1 Introduction

In this paper, we mainly consider the following high-order Yamabe-type coupled system, which is called the poly-Laplacian system:

$$ \textstyle\begin{cases} \text{\pounds}_{m_{1},p}u+h_{1}(x) \vert u \vert ^{p-2}u=F_{u}(x,u,v), & x\in V, \\ \text{\pounds}_{m_{2},q}v+h_{2}(x) \vert v \vert ^{q-2}v=F_{v}(x,u,v), & x\in V, \end{cases} $$
(1.1)

where V is a finite graph, \(m_{i}\geq 2\), \(i=1,2\), \(p,q>1\) are integers, \(h_{i}:V\to \mathbb{R}^{+}\), \(i=1,2\), \(F:V\times \mathbb{R}\times \mathbb{R}\to \mathbb{R}\), and \(\text{\pounds}_{m,p}\) is defined as follows: for any function \(\phi :V\to \mathbb{R}\),

$$ \int _{V}(\text{\pounds}_{m,p}u)\phi \,d\mu = \textstyle\begin{cases} \int _{V} \vert \nabla ^{m} u \vert ^{p-2}\Gamma (\Delta ^{\frac{m-1}{2}}u, \Delta ^{\frac{m-1}{2}}\phi )\,d\mu & \text{if $m$ is odd}, \\ \int _{V} \vert \nabla ^{m} u \vert ^{p-2}\Delta ^{\frac{m}{2}}u\Delta ^{ \frac{m}{2}}\phi \,d\mu & \text{if $m$ is even}. \end{cases} $$
(1.2)

When \(p=2\), \(\text{\pounds}_{m,p}=(-\Delta )^{m}u\) is called the poly-Laplacian operator of u, and when \(m=1\), \(\text{\pounds}_{m,p}=-\Delta _{p}u\). A detailed definition is given in Sect. 2; see also [1].

When \(m_{1}=m_{2}=m\), \(p=q\), and \(u=v\), system (1.1) becomes the scalar equation

$$ \text{\pounds}_{m,p}u+h(x) \vert u \vert ^{p-2}u=f(x,u), \quad x\in V, $$
(1.3)

where \(f(x,u)=F_{u}(x,u)\) for \(x\in V\), and can be seen as a generalization of the following Yamabe equation on a finite graph:

$$ \Delta u+h(x) \vert u \vert ^{p-2}u=f(x,u), \quad x\in V. $$
(1.4)

In recent years, some scholars are devoted to studying the Yamabe equation on finite and infinite graphs. We refer the readers to [17]. Ge [2] studied the following Yamabe-type equations with p-Laplacian operator on finite graphs:

$$ \Delta _{p} u(x)+h(x)u^{m}=\lambda f(x)u^{\alpha -1},\quad x\in V, $$
(1.5)

where \(1< m-1\leq \alpha \), \(f>0\), \(h>0\), and \(\Delta _{p}\) is defined by

$$ \Delta _{p}f_{i}=\frac{1}{\mu _{i}}\sum _{j\thicksim i}\omega _{ij} \vert f_{j}-f_{i} \vert ^{p-2}(f_{j}-f_{i}), $$

where \(\omega _{xy}\) is the weight of the edge connecting x and y. When the nonlinear term \(f>0\), \(m=p-1\), and \(\lambda \in \mathbb{R}\), Ge established the existence of a positive solution. When \(1\leq \alpha \leq p\leq q\), \(h\leq 0\), and \(f>0\), Zhang [3], extended the case of \(m=p-1\) in (1.5) to \(m=q-1\) and proved the existence of a positive solution. Ge and Jiang [5] and Zhang and Lin [6] extended the existence results of solutions on finite graphs to infinite graphs for \(p=2\) and \(p>2\) and obtained the existence of one positive solution. Han and Shao [4] investigated the nonlinear p-Laplacian equation

$$ -\Delta _{p} u+\bigl(\lambda a(x)+1\bigr) \vert u \vert ^{p-2}u=f(x,u),\quad x\in V, $$
(1.6)

where \(p\geq 2\), where the definition of the p-Laplacian operator \(\Delta _{p}\) is different:

$$ \Delta _{p}u(x)=\frac{1}{2\mu (x)}\sum _{y\thicksim x}\bigl( \vert \nabla u \vert ^{p-2}(y)+ \vert \nabla u \vert ^{p-2}(x)\bigr)\omega _{xy} \bigl(u(y)-u(x)\bigr). $$

Under appropriate conditions on the nonlinear terms \(f(x,u)\) and \(a(x)\), the author obtained the existence of a positive solution for equation (1.6) via the mountain pass theorem. Pinamonti and Stefani [7] studied the following equation with the \((m, p)\)-Laplacian operator on locally finite weighted graphs:

$$ \textstyle\begin{cases} \text{\pounds}_{m,p}u=\lambda f(x,u) & \text{in } \Omega ^{\circ}, \\ \vert \nabla ^{j} u \vert =0, & \text{on } \partial \Omega , 0\leq j\leq m-1, \end{cases} $$

where \(\Omega ^{\circ}\) and Ω are the interior and boundary of Ω, respectively. They established the existence of at least one nontrivial solution when \(0<\lambda <\Lambda \) for some \(\Lambda >0\) via the variational method. Besides, they also investigated the following Yamabe-type equations”

$$ \textstyle\begin{cases} -\Delta _{p}u+g(x,u)=f(x,u) & \text{in } \Omega ^{\circ}, \\ u=h & \text{on } \partial \Omega , \end{cases} $$

where \(f\in L^{1}(\Omega )\), \(h\in L^{1}(\partial \Omega )\), and \(g: \Omega \times \mathbb{R}\rightarrow \mathbb{R}\) is a function such that \(g(x,0)=0\) and \(t\mapsto g(x,t)\) is nondecreasing for all \(x\in \Omega \). They obtained the uniqueness of weak solutions.

The research of this paper is mainly inspired by a recent work due to Grigor’yan, Lin, and Yang [1], who investigated the Yamabe equation and its generalization, that is, poly-Laplacian equation on locally finite and finite graphs. To be specific, in [1], for equation (1.3) on a finite graph V, they assumed that \(h(x)>0\) for all \(x\in V\) and F satisfies the following conditions:

(\(V_{1}\)):

\(F(x,s)=\int _{0}^{s} f(x,t)\,dt\) for \(x\in V\), \(f(x,0)=0\), and \(f(x,t)\) is continuous with respect to \(t\in \mathbb{R}\);

(\(V_{2}\)):

\(\limsup_{t\rightarrow 0}\frac{|f(x,t)|}{|t|^{p-1}}< \lambda _{mp}(V)\), where \(\lambda _{mp}\) is the first eigenvalue of the operator \(\text{\pounds}_{m,p}\), and

$$ \lambda _{mp}(V)=\inf_{u\not \equiv 0} \frac{\int _{V}( \vert \nabla ^{m} u \vert ^{p}+h \vert u \vert ^{p})\,d\mu}{\int _{V} \vert u \vert ^{p}\,d\mu};$$
(\(V_{3}\)):

there exist \(\theta >p\) and \(M>0\) such that if \(|s|\geq M\), then

$$ 0< \theta F(x,s)\leq sf(x,s)\quad \forall x\in V. $$

They obtained the existence of a nontrivial solution via the mountain pass theorem.

In this paper, we would like to generalize and improve the above result in [1]. We use the mountain pass theorem to study the existence of a nontrivial solution and use the symmetric mountain pass theorem to study the multiplicity of nontrivial solutions for system (1.1) on a finite graph, where the nonlinear term F satisfies the super-\((p,q)\)-linear growth condition. Our work is also inspired by Luo and Zhang [8], who considered the following nonlinear p-Laplacian difference system:

$$ \Delta \bigl(\phi _{p}\bigl(\Delta u(n-1)\bigr) \bigr)-a(n) \bigl\vert u(n) \bigr\vert ^{p-2}u(n)+\nabla F \bigl(n,u(n)\bigr)=0,\quad n\in \mathbb{Z}, $$
(1.7)

where \(p\geq 2\), \(\phi _{p}(s)=|s|^{p-2}s\), \(\Delta u(n)=u(n+1)-u(n)\), \(F(n,x)\) is continuously differentiable in x for all \(n\in \{1,\dots ,M\}\), and \(M>1\) is a positive integer. By the linking theorem in [9] they obtained that the system has at least one nonconstant periodic solution when F satisfies super-p-linear growth condition.

Notations

\(h_{i,\min}:=\min_{x\in V} h_{i}(x)\), \(i=1,2\); \(h_{\min}:=\min_{x\in V} h(x)\); \(\mu _{\min}:=\min_{x\in V} \mu (x)\), where \(\mu :V\rightarrow \mathbb{R}^{+}\) is a finite measure; \(W:=W^{m_{1},p}(V)\times W^{m_{2},q}(V)\) with the norm \(\|(u,v)\|=\|u\|_{W^{m_{1},p}(V)}+\|v\|_{W^{m_{2},q}(V)}\) defined in Sect. 2.

Next, we state our main results.

Theorem 1.1

Assume that F satisfies the following conditions:

(\(F_{1}\)):

\(F(x,0,0)=0\), and \(F(x,t,s)\) is continuously differentiable in \((t,s)\in \mathbb{R}^{2}\) for all \(x\in V\);

(\(F_{2}\)):

\(\lim_{|(t,s)|\rightarrow 0}\frac{F(x,t,s)}{|t|^{p}+|s|^{q}}< \min \{\frac{1}{pK_{1}^{p}},\frac{1}{qK_{2}^{q}}\}\) for all \(x\in V\), where

$$ K_{1}= \frac{ (\sum_{x\in V}\mu (x) )^{\frac{1}{p}}}{\mu _{\min}^{\frac{1}{p}}h_{1,\min}^{\frac{1}{p}}}, \qquad K_{2}= \frac{ (\sum_{x\in V}\mu (x) )^{\frac{1}{q}}}{\mu _{\min}^{\frac{1}{q}}h_{2,\min}^{\frac{1}{q}}}; $$
(\(F_{3}\)):

\(\lim_{|(t,s)|\rightarrow \infty} \frac{F(x,t,s)}{|t|^{p}+|s|^{q}}=+\infty \) for all \(x\in V\);

(\(F_{4}\)):

there are constants \(\gamma _{1}>0\) and \(\gamma _{2}>0\) such that

$$ \liminf_{ \vert (t,s) \vert \rightarrow \infty} \frac{F_{t}(x,t,s)t+F_{s}(x,t,s)s-\max \{p,q\}F(x,t,s)}{ \vert t \vert ^{\gamma _{1}}+ \vert s \vert ^{\gamma _{2}}} >0 \quad \textit{for all } x\in V, $$

where \(F_{t}(x,t,s)=\frac{\partial F(x,t,s)}{\partial t}\) and \(F_{s}(x,t,s)=\frac{\partial F(x,t,s)}{\partial s}\). Then system (1.1) has at least one nontrivial solution.

Theorem 1.2

Assume that (\(F_{1}\))(\(F_{4}\)) and the following condition hold:

(\(F_{5}\)):

\(F(x,-t,-s)=F(x,t,s)\) for \((x,t,s)\in V\times \mathbb{R}^{2}\).

Then system (1.1) has at least dim W nontrivial solutions.

Remark 1.1

In Theorems 1.1 and 1.2, we do not eliminate the case of seminontrivial solutions. Hence, in Theorems 1.1 and 1.2 the solutions have three possibilities: \((u_{*},v_{*})=(0,v_{*})\), \((u_{*},v_{*})=(u_{*},0)\), or \((u_{*},v_{*})\neq(0,0)\).

From Theorems 1.1 and 1.2 we easily obtain the following results corresponding to (1.3).

Theorem 1.3

Assume that F satisfies the following conditions:

(\(F'_{1}\)):

\(F(x,0)=0\), and \(F(x,t)\) is continuously differentiable in \(t\in \mathbb{R}\) for all \(x\in V\);

(\(F'_{2}\)):

\(\lim_{|t|\rightarrow 0}\frac{F(x,t)}{|t|^{p}}< \frac{1}{pK^{P}}\) for all \(x\in V\), where \(K= \frac{ (\sum_{x\in V}\mu (x) )^{\frac{1}{p}}}{\mu _{\min}^{\frac{1}{p}}h_{\min}^{\frac{1}{p}}} \);

(\(F'_{3}\)):

\(\lim_{|t|\rightarrow \infty}\frac{F(x,t)}{|t|^{p}}=+\infty \) for all \(x\in V\);

(\(F'_{4}\)):

there exists a constant \(\gamma >0\) such that

$$ \liminf_{ \vert t \vert \rightarrow \infty} \frac{F_{t}(x,t)t-pF(x,t)}{ \vert t \vert ^{\gamma}} >0 \quad \textit{for all } x \in V, $$

where \(F_{t}(x,t)=\frac{\partial F(x,t)}{\partial t}\). Then equation (1.3) has at least one nontrivial solution.

Theorem 1.4

Assume that (\(F'_{1}\))(\(F'_{4}\)) and the following condition hold:

(\(F'_{5}\)):

\(F(x,-t)=F(x,t)\) for \((x,t)\in V\times \mathbb{R}\).

Then equation (1.3) has at least dim \(W^{m,p}(V)\) nontrivial solutions.

Remark 1.2

There are examples satisfying the conditions of Theorem 1.1, for example,

$$ F(x,t,s)=\ln \bigl(1+ \vert t \vert ^{p}\bigr) \vert t \vert ^{\max \{p,q\}}+\ln \bigl(1+ \vert s \vert ^{q}\bigr) \vert s \vert ^{\max \{p,q\}}. $$

Remark 1.3

It is not difficult to verify that (\(V_{3}\)) implies (\(F'_{3}\)) and (\(F'_{4}\)). There exist examples satisfying the conditions of Theorem 1.3 but not satisfying (\(V_{1}\))–(\(V_{3}\)), for example, \(F(x,t)=\ln (1+|t|^{p})|t|^{p} \) for \(x\in V\).

Remark 1.4

In some sense, (\(F_{1}'\))–(\(F_{4}'\)) can be seen as a generalization of the assumptions in [8], where the difference equation (1.7) is studied, defined on the set \(\mathbb{Z}\) of integers. However, in this paper, we study the high-order Yamabe-type coupled system involving the poly-Laplacian on a finite graph. Hence we generalize those conditions in [8] from \(m=1\) to \(m\geq 2\) and from \(n\in \mathbb{Z}\) to \(x\in V\), which is a finite graph. Moreover, we also present the multiplicity results, that is, Theorems 1.2 and 1.4, which are not considered in [1].

2 Preliminaries

In this section, we state some useful properties of poly-Laplacian and Sobolev spaces on graphs. For details, we refer to [1].

Let \(G=(V, E)\) be a finite graph with vertex set V and edge set E. For any edge \(xy\in E\) with two vertexes of \(x,y\in V\), assume that its weight \(\omega _{xy}>0\) and \(\omega _{xy}=\omega _{yx}\). For any \(x\in V\), its degree is defined as \(\deg(x)=\sum_{y\thicksim x}\omega _{xy}\), where we write \(y\thicksim x\) if \(xy\in E\). Let \(\mu :V\rightarrow \mathbb{R}^{+}\) be a finite measure. Define

$$ \Delta \psi (x)=\frac{1}{\mu (x)}\sum _{y\thicksim x}w_{xy}\bigl( \psi (y)-\psi (x)\bigr). $$
(2.1)

The corresponding gradient form is

$$ \Gamma (\psi _{1},\psi _{2}) (x)= \frac{1}{2\mu (x)}\sum_{y \thicksim x}w_{xy} \bigl(\psi _{1}(y)-\psi _{1}(x)\bigr) \bigl(\psi _{2}(y)-\psi _{2}(x)\bigr). $$
(2.2)

Write \(\Gamma (\psi )=\Gamma (\psi ,\psi )\). The length of the gradient is defined by

$$ \vert \nabla \psi \vert (x)=\sqrt{\Gamma (\psi ) (x)}= \biggl(\frac{1}{2\mu (x)} \sum_{y\thicksim x}w_{xy} \bigl(\psi (y)-\psi (x)\bigr)^{2} \biggr)^{ \frac{1}{2}}. $$
(2.3)

Similarly to the case in Euclidean space, we use \(|\nabla ^{m}\psi |\) to represent the length of the mth-order gradient of ψ defined by

$$ \bigl\vert \nabla ^{m}\psi \bigr\vert = \textstyle\begin{cases} \vert \nabla \Delta ^{\frac{m-1}{2}}\psi \vert & \text{when $m$ is odd}, \\ \vert \Delta ^{\frac{m}{2}}\psi \vert & \text{when $m$ is even}, \end{cases} $$
(2.4)

where \(|\nabla \Delta ^{\frac{m-1}{2}}\psi |\) is defined as in (2.3) with ψ replaced by \(\Delta ^{\frac{m-1}{2}}\psi \), and \(|\Delta ^{\frac{m}{2}}\psi |\) denotes the absolute value of the function \(\Delta ^{\frac{m}{2}}\psi \). For any function \(\psi :V\rightarrow \mathbb{R}\), we denote

$$ \int _{V} \psi (x) \,d\mu =\sum_{x\in V} \mu (x)\psi (x) $$
(2.5)

and \(|V|=\sum_{x\in V}\mu (x)\).

When \(p\geq 2\), we define the p-Laplacian operator by \(\Delta _{p}\psi \) by

$$ \Delta _{p}\psi (x)=\frac{1}{2\mu (x)}\sum _{y\sim x} \bigl( \vert \nabla \psi \vert ^{p-2}(y)+ \vert \nabla \psi \vert ^{p-2}(x) \bigr)\omega _{xy}\bigl( \psi (y)-\psi (x)\bigr). $$
(2.6)

In the distributional sense, \(\Delta _{p} \psi \) can be written as follows. For any \(\phi \in \mathcal{C}_{c}(V)\),

$$ \int _{V}(\Delta _{p} \psi )\phi \,d\mu =- \int _{V} \vert \nabla \psi \vert ^{p-2}\Gamma (\psi ,\phi )\,d\mu , $$
(2.7)

where \(\mathcal{C}_{c}(V)\) is the set of all real functions with compact support. It is easy to see that \(\text{\pounds}_{m,p}\) defined by (1.2) is a generalization of \(\Delta _{p} \psi \).

Define the space

$$ W^{m,p}(V)= \biggl\{ \psi :V\to \mathbb{R}\Bigm| \int _{V}\bigl( \bigl\vert \nabla ^{m} \psi (x) \bigr\vert ^{p}+h(x) \bigl\vert \psi (x) \bigr\vert ^{p}\bigr)\,d\mu < \infty \biggr\} $$

endowed with the norm

$$ \Vert \psi \Vert _{W^{m,p}(V)}= \biggl( \int _{V}\bigl( \bigl\vert \nabla ^{m} \psi (x) \bigr\vert ^{p}+h(x) \bigl\vert \psi (x) \bigr\vert ^{p}\bigr)\,d\mu \biggr)^{\frac{1}{p}}, $$
(2.8)

where \(m\geq 2\), \(p>1\), and \(h(x)>0\) for all \(x\in V\). Then \(W^{m,p}(V)\) is a Banach space of finite dimension. Let \(1< r<+\infty \). Define

$$ L^{r}(V)= \biggl\{ \psi :V\to \mathbb{R}\Bigm| \int _{V} \bigl\vert \psi (x) \bigr\vert ^{r}\,d\mu < \infty \biggr\} $$

with the norm

$$ \Vert \psi \Vert _{L^{r}(V)}= \biggl( \int _{V} \bigl\vert \psi (x) \bigr\vert ^{r}\,d\mu \biggr)^{\frac{1}{r}}. $$
(2.9)

Let X be a Banach space, and let \(\varphi \in C^{1}(X,\mathbb{R})\). We say that the functional φ satisfies the Palais–Smale (PS) condition if \(\{u_{n}\}\) has a convergent subsequence in X whenever \(\varphi (u_{n})\) is bounded and \(\varphi '(u_{n})\rightarrow 0\). We call that φ satisfies the Cerami (C) condition if \(\{u_{n}\}\) has a convergent subsequence in X whenever \(\varphi (u_{n})\) is bounded and \(\|\varphi '(u_{n})\|\times (1+\| u_{n}\|)\rightarrow 0\).

Lemma 2.1

(Mountain pass theorem [10])

Let X be a real Banach space, and let \(\varphi \in C^{1}(X,\mathbb{R})\), \(\varphi (0)=0\) satisfy the (PS)-condition. Suppose that φ satisfies the following conditions:

  1. (i)

    there exists a constant \(\rho >0\) such that \(\varphi |_{\partial B_{\rho}(0)}> 0 \), where \(B_{\rho}=\{w\in X:\|w\|_{X}<\rho \}\);

  2. (ii)

    there exists \(w\in X\backslash \bar{B}_{\rho} (0)\) such that \(\varphi (w)\leq 0 \).

Then φ has a critical value c with

$$ c:=\inf_{\gamma \in \Gamma}\max_{t\in [0,1]}\varphi \bigl( \gamma (t)\bigr), $$

where

$$ \Gamma :=\bigl\{ \gamma \in C\bigl([0,1],X]\bigr):\gamma (0)=0,\gamma (1)=w\bigr\} . $$

Lemma 2.2

(Symmetric mountain pass theorem [10])

Let X be an infinite-dimensional Banach space, let \(X=Y\oplus Z\), where Y is finite-dimensional, and let \(\varphi \in C^{1}(X,\mathbb{R})\), \(\varphi (0)=0\), satisfy the (PS)-condition. Suppose that φ satisfies the following conditions:

  1. (i)

    \(\varphi (0)=0\), \(\varphi (-u)=\varphi (u)\) for all \(u\in X\);

  2. (ii)

    there exists a constant \(\rho , \alpha >0\), such that \(\varphi |_{\partial B_{\rho}(0)\cap Z}\geq \alpha \);

  3. (iii)

    for any finite-dimensional subspace \(\widetilde{X}\subset X\), there is \(R=R(\widetilde{X})>0\) such that \(\varphi (u)\leq 0 \) on \(\widetilde{X}\backslash B_{R}(0)\).

Then φ possesses an unbounded sequence of critical values.

Remark 2.1

As shown in [11], the deformation lemma can be proved with the weaker (C)-condition instead of the (PS)-condition, so that Lemmas 2.1 and 2.2 also hold under the (C)-condition.

Remark 2.2

If X is finite-dimensional, the result of Lemma 2.2 can also be obtained with the conclusion that φ possesses at least dim Z critical values (see [10], Remark 9.36).

Lemma 2.3

Let \(p>1\). For all \(\psi \in W^{m,p}(V)\), we have

$$ \Vert \psi \Vert _{\infty}\leq d \Vert \psi \Vert _{W^{m,p}(V)},$$

where \(\|\psi \|_{\infty}=\max_{x\in V}|\psi (x)|\) and \(d= (\frac{1}{\mu _{\min}h_{\min}} )^{\frac{1}{p}}\).

Proof

Indeed,

$$\begin{aligned} \Vert \psi \Vert _{W^{m,p}(V)}^{p} =& \int _{V}\bigl( \bigl\vert \nabla ^{m} \psi \bigr\vert ^{p}+h(x) \bigl\vert \psi (x) \bigr\vert ^{p}\bigr)\,d\mu \\ =&\sum_{x\in V}\mu (x) \bigl( \bigl\vert \nabla ^{m} \psi \bigr\vert ^{p}+h(x) \bigl\vert \psi (x) \bigr\vert ^{p}\bigr) \\ \geq &\sum_{x\in V}\mu (x)h(x) \bigl\vert \psi (x) \bigr\vert ^{p} \\ \geq &\mu _{\min}h_{\min}\sum_{x\in V} \bigl\vert \psi (x) \bigr\vert ^{p} \\ \geq &\mu _{\min}h_{\min} \Vert \psi \Vert ^{p}_{\infty}. \end{aligned}$$

 □

Lemma 2.4

Let \(G=(V,E)\) be a finite graph. Let m be any positive integer, and let \(q>1\). Then \(W^{m,p}(V)\hookrightarrow L^{q}(V)\) for all \(1\leq q\leq +\infty \). In particular, if \(1< q<+\infty \), then for all \(\psi \in W^{m,p}(V)\),

$$ \Vert \psi \Vert _{L^{q}(V)}\leq K \Vert \psi \Vert _{W^{m,p}(V)}, $$
(2.10)

where

$$ K= \frac{ (\sum_{x\in V}\mu (x) )^{\frac{1}{q}}}{\mu _{\min}^{\frac{1}{p}}h_{\min}^{\frac{1}{p}}}. $$

In addition, \(W^{m,p}(V)\) is precompact, that is, if \(\{\psi _{k}\}\) is bounded in \(W^{m,p}(V)\), then up to a subsequence, there exists \(\psi \in W^{m,p}(V)\) such that \(\psi _{k}\rightarrow \psi \) in \(W^{m,p}(V)\).

Proof

Note that V is a bounded set. Then \(W^{m,p}(V)\) is a finite-dimensional space. Hence it is precompact. According to Lemma 2.3, we have

$$\begin{aligned} \Vert \psi \Vert _{L^{q}(V)}^{p} =& \int _{V} \vert \psi \vert ^{q}\,d\mu \\ =&\sum_{x\in V}\mu (x) \bigl\vert \psi (x) \bigr\vert ^{q} \\ \leq &\sum_{x\in V}\mu (x) \Vert \psi \Vert ^{q}_{\infty} \\ \leq & \frac{\sum_{x\in V}\mu (x)}{\mu _{\min}^{\frac{q}{p}}h_{\min}^{\frac{q}{p}}} \Vert \psi \Vert ^{q}_{W^{m,p}(V)}. \end{aligned}$$

 □

Remark 2.3

The proofs of Lemmas 2.3 and 2.4 are given in [1]. However, the precise values of d and K are not given. In Lemmas 2.3 and 2.4, we specify their values.

3 Proofs of main results

Note that the space \(W:=W^{m_{1},p}(V)\times W^{m_{2},q}(V)\) with the norm \(\|(u,v)\|=\|u\|_{W^{m_{1},p}(V)}+\|v\|_{W^{m_{2},q}(V)}\) is a finite-dimensional Banach space. Consider the functional \(\varphi :W\to \mathbb{R}\) defined as

$$ \begin{aligned}[b] \varphi (u,v)={}&\frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u \bigr\vert ^{p}+h_{1}(x) \vert u \vert ^{p}\bigr)\,d\mu +\frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v \bigr\vert ^{q}+h_{2}(x) \vert v \vert ^{q}\bigr)\,d\mu \\ &{}- \int _{V} F(x,u,v)\,d\mu . \end{aligned} $$
(3.1)

Then \(\varphi \in C^{1}(W,\mathbb{R})\), and

$$\begin{aligned} \bigl\langle \varphi '(u,v),(\phi _{1},\phi _{2})\bigr\rangle =& \int _{V} \bigl[(\text{\pounds}_{m_{1},p}u,\phi _{1})+\bigl(h_{1}(x) \vert u \vert ^{p-2}u,\phi _{1}\bigr)-\bigl( F_{u}(x,u,v), \phi _{1}\bigr) \bigr]\,d\mu \\ &{}+ \int _{V} \bigl[(\text{\pounds}_{m_{2},q}v,\phi _{2})+\bigl(h_{2}(x) \vert v \vert ^{q-2}v, \phi _{2}\bigr)-\bigl(F_{v}(x,u,v), \phi _{2}\bigr) \bigr]\,d\mu \end{aligned}$$
(3.2)

for all \((u,v),(\phi _{1},\phi _{2})\in W\). Then \((u,v)\in W\) is a critical point of φ if and only if

$$ \int _{V} \bigl(\bigl(\text{\pounds}_{m_{1},p}u+h_{1}(x) \vert u \vert ^{p-2}u-F_{u}(x,u,v)\bigr), \phi _{1} \bigr)\,d\mu =0 $$

and

$$ \int _{V} \bigl(\bigl(\text{\pounds}_{m_{2},q}v+h_{2}(x) \vert v \vert ^{q-2}v-F_{v}(x,u,v)\bigr), \phi _{2} \bigr)\,d\mu =0. $$

By the arbitrariness of \(\phi _{1}\) and \(\phi _{2}\) we conclude that

$$\begin{aligned}& \text{\pounds}_{m_{1},p}u+h_{1}(x) \vert u \vert ^{p-2}u=F_{u}(x,u,v), \\& \text{\pounds}_{m_{2},q}v+h_{2}(x) \vert v \vert ^{q-2}v=F_{v}(x,u,v). \end{aligned}$$

Thus the problem of finding the solutions of system (1.1) is reduced to finding the critical points of the functional φ on W.

Lemma 3.1

Assume that (\(F_{4}\)) holds. Then the functional φ satisfies condition \((C)\), that is, \(\{(u_{k},v_{k})\}\) has a convergent subsequence in W whenever \(\varphi (u_{k},v_{k})\) is bounded and \(\|\varphi '(u_{k},v_{k})\|\times (1+\| (u _{k},v_{k})\|)\rightarrow 0\) as \(k\rightarrow \infty \).

Proof

Let \(\{(u_{k},v_{k})\}\) be a sequence in W such that \(\varphi (u_{k},v_{k})\) is bounded and \(\|\varphi '(u_{k},v_{k})\|(1+\|( u_{k},v_{k})\|)\rightarrow 0\) as \(k\rightarrow \infty \). Then there exists a positive constant L such that

$$ \bigl\vert \varphi (u_{k},v_{k}) \bigr\vert \leq L, \bigl\Vert \varphi '(u_{k},v_{k}) \bigr\Vert \bigl(1+ \bigl\Vert (u_{k},v_{k}) \bigr\Vert \bigr)\leq L $$

for every \(k\in \mathbb{N}\). By \((F_{4})\),there are constants \(C_{1}>0\) and \(\delta _{1}>0\) such that

$$ F_{t}(x,t,s)t+F_{s}(x,t,s)s-\max \{p,q\}F(x,t,s)\geq C_{1}\bigl( \vert t \vert ^{ \gamma _{1}}+ \vert s \vert ^{\gamma _{2}}\bigr)>0 $$

for all \(|(t,s)|>\delta _{1}\) and \(x\in V\). Therefore

$$ F_{t}(x,t,s)t+F_{s}(x,t,s)s-\max \{p,q\} F(x,t,s) \geq C_{1}\bigl( \vert t \vert ^{ \gamma _{1}}+ \vert s \vert ^{\gamma _{2}}\bigr)-C_{2} $$

for all \((t, s)\in \mathbb{R}^{2}\) and \(x\in V\), where

$$\begin{aligned} C_{2} =& C_{1}\max \bigl\{ \vert t \vert ^{\gamma _{1}}+ \vert s \vert ^{\gamma _{2}}\mid \bigl\vert (t,s) \bigr\vert \le \delta _{1} \bigr\} \\ &{}+\max \bigl\{ F_{t}(x,t,s)t+F_{s}(x,t,s)s- \max \{p,q\} F(x,t,s)\mid \bigl\vert (t,s) \bigr\vert \le \delta _{1} \bigr\} . \end{aligned}$$

Then for all large k, we have

$$\begin{aligned}& \bigl(\max \{p,q\}+1\bigr)L \\& \quad \geq \max \{p,q\}\varphi (u_{k},v_{k})-\bigl( \varphi '(u_{k},v_{k}),(u_{k},v_{k}) \bigr) \\& \quad = \max \{p,q\} \biggl[\frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u_{k} \bigr\vert ^{p}+h_{1}(x) \vert u_{k} \vert ^{p}\bigr)\,d\mu \\& \qquad {}+\frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v_{k} \bigr\vert ^{q}+h_{2}(x) \vert v_{k} \vert ^{q}\bigr)\,d\mu - \int _{V} F(x,u_{k},v_{k})\,d\mu \biggr] \\& \qquad {}- \int _{V}( \text{\pounds}_{m_{1},p}u_{k},u_{k})\,d\mu - \int _{V}h_{1}(x) \vert u_{k} \vert ^{p}\,d\mu - \int _{V}(\text{\pounds}_{m_{2},q}v_{k},v_{k})\,d\mu \\& \qquad {} - \int _{V}h_{2}(x) \vert v_{k} \vert ^{p}\,d\mu + \int _{V}F_{u_{k}}(x,u_{k},v_{k})u_{k}\,d\mu + \int _{V}F_{v_{k}}(x,u_{k},v_{k})v_{k}\,d\mu . \end{aligned}$$
(3.3)

When \(\max \{p,q\}=p\),

$$\begin{aligned} (p+1)L \geq & \biggl(\frac{p}{q}-1 \biggr) \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v_{k} \bigr\vert ^{q}+h_{2}(x) \vert v_{k} \vert ^{q}\bigr)\,d\mu \\ & {}+ \int _{V}\bigl[\bigl(F_{u_{k}}(x,u_{k},v_{k}),u_{k} \bigr)+\bigl(F_{v_{k}}(x,u_{k},v_{k}),v_{k} \bigr)-pF(x,u_{k},v_{k})\bigr]\,d\mu \\ \geq & \biggl(\frac{p}{q}-1 \biggr) \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v_{k} \bigr\vert ^{q}+h_{2}(x) \vert v_{k} \vert ^{q}\bigr)\,d\mu \\ &{}+ \int _{V} C_{1}\bigl( \vert u_{k} \vert ^{\gamma _{1}}+ \vert v_{k} \vert ^{\gamma _{2}}\bigr)\,d\mu -C_{2}\sum _{x\in V}\mu (x) \\ = & \biggl(\frac{p}{q}-1 \biggr) \Vert v_{k} \Vert ^{q}_{W^{m_{2},q}(V)}+C_{1} \int _{V}\bigl( \vert u_{k} \vert ^{\gamma _{1}}+ \vert v_{k} \vert ^{\gamma _{2}}\bigr)\,d\mu -C_{2} \sum_{x\in V}\mu (x). \end{aligned}$$

Therefore \(\|v_{k}\|_{W^{m_{2},q}(V)}\), \(\|u_{k}\|_{L^{\gamma _{1}}(V)}\), and \(\| v_{k}\|_{L^{\gamma _{2}}(V)}\) are bounded. Since \((W,\|\cdot \|)\) is a finite-dimensional space, there exist positive constants \(D_{1}\) and \(D_{2}\) such that

$$ \Vert u_{k} \Vert _{W^{m_{1},p}(V)}\leq D_{1} \Vert u_{k} \Vert _{L^{\gamma _{1}}(V)},\qquad \Vert v_{k} \Vert _{W^{m_{2},q}(V)}\leq D_{2} \Vert v_{k} \Vert _{L^{\gamma _{2}}(V)}. $$
(3.4)

Thus \(\|u_{k}\|_{W^{m_{1},p}(V)}\) and \(\|v_{k}\|_{W^{m_{2},q}(V)}\) are bounded. So \(\{(u_{k},v_{k})\}\) is bounded in W. Similarly, when \(\max \{p,q\}=q\), we can also prove that \(\{(u_{k},v_{k})\}\) is bounded in W. To sum up, \(\{(u_{k},v_{k})\}\) is bounded in W. Since W is of finite dimension, there is a convergent subsequence of \(\{(u_{k},v_{k})\}\). Hence φ satisfies the \((C)\)-condition. □

Lemma 3.2

There exists a constant \(\rho >0\) such that \(\varphi |_{\partial B_{\rho}(0)}> 0 \), where \(B_{\rho}=\{(u,v)\in W:\|(u,v)\|_{W}<\rho \}\).

Proof

By (\(F_{2}\)) there are \(0< C_{4}<\min \{\frac{1}{pK_{1}^{P}},\frac{1}{qK_{2}^{q}} \}\) and a positive constant \(\delta _{2}< C_{3}\), where \(C_{3}=\max \{\frac{1}{\mu _{\min} h_{1,\min}}, \frac{1}{\mu _{\min} h_{2,\min}} \}\), such that

$$ \bigl\vert F(x,t,s) \bigr\vert \leq C_{4} \bigl( \vert t \vert ^{p}+ \vert s \vert ^{q} \bigr) $$
(3.5)

for all \(|(t,s)|\leq \delta _{2}\). By Lemma 2.4 we have

$$ \Vert u \Vert _{L^{p}(V)}\leq K_{1} \Vert u \Vert _{W^{m_{1},p}(V)},\qquad \Vert v \Vert _{L^{q}(V)}\leq K_{2} \Vert v \Vert _{W^{m_{2},q}(V)}, $$
(3.6)

where \(K_{1}\), \(K_{2}\) is defined in \((F_{2})\). For every \((u,v)\in W\) with \(\|(u,v)\|=\rho =\delta _{2} C_{3}^{-1}<1\), by Lemma 2.3 we have

$$ \bigl\Vert (u,v) \bigr\Vert _{\infty}\le \Vert u \Vert _{\infty}+ \Vert v \Vert _{\infty}\le C_{3} \bigl( \Vert u \Vert _{W^{m_{1},p}(V)}+ \Vert v \Vert _{W^{m_{2},q}(V)} \bigr)=\delta _{2}. $$

Then by (3.5) and (3.6), for all \((u,v)\in W\) with \(\|(u,v)\|=\rho \), we have

$$\begin{aligned}& \varphi (u,v) \\& \quad = \frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u \bigr\vert ^{p}+h_{1}(x) \vert u \vert ^{p}\bigr)\,d\mu +\frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v \bigr\vert ^{q}+h_{2}(x) \vert v \vert ^{q}\bigr)\,d\mu - \int _{V} F(x,u,v)\,d\mu \\& \quad \geq \frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u \bigr\vert ^{p}+h_{1}(x) \vert u \vert ^{p}\bigr)\,d\mu +\frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v \bigr\vert ^{q}+h_{2}(x) \vert v \vert ^{q}\bigr)\,d\mu \\& \qquad {} -C_{4} \int _{V}\bigl( \vert u \vert ^{p}+ \vert v \vert ^{q}\bigr)\,d\mu \\& \quad \geq \biggl(\frac{1}{p}-K_{1}^{p}C_{4} \biggr) \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u \bigr\vert ^{p}+h_{1}(x) \vert u \vert ^{p}\bigr)\,d\mu \\& \qquad {}+ \biggl(\frac{1}{q}-K_{2}^{q}C_{4} \biggr) \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v \bigr\vert ^{q}+h_{2}(x) \vert v \vert ^{q}\bigr)\,d\mu \\& \quad = \biggl(\frac{1}{p}-K_{1}^{p}C_{4} \biggr) \Vert u \Vert _{W^{m_{1},p}(V)}^{p} + \biggl( \frac{1}{q}-K_{2}^{q}C_{4} \biggr) \Vert v \Vert _{W^{m_{2},q}(V)}^{q} \\& \quad \geq \min \biggl\{ \biggl(\frac{1}{p}-K_{1}^{p}C_{4} \biggr) , \biggl(\frac{1}{q}-K_{2}^{q}C_{4} \biggr) \biggr\} \cdot \textstyle\begin{cases} \frac{1}{2^{p-1}}( \Vert u \Vert _{W^{m_{1},p}(V)}+ \Vert v \Vert _{W^{m_{2},q}(V)})^{p} & \text{if }p\geq q, \\ \frac{1}{2^{q-1}}( \Vert u \Vert _{W^{m_{1},p}(V)}+ \Vert v \Vert _{W^{m_{2},q}(V)})^{q} & \text{if }p< q \end{cases}\displaystyle \\& \quad \geq \min \biggl\{ \biggl(\frac{1}{p}-K_{1}^{p}C_{4} \biggr) , \biggl(\frac{1}{q}-K_{2}^{q}C_{4} \biggr) \biggr\} \cdot \textstyle\begin{cases} \frac{\rho ^{p}}{2^{p-1}}& \text{if }p\geq q, \\ \frac{\rho ^{q}}{2^{q-1}}& \text{if }p< q \end{cases}\displaystyle \\& \quad := \alpha >0. \end{aligned}$$

The proof is completed. □

Lemma 3.3

Assume that \((F_{1})\) and \((F_{3})\) hold. Then there exists \((u_{0},v_{0})\in W\backslash \bar{B}_{\rho} (0)\) such that \(\varphi (u_{0},v_{0})\leq 0 \).

Proof

Choose \(e=(e_{1},e_{2}) \in W\) such that \(\|e_{1}\|_{L^{p}(V)}\neq 0\) and \(\|e_{2}\|_{L^{q}(V)}\neq 0\). By \((F_{3})\) there exist \(\varepsilon _{1}>0\) and \(\delta _{3}>0\) such that

$$ F(x,t,s)\geq \biggl(\frac{1}{p} \frac{ \Vert e_{1} \Vert ^{p}_{W^{m_{1},p}(V)}}{ \Vert e_{1} \Vert ^{p}_{L^{p}(V)}}+ \frac{1}{q} \frac{ \Vert e_{2} \Vert ^{q}_{W^{m_{2},q}(V)}}{ \Vert e_{2} \Vert ^{q}_{L^{q}(V)}}+ \frac{\varepsilon _{1}}{2} \biggr) \bigl( \vert t \vert ^{p}+ \vert s \vert ^{q} \bigr)$$

for all \(|(t,s)|>\delta _{3}\) and \(x\in V\). Thus by \((F_{1})\) there exists \(C_{5}>0\) such that for all \((t, s)\in \mathbb{R}^{2}\) and all \(x\in V\),

$$ F(x,t,s)\geq \biggl(\frac{1}{p} \frac{ \Vert e_{1} \Vert ^{p}_{W^{m_{1},p}(V)}}{ \Vert e_{1} \Vert ^{p}_{L^{p}(V)}}+ \frac{1}{q} \frac{ \Vert e_{2} \Vert ^{q}_{W^{m_{2},q}(V)}}{ \Vert e_{2} \Vert ^{q}_{L^{q}(V)}}+ \frac{\varepsilon _{1}}{2} \biggr) \bigl( \vert t \vert ^{p}+ \vert s \vert ^{q} \bigr)-C_{5}.$$

Then for every \(\lambda >0\), we have

$$\begin{aligned} \varphi (\lambda e_{1},\lambda e_{2}) =& \frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}} \lambda e_{1} \bigr\vert ^{p}+h_{1}(x) \vert \lambda e_{1} \vert ^{p}\bigr)\,d\mu + \frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}\lambda e_{2} \bigr\vert ^{q}+h_{2}(x) \vert \lambda e_{2} \vert ^{q}\bigr)\,d\mu \\ & {}- \int _{V} F(x,\lambda e_{1},\lambda e_{2}) \\ \leq & \frac{1}{p}\lambda ^{p} \Vert e_{1} \Vert ^{p}_{W^{m_{1},p}(V)}+ \frac{1}{q}\lambda ^{q} \Vert e_{2} \Vert ^{q}_{W^{m_{2},q}(V)} \\ & {}- \biggl(\frac{1}{p} \frac{ \Vert e_{1} \Vert ^{p}_{W^{m_{1},p}(V)}}{ \Vert e_{1} \Vert ^{p}_{L^{p}(V)}}+ \frac{1}{q} \frac{ \Vert e_{2} \Vert ^{q}_{W^{m_{2},q}(V)}}{ \Vert e_{2} \Vert ^{q}_{L^{q}(V)}}+ \frac{\varepsilon _{1}}{2} \biggr) \bigl(\lambda ^{p} \Vert e_{1} \Vert ^{p}_{L^{p}(V)}+ \lambda ^{q} \Vert e_{2} \Vert ^{q}_{L^{q}(V)} \bigr) \\ &{}+C_{5}\sum_{x\in V}\mu (x) \\ \leq & -\frac{\varepsilon _{1}}{2}\lambda ^{p} \Vert e_{1} \Vert ^{p}_{L^{p}(V)}\,d\mu - \frac{\varepsilon _{1}}{2}\lambda ^{q} \Vert e_{2} \Vert ^{q}_{L^{q}(V)}+C_{5} \sum _{x\in V}\mu (x) \\ \to & -\infty ,\quad \text{as }\lambda \to \infty . \end{aligned}$$

Hence there exists a sufficiently large \(\lambda ^{*}>1 \) such that \(\varphi (\lambda ^{*} e_{1},\lambda ^{*} e_{2})<0\). Let \(\lambda ^{*} e_{1}=u_{0}\) and \(\lambda ^{*} e_{2}=v_{0}\). Then \(\varphi (u_{0},v_{0})\leq 0 \). □

Proof of Theorem 1.1

It is easy to see that \(\varphi (0,0)=0\). It follows from Lemmas 2.1 and 3.13.3, φ possesses a critical value \(c\ge \alpha >0\), that is, there exists a point \((u_{*},v_{*})\in W\) such that

$$ \varphi (u_{*},v_{*})=c\quad \text{and}\quad \varphi '(u_{*},v_{*})=0. $$

Hence the associated point \((u_{*},v_{*})\in W\) is a nontrivial weak solution of system (1.1). □

Lemma 3.4

Assume that (\(F_{1}\)) and (\(F_{3}\)) hold. Then for any finite-dimensional subspace \(\widetilde{X}\subset W\), there is \(R=R(\widetilde{X})>0\) such that \(\varphi (u)\leq 0 \) on \(\widetilde{X}\backslash B_{R}(0)\).

Proof

Let \(\operatorname{dim} \widetilde{X}=m \). Then there exist positive constants \(C_{6}(m)\) and \(C_{7}(m)\) such that

$$ \Vert u \Vert _{W^{m_{1},p}(V)}\leq C_{6}(m) \Vert u \Vert _{L^{p}(V)},\qquad \Vert v \Vert _{W^{m_{2},q}(V)} \leq C_{7}(m) \Vert v \Vert _{L^{q}(V)} $$
(3.7)

for all \((u,v)\in \widetilde{X}\). By \((F_{3})\) we know that there exist constants \(\beta >\frac{C_{6}(m)^{p}}{p}+\frac{C_{7}(m)^{q}}{q}\) and \(r>0\) such that

$$ F(x,t,s)\geq \beta \bigl( \vert t \vert ^{p}+ \vert s \vert ^{q}\bigr)\quad \text{for all } \bigl\vert (t,s) \bigr\vert \geq r \text{ and }x\in V. $$
(3.8)

It follows from (\(F_{1}\)) and (3.8) that there exists \(C_{8}>0\) such that

$$ F(x,t,s)\geq \beta \bigl( \vert t \vert ^{p}+ \vert s \vert ^{q}\bigr)-C_{8} \quad \text{for all } (t,s) \in \mathbb{R}^{2} \text{ and }x\in V. $$
(3.9)

Then by (3.7) and (3.9) we have

$$\begin{aligned}& \varphi (u,v) \\& \quad = \frac{1}{p} \int _{V}\bigl( \bigl\vert \nabla ^{m_{1}}u \bigr\vert ^{p}+h_{1}(x) \vert u \vert ^{p}\bigr)\,d\mu +\frac{1}{q} \int _{V}\bigl( \bigl\vert \nabla ^{m_{2}}v \bigr\vert ^{q}+h_{2}(x) \vert v \vert ^{q}\bigr)\,d\mu - \int _{V} F(x,u,v)\,d\mu \\& \quad \leq \frac{1}{p} \Vert u \Vert ^{p}_{W^{m_{1},p}(V)}+ \frac{1}{q} \Vert v \Vert ^{q}_{W^{m_{2},q}(V)}- \beta \bigl( \Vert u \Vert ^{p}_{L^{p}}+ \Vert v \Vert ^{q}_{L^{q}}\bigr)+C_{8}\sum _{x\in V}\mu (x) \\& \quad \leq \frac{1}{p} \Vert u \Vert ^{p}_{W^{m_{1},p}(V)}+ \frac{1}{q} \Vert v \Vert ^{q}_{W^{m_{2},q}(V)} -\beta \biggl(\frac{1}{C_{6}^{p}(m)} \Vert u \Vert ^{p}_{W^{m_{1},p}(V)}+ \frac{1}{C_{7}^{q}(m)} \Vert v \Vert ^{q}_{W^{m_{2},q}(V)} \biggr) \\& \qquad {}+C_{8}\sum_{x \in V}\mu (x), \end{aligned}$$

for all \((u,v)\in \widetilde{X}\). Note that \(\beta >\frac{C_{6}(m)^{p}}{p}+\frac{C_{7}(m)^{q}}{q}\). So \(\varphi (u,v)\to -\infty \) as \(\|(u,v)\|\to \infty \). Thus we complete the proof. □

Proof of Theorem 1.2

By \((F_{1})\) and \((F_{5})\) we know that φ is even and \(\varphi (0,0)=0\). Let \(X=W\), \(Y=\{0\}\) and \(Z=W\). Then by Lemma 3.1, Lemma 3.2, Lemma 3.4, Remark 2.1, Remark 2.2, and Lemma 2.2 we obtain that φ possesses at least dimW critical values. Thus we complete the proof. □