1}(1-a\alpha )-a\beta -b)}+o \biggl(\frac{1}{(a\alpha )^{m}} \biggr) \biggr). \end{aligned}$$
(46)

From (46), by using the condition \(\vert a\alpha \vert >1\) and a well-known criterion for the convergence of products, the statement easily follows.

(l), (m) Note that \(\lim_{m\to\infty}\hat{p}_{m}=L_{2}\). Hence, from the assumptions \(\vert L_{2}\vert <1\), that is, \(\vert L_{2}\vert >1\) along with (23), the statements easily follow.

(n) The statement immediately follows by using the condition \(L_{2}=1\) in (23).

(o) Since \(L_{2}=-1\) and by using (30), we have that

$$\begin{aligned} \hat{p}_{m}&=\frac{a\beta +b+(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}{a\beta +b-(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)} \\ &=-\frac{1+\frac{a\beta +b}{(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}}{1-\frac{a\beta +b}{(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}} \\ &=- \biggl(1+\frac{2(a\beta +b)}{(a\alpha )^{m}(u_{0}(1-a\alpha )-a\beta -b)}+o \biggl(\frac{1}{(a\alpha )^{m}} \biggr) \biggr). \end{aligned}$$
(47)

From (47), by using the condition \(\vert a\alpha \vert >1\) and a well-known criterion for the convergence of products, the statement easily follows.

(p), (q) Note that \(\lim_{m\to\infty}q_{m}=L_{3}\). Hence, from the assumptions \(\vert L_{3}\vert <1\), that is, \(\vert L_{3}\vert >1\) along with (24), the statements easily follow.

(r) The statement immediately follows by using the condition \(L_{3}=1\) in (24).

(s) Since \(L_{3}=-1\) and by using (30), we have that

$$\begin{aligned} q_{m}&=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta -(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )} \\ &=-\frac{1+\frac{\alpha b+\beta }{(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}}{1-\frac{\alpha b+\beta }{(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}} \\ &=- \biggl(1+\frac{2(\alpha b+\beta )}{(a\alpha )^{m}(v_{-1}(1-a\alpha )-\alpha b-\beta )}+o \biggl(\frac{1}{(a\alpha )^{m}} \biggr) \biggr). \end{aligned}$$
(48)

From (48), by using the condition \(\vert a\alpha \vert >1\) and a well-known criterion for the convergence of products, the statement easily follows.

(t), (u) Note that \(\lim_{m\to\infty}\hat{q}_{m}=L_{4}\). Hence, from the assumptions \(\vert L_{4}\vert <1\), that is, \(\vert L_{4}\vert >1\) along with (25), the statements easily follow.

(v) The statement immediately follows by using the condition \(L_{4}=1\) in (25).

(w) Since \(L_{4}=-1\) and by using (30), we have that

$$\begin{aligned} \hat{q}_{m}&=\frac{\alpha b+\beta +(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}{\alpha b+\beta -(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )} \\ &=-\frac{1+\frac{\alpha b+\beta }{(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}}{1-\frac {\alpha b+\beta }{(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}} \\ &=- \biggl(1+\frac{2(\alpha b+\beta )}{(a\alpha )^{m}(v_{0}(1-a\alpha )-\alpha b-\beta )}+o \biggl(\frac{1}{(a\alpha )^{m}} \biggr) \biggr). \end{aligned}$$
(49)

From (49), by using the condition \(\vert a\alpha \vert >1\) and a well-known criterion for the convergence of products, the statement easily follows. □

Let

$$M_{1}:=\frac{u_{-1}(u_{-1}-b-a\beta )}{u_{0}(u_{0}-b-a\beta )},\qquad M_{2}:=\frac {v_{-1}(v_{-1}-\beta -\alpha b)}{v_{0}(v_{0}-\beta -\alpha b)}. $$

Theorem 2

Assume that \(a\alpha =-1\) and \((x_{n}, y_{n})_{n\ge-2}\) is a well-defined solution to system (14). Then the following statements are true.

  1. (a)

    If \(\vert M_{1}\vert <1\), then \(x_{2m}\to0\) and \(\vert x_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  2. (b)

    If \(\vert M_{1}\vert >1\), then \(x_{2m+1}\to0\) and \(\vert x_{2m}\vert \to\infty\), as \(m\to\infty\).

  3. (c)

    If \(M_{1}=1\), then \((x_{n})_{n\ge-2}\) is four-periodic.

  4. (d)

    If \(M_{1}=-1\), then \((x_{n})_{n\ge-2}\) is eight-periodic.

  5. (e)

    If \(\vert M_{2}\vert <1\), then \(y_{2m}\to0\) and \(\vert y_{2m+1}\vert \to\infty\), as \(m\to\infty\).

  6. (f)

    If \(\vert M_{2}\vert >1\), then \(y_{2m+1}\to0\) and \(\vert y_{2m}\vert \to\infty\), as \(m\to\infty\).

  7. (g)

    If \(M_{2}=1\), then \((y_{n})_{n\ge-2}\) is four-periodic.

  8. (h)

    If \(M_{2}=-1\), then \((y_{n})_{n\ge-2}\) is eight-periodic.

Proof

First, note that since \(a\alpha =-1\), from (22)-(25) we have

$$\begin{aligned}& x_{4m}=x_{0}M_{1}^{m},\qquad x_{4m+2}=x_{-2}M_{1}^{m+1},\qquad x_{4m+1}=\frac{x_{1}}{M_{1}^{m}},\qquad x_{4m+3}=\frac{x_{-1}}{M_{1}^{m+1}}, \end{aligned}$$
(50)
$$\begin{aligned}& y_{4m}=y_{0}M_{2}^{m},\qquad y_{4m+2}=y_{-2}M_{2}^{m+1},\qquad y_{4m+1}=\frac{y_{1}}{M_{2}^{m}},\qquad y_{4m+3}=\frac{y_{-1}}{M_{2}^{m+1}}, \end{aligned}$$
(51)

for \(m\in \mathbb {N}_{0}\). From (50) and (51) all the statements easily follow. □

Let

$$N_{1}:=\frac{u_{-1}}{u_{0}},\qquad N_{2}:=\frac{v_{-1}}{v_{0}}. $$

Theorem 3

Assume that \(a\alpha =1\) and \((x_{n}, y_{n})_{n\ge-2}\) is a well-defined solution to system (14). Then the following statements hold true.

  1. (a)

    If \(a\beta +b=0\) and \(\vert N_{1}\vert <1\), then \(x_{2m}\to0\) and \(\vert x_{2m+1}\vert \to\infty\), as \(m\to\infty\);

  2. (b)

    If \(a\beta +b=0\) and \(\vert N_{1}\vert >1\), then \(\vert x_{2m}\vert \to\infty\) and \(x_{2m+1}\to0\), as \(m\to\infty\);

  3. (c)

    If \(a\beta +b=0\) and \(N_{1}=1\), then \((x_{2m})_{m\ge-1}\) and \((x_{2m+1})_{m\ge-1}\) are constant;

  4. (d)

    If \(a\beta +b=0\) and \(N_{1}=-1\), then \((x_{4m+i})_{m\ge-1}\), \(i=\overline {0,3}\), are constant.

  5. (e)

    If \(a\beta +b\ne0\) and \((u_{-1}-u_{0})/(a\beta +b)>0\), then \(\vert x_{2m}\vert \to\infty\), as \(m\to\infty\);

  6. (f)

    If \(a\beta +b\ne0\) and \((u_{-1}-u_{0})/(a\beta +b)<0\), then \(x_{2m}\to0\), as \(m\to\infty\);

  7. (g)

    If \(a\beta +b\ne0\) and \(u_{-1}=u_{0}\), then \((x_{2m})_{m\ge-1}\) is constant;

  8. (h)

    If \(a\beta +b\ne0\) and \((u_{0}-u_{-1})/(a\beta +b)>1\), then \(\vert x_{2m+1}\vert \to\infty\), as \(m\to\infty\);

  9. (i)

    If \(a\beta +b\ne0\) and \((u_{0}-u_{-1})/(a\beta +b)<1\), then \(x_{2m+1}\to0\), as \(m\to\infty\);

  10. (j)

    If \(a\beta +b\ne0\) and \(u_{-1}-u_{0}=a\beta +b\), then \((x_{2m+1})_{m\ge-1}\) is constant;

  11. (k)

    If \(\alpha b+\beta =0\) and \(\vert N_{2}\vert <1\), then \(y_{2m}\to0\) and \(\vert y_{2m+1}\vert \to\infty\), as \(m\to\infty\);

  12. (l)

    If \(\alpha b+\beta =0\) and \(\vert N_{2}\vert >1\), then \(\vert y_{2m}\vert \to\infty\) and \(y_{2m+1}\to0\), as \(m\to\infty\);

  13. (m)

    If \(\alpha b+\beta =0\) and \(N_{2}=1\), then \((y_{2m})_{m\ge-1}\) and \((y_{2m+1})_{m\ge-1}\) are constant;

  14. (n)

    If \(\alpha b+\beta =0\) and \(N_{2}=-1\), then \((y_{4m+i})_{m\ge-1}\), \(i=\overline {0,3}\), are constant.

  15. (o)

    If \(\alpha b+\beta \ne0\) and \((v_{-1}-v_{0})/(\alpha b+\beta )>0\), then \(\vert y_{2m}\vert \to\infty\), as \(m\to\infty\);

  16. (p)

    If \(\alpha b+\beta \ne0\) and \((v_{-1}-v_{0})/(\alpha b+\beta )<0\), then \(y_{2m}\to0\), as \(m\to\infty\);

  17. (q)

    If \(\alpha b+\beta \ne0\) and \(v_{-1}=v_{0}\), then \((y_{2m})_{m\ge -1}\) is constant.

  18. (r)

    If \(\alpha b+\beta \ne0\) and \((v_{0}-v_{-1})/(\alpha b+\beta )<1\), then \(y_{2m+1}\to0\), as \(m\to\infty\);

  19. (s)

    If \(\alpha b+\beta \ne0\) and \((v_{0}-v_{-1})/(\alpha b+\beta )>1\), then \(\vert y_{2m+1}\vert \to\infty\), as \(m\to\infty\);

  20. (t)

    If \(\alpha b+\beta \ne0\) and \(v_{-1}-v_{0}=\alpha b+\beta \), then \((y_{2m+1})_{m\ge-1}\) is constant.

Proof

Let

$$\begin{aligned}& r_{m} =\frac{u_{-1}+(a\beta +b)m}{u_{0}+(a\beta +b)m},\qquad \hat{r}_{m}= \frac{u_{0}+(a\beta +b)m}{u_{-1}+(a\beta +b)(m+1)}, \\& s_{m} =\frac{v_{-1}+(\alpha b+\beta )m}{v_{0}+(\alpha b+\beta )m}, \qquad \hat{s}_{m}= \frac{v_{0}+(\alpha b+\beta )m}{v_{-1}+(\alpha b+\beta )(m+1)},\quad m\in \mathbb {N}_{0}. \end{aligned}$$

(a)-(d) Since in this case we have

$$x_{2m}=x_{-2} \biggl(\frac{u_{-1}}{u_{0}} \biggr)^{m+1},\qquad x_{2m+1}=x_{-1} \biggl( \frac{u_{0}}{u_{-1}} \biggr)^{m+1},\quad m\in \mathbb {N}_{0}, $$

these statements easily follow.

(e), (f) By using (30) we have

$$\begin{aligned} r_{m}&=\frac{u_{-1}+(a\beta +b)m}{u_{0}+(a\beta +b)m}= \biggl(1+\frac {u_{-1}}{(a\beta +b)m} \biggr) \biggl(1+\frac{u_{0}}{(a\beta +b)m} \biggr)^{-1} \\ &= \biggl(1+\frac{u_{-1}}{(a\beta +b)m}+O \biggl(\frac{1}{m^{2}} \biggr) \biggr) \biggl(1-\frac {u_{0}}{(a\beta +b)m}+O \biggl(\frac{1}{m^{2}} \biggr) \biggr) \\ &=1+\frac{u_{-1}-u_{0}}{(a\beta +b)m}+O \biggl(\frac{1}{m^{2}} \biggr) \end{aligned}$$
(52)

for sufficiently large m.

From (52), by using the fact that for every \(k\in \mathbb {N}\)

$$\begin{aligned} \sum_{j=k}^{m}\frac{1}{j}\to\infty, \quad \mbox{as } m\to\infty, \end{aligned}$$
(53)

and a known criterion for convergence of products, the statements easily follow.

(g) Using the condition \(u_{-1}=u_{0}\) in (26), the statement immediately follows.

(h), (i) By using (30) we have

$$\begin{aligned} \hat{r}_{m}&=\frac{u_{0}+(a\beta +b)m}{u_{-1}+(a\beta +b)(m+1)}= \biggl(1+\frac {u_{0}}{(a\beta +b)m} \biggr) \biggl(1+\frac{u_{-1}+a\beta +b}{(a\beta +b)m} \biggr)^{-1} \\ &= \biggl(1+\frac{u_{0}}{(a\beta +b)m} \biggr) \biggl(1-\frac{u_{-1}+a\beta +b}{(a\beta +b)m}+O \biggl( \frac{1}{m^{2}} \biggr) \biggr) \\ &=1+\frac{u_{0}-u_{-1}-a\beta -b}{(a\beta +b)m}+O \biggl(\frac{1}{m^{2}} \biggr) \end{aligned}$$
(54)

for sufficiently large m.

From (54), (53), (27) and a known criterion for convergence of products, the statements easily follow.

(j) Using the condition \(u_{0}=u_{-1}+a\beta +b\) in (27), the statement immediately follows.

(k)-(n) Since in this case we have

$$y_{2m}=y_{-2} \biggl(\frac{v_{-1}}{v_{0}} \biggr)^{m+1},\qquad y_{2m+1}=y_{-1} \biggl( \frac{v_{0}}{v_{-1}} \biggr)^{m+1},\quad m\in \mathbb {N}_{0}, $$

these statements easily follow.

(o), (p) By using (30) we have

$$\begin{aligned} s_{m}&=\frac{v_{-1}+(\alpha b+\beta )m}{v_{0}+(\alpha b+\beta )m}= \biggl(1+\frac {v_{-1}}{(\alpha b+\beta )m} \biggr) \biggl(1+\frac{v_{0}}{(\alpha b+\beta )m} \biggr)^{-1} \\ &= \biggl(1+\frac{v_{-1}}{(\alpha b+\beta )m} \biggr) \biggl(1-\frac{v_{0}}{(\alpha b+\beta )m}+O \biggl( \frac{1}{m^{2}} \biggr) \biggr) \\ &=1+\frac{v_{-1}-v_{0}}{(\alpha b+\beta )m}+O \biggl(\frac{1}{m^{2}} \biggr) \end{aligned}$$
(55)

for sufficiently large m.

From (55), (53), (28) and a known criterion for convergence of products, the statements easily follow.

(q) Using the condition \(v_{0}=v_{-1}\) in (28), the statement immediately follows.

(r), (s) By using (30) we have

$$\begin{aligned} \hat{s}_{m}&=\frac{v_{0}+(\alpha b+\beta )m}{v_{-1}+(\alpha b+\beta )(m+1)}= \biggl(1+\frac {v_{0}}{(\alpha b+\beta )m} \biggr) \biggl(1+\frac{v_{-1}+\alpha b+\beta }{(\alpha b+\beta )m} \biggr)^{-1} \\ &= \biggl(1+\frac{v_{0}}{(\alpha b+\beta )m} \biggr) \biggl(1-\frac{v_{-1}+\alpha b+\beta }{(\alpha b+\beta )m}+O \biggl( \frac{1}{m^{2}} \biggr) \biggr) \\ &=1+\frac{v_{0}-v_{-1}-\alpha b-\beta }{(\alpha b+\beta )m}+O \biggl(\frac{1}{m^{2}} \biggr) \end{aligned}$$
(56)

for sufficiently large m.

From (56), (53), (29) and a known criterion for convergence of products, the statements easily follow.

(t) Using the condition \(v_{0}=v_{-1}+\alpha b+\beta \) in (29), the statement immediately follows. □

5 Domain of undefinable solutions to system (2)

In Section 2 we proved that solutions to system (2), for which \(x_{-j}=0\) or \(y_{-j}=0\) for some \(j\in\{1,2\}\), are not defined. The set of all such initial values is characterized here.

Definition 1

Consider the system of difference equations

$$\begin{aligned} \begin{aligned} &x_{n}=f(x_{n-1}, \ldots,x_{n-s},y_{n-1},\ldots,y_{n-s},n), \\ &y_{n}=g(x_{n-1},\ldots,x_{n-s},y_{n-1}, \ldots,y_{n-s},n),\quad n\in \mathbb {N}_{0}, \end{aligned} \end{aligned}$$
(57)

where \(s\in \mathbb {N}\), and \(x_{-i},y_{-i}\in \mathbb {R}\), \(i=\overline {1,s}\). The string of vectors

$$(x_{-s},y_{-s}),\ldots,(x_{-1},y_{-1}),(x_{0},y_{0}), \ldots,(x_{n_{0}},y_{n_{0}}), $$

where \(n_{0}\ge-1\), is called an undefined solution of system (57) if

$$x_{j}=f(x_{j-1},\ldots,x_{j-s},y_{j-1}, \ldots,y_{j-s},j) $$

and

$$y_{j}=g(x_{j-1},\ldots,x_{j-s},y_{j-1}, \ldots,y_{j-s},j) $$

for \(0\le j< n_{0}+1\), and \(x_{n_{0}+1}\) or \(y_{n_{0}+1}\) is not a defined number, that is, the quantity

$$f(x_{n_{0}},\ldots,x_{n_{0}-s+1},y_{n_{0}}, \ldots,y_{n_{0}-s+1},n_{0}+1) $$

or

$$g(x_{n_{0}},\ldots,x_{n_{0}-s+1},y_{n_{0}}, \ldots,y_{n_{0}-s+1},n_{0}+1) $$

is not defined.

The set of all initial values \((x_{-s},y_{-s}),\ldots,(x_{-1},y_{-1})\) which generate undefined solutions to system (57) is called domain of undefinable solutions of the system.

The next result characterizes the domain of undefinable solutions to system (2) when \(a_{n}b_{n}\alpha _{n}\beta _{n}\ne0\), \(n\in \mathbb {N}_{0}\).

Theorem 4

Assume that \(a_{n}b_{n}\alpha _{n}\beta _{n}\ne0\), \(n\in \mathbb {N}_{0}\). Then the domain of undefinable solutions to system (2) is the following set:

$$\begin{aligned} {\mathcal{U}}={}&\bigcup_{m\in \mathbb {N}_{0}} \biggl\{ (x_{-2},x_{-1},y_{-2},y_{-1})\in \mathbb {R}^{4}: \\ &{}\frac{1}{x_{-1}x_{-2}}=g_{0}^{-1}\circ f_{1}^{-1} \circ\cdots\circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1} \circ g_{2m}^{-1}\circ f_{2m+1}^{-1}(0) \\ &{} \textit{or } \frac{1}{x_{-1}x_{-2}}=g_{0}^{-1}\circ f_{1}^{-1}\circ\cdots\circ g_{2m-2}^{-1} \circ f_{2m-1}^{-1} \circ g_{2m}^{-1}(0) \\ &{} \textit{or } \frac{1}{y_{-1}y_{-2}}=f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots\circ f_{2m-2}^{-1} \circ g_{2m-1}^{-1} \circ f_{2m}^{-1}(0) \\ &{} \textit{or } \frac{1}{y_{-1}y_{-2}}=f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots\circ g_{2m-1}^{-1} \circ f_{2m}^{-1} \circ g_{2m+1}^{-1}(0) \biggr\} \\ &{} \cup \bigl\{ (x_{-2},x_{-1},y_{-2},y_{-1}) \in \mathbb {R}^{4}: \\ &{}x_{-2}=0\textit{ or }x_{-1}=0\textit{ or }y_{-2}=0\textit{ or }y_{-1}=0 \bigr\} , \end{aligned}$$
(58)

where

$$f_{n}(t)=a_{n}t+b_{n}, \qquad g_{n}(t)= \alpha _{n}t+\beta _{n},\quad n\in \mathbb {N}_{0}. $$

Proof

We have already proved that the set

$$\bigl\{ (x_{-2},x_{-1},y_{-2},y_{-1})\in \mathbb {R}^{4}: x_{-2}=0\mbox{ or }x_{-1}=0\mbox{ or }y_{-2}=0\mbox{ or }y_{-1}=0 \bigr\} $$

belongs to the domain of undefinable solutions to system (2).

If \(x_{-j}\ne0\ne y_{-j}\), \(j=\overline {1,2}\) (i.e., \(x_{n}\ne0\ne y_{n}\) for every \(n\ge-2\)), then such a solution \((x_{n},y_{n})_{n\ge-2}\) is not defined if and only if

$$\begin{aligned} a_{n}+b_{n}y_{n-1}y_{n-2}=0\quad \mbox{or} \quad \alpha _{n}+\beta _{n}x_{n-1}x_{n-2}=0 \end{aligned}$$
(59)

for some \(n\in \mathbb {N}_{0}\), which is equivalent to

$$\begin{aligned} v_{n-1}=-b_{n}/a_{n}\quad \mbox{or}\quad u_{n-1}=-\beta _{n}/\alpha _{n} \end{aligned}$$
(60)

for some \(n\in \mathbb {N}_{0}\).

Note that

$$\begin{aligned} f_{n}^{-1}(0)=-b_{n}/a_{n}\quad \mbox{and} \quad g_{n}^{-1}(0)=-\beta _{n}/\alpha _{n},\quad n \in \mathbb {N}_{0}. \end{aligned}$$
(61)

We have

$$\begin{aligned}& v_{2m-1} =(g_{2m-1} \circ f_{2m-2}\circ\cdots\circ f_{2}\circ g_{1}\circ f_{0}) (v_{-1}), \end{aligned}$$
(62)
$$\begin{aligned}& v_{2m} =(g_{2m}\circ f_{2m-1}\circ\cdots\circ g_{2}\circ f_{1}\circ g_{0}) (u_{-1}), \end{aligned}$$
(63)
$$\begin{aligned}& u_{2m-1} =(f_{2m-1} \circ g_{2m-2}\circ\cdots\circ g_{2}\circ f_{1}\circ g_{0}) (u_{-1}), \end{aligned}$$
(64)
$$\begin{aligned}& u_{2m} =(f_{2m}\circ g_{2m-1}\circ\cdots\circ f_{2}\circ g_{1}\circ f_{0}) (v_{-1}) \end{aligned}$$
(65)

for \(m\in \mathbb {N}_{0}\).

From (61) and (62) we have that

$$-\frac{b_{2m}}{a_{2m}}=v_{2m-1}=(g_{2m-1} \circ f_{2m-2} \circ\cdots \circ f_{2}\circ g_{1}\circ f_{0}) (v_{-1}) $$

for some \(m\in \mathbb {N}_{0}\) if and only if

$$\begin{aligned} \frac{1}{y_{-1}y_{-2}}= f_{0}^{-1}\circ g_{1}^{-1} \circ \cdots \circ f_{2m-2}^{-1}\circ g_{2m-1}^{-1} \circ f_{2m}^{-1}(0). \end{aligned}$$
(66)

From (61) and (63) we have that

$$-\frac{b_{2m+1}}{a_{2m+1}}=v_{2m}=(g_{2m}\circ f_{2m-1} \circ\cdots \circ g_{2}\circ f_{1}\circ g_{0}) (u_{-1}) $$

for some \(m\in \mathbb {N}_{0}\) if and only if

$$\begin{aligned} \frac{1}{x_{-1}x_{-2}}= g_{0}^{-1}\circ f_{1}^{-1} \circ \cdots\circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1} \circ g_{2m}^{-1}\circ f_{2m+1}^{-1}(0). \end{aligned}$$
(67)

From (61) and (64) we have that

$$-\frac{\beta _{2m}}{\alpha _{2m}}=u_{2m-1}=(f_{2m-1} \circ g_{2m-2} \circ \cdots \circ g_{2}\circ f_{1}\circ g_{0}) (u_{-1}) $$

for some \(m\in \mathbb {N}_{0}\) if and only if

$$\begin{aligned} \frac{1}{x_{-1}x_{-2}}=g_{0}^{-1}\circ f_{1}^{-1} \circ \cdots\circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1} \circ g_{2m}^{-1}(0). \end{aligned}$$
(68)

From (61) and (65) we have that

$$-\frac{\beta _{2m+1}}{\alpha _{2m+1}}=u_{2m}=(f_{2m}\circ g_{2m-1} \circ \cdots \circ f_{2}\circ g_{1}\circ f_{0}) (v_{-1}) $$

for some \(m\in \mathbb {N}_{0}\) if and only if

$$\begin{aligned} \frac{1}{y_{-1}y_{-2}}= f_{0}^{-1}\circ g_{1}^{-1} \circ \cdots\circ g_{2m-1}^{-1}\circ f_{2m}^{-1} \circ g_{2m+1}^{-1}(0). \end{aligned}$$
(69)

From (66)-(69) we see that the first union in (58) also belongs to the domain of undefinable solutions, finishing the proof of the theorem. □

Remark 1

Quantities

$$\begin{aligned} &g_{0}^{-1}\circ f_{1}^{-1}\circ\cdots \circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1}\circ g_{2m}^{-1}\circ f_{2m+1}^{-1}(0), \end{aligned}$$
(70)
$$\begin{aligned} &g_{0}^{-1}\circ f_{1}^{-1}\circ\cdots \circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1} \circ g_{2m}^{-1}(0), \end{aligned}$$
(71)
$$\begin{aligned} &f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots \circ f_{2m-2}^{-1}\circ g_{2m-1}^{-1} \circ f_{2m}^{-1}(0), \end{aligned}$$
(72)
$$\begin{aligned} &f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots \circ g_{2m-1}^{-1}\circ f_{2m}^{-1} \circ g_{2m+1}^{-1}(0) \end{aligned}$$
(73)

can be calculated for every \(m\in \mathbb {N}_{0}\).

Indeed, note that

$$\begin{aligned} &g_{0}^{-1}\circ f_{1}^{-1}\circ\cdots \circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1}\circ g_{2m}^{-1}\circ f_{2m+1}^{-1}(0)= \Biggl( \prod_{j=0}^{m} \bigl(g_{2j}^{-1} \circ f_{2j+1}^{-1}\bigr) \Biggr) (t) \Big|_{t=0}, \end{aligned}$$
(74)
$$\begin{aligned} &g_{0}^{-1}\circ f_{1}^{-1}\circ\cdots \circ g_{2m-2}^{-1}\circ f_{2m-1}^{-1} \circ g_{2m}^{-1}(0)= \Biggl(\prod_{j=0}^{m-1} \bigl(g_{2j}^{-1}\circ f_{2j+1}^{-1}\bigr) \Biggr) (t) \Big|_{t=g_{2m}^{-1}(0)}, \end{aligned}$$
(75)
$$\begin{aligned} &f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots \circ f_{2m-2}^{-1}\circ g_{2m-1}^{-1} \circ f_{2m}^{-1}(0)= \Biggl(\prod_{j=0}^{m-1} \bigl(f_{2j}^{-1}\circ g_{2j+1}^{-1}\bigr) \Biggr) (t)\Big|_{t=f_{2m}^{-1}(0)}, \end{aligned}$$
(76)
$$\begin{aligned} &f_{0}^{-1}\circ g_{1}^{-1}\circ\cdots \circ g_{2m-1}^{-1}\circ f_{2m}^{-1} \circ g_{2m+1}^{-1}(0)= \Biggl(\prod_{j=0}^{m} \bigl(f_{2j}^{-1}\circ g_{2j+1}^{-1}\bigr) \Biggr) (t) \Big|_{t=0}, \end{aligned}$$
(77)

and also that

$$\begin{aligned} \bigl(g_{2j}^{-1}\circ f_{2j+1}^{-1}\bigr) (t)=\frac{t}{\alpha _{2j}a_{2j+1}}-\frac{b_{2j+1}}{\alpha _{2j}a_{2j+1}}-\frac{\beta _{2j}}{\alpha _{2j}},\quad j\in \mathbb {N}_{0}, \end{aligned}$$
(78)

and

$$\begin{aligned} \bigl(f_{2j}^{-1}\circ g_{2j+1}^{-1}\bigr) (t)=\frac{t}{a_{2j}\alpha _{2j+1}}-\frac{\beta _{2j+1}}{a_{2j}\alpha _{2j+1}}-\frac{b_{2j}}{a_{2j}},\quad j\in \mathbb {N}_{0}. \end{aligned}$$
(79)

On the other hand, if

$$h_{j}(t)=c_{j}t+d_{j},\quad j\in \mathbb {N}_{0}, $$

it is easy to see that

$$\begin{aligned} (h_{0}\circ h_{1}\circ\cdots\circ h_{n}) (t)= \Biggl(\prod_{j=0}^{n} c_{j} \Biggr)t+\sum_{i=0}^{n}d_{j}\prod _{j=0}^{i-1}c_{j},\quad n\in \mathbb {N}_{0}. \end{aligned}$$
(80)

From (74)-(80) explicit formulas for the quantities in (70)-(73) are easily obtained.