1 Introduction

In this paper, we examine the existence of periodic solutions for second order Hamiltonian systems

$$\begin{aligned}& \ddot{q}+V^{\prime}(q)=0, \end{aligned}$$
(1.1)
$$\begin{aligned}& \frac{1}{2}\vert \dot{q}\vert ^{2}+V(q)=h, \end{aligned}$$
(1.2)

with a fixed energy. The first major result in this direction we would like to highlight can be derived from the work of Benci [1], Gluck-Ziller [2], and Hayashi [3], which is based on the earlier work of Seifert [4] in 1948 and following the highly influential papers of Rabinowitz [5, 6] in 1978 and 1979. Utilizing the Jacobi metric and a very involved interplay between geodesic methods and algebraic topology, the following general theorem is established.

Theorem 1.1

Suppose \(V\in C^{1}(\mathbb{R}^{n},\mathbb{R})\). If the potential well

$$ \bigl\{ x\in\mathbb{R}^{n}:V(x)\leq h\bigr\} $$

is bounded and non-empty, then the system (1.1)-(1.2) has a periodic solution with energy h. Furthermore, if

$$ V^{\prime}(x)\neq0, \quad \forall x\in\bigl\{ x\in\mathbb{R}^{n} :V(x)=h \bigr\} , $$

then the system (1.1)-(1.2) has a non-constant periodic solution with energy h.

For the existence of multiple periodic solutions for (1.1)-(1.2) with compact energy surfaces, we can refer the reader to Groessen [7] and Long [8] and the references therein.

For the weakly attractive potential V defined on an open subset Ω of \(\mathbb{R}^{n}\), Ambrosetti and Coti Zelati [9] (Theorem 16.7) proved the following.

Theorem 1.2

Suppose \(V\in C^{2}(\Omega,\mathbb{R})\) satisfies

\((V10)\) :

\(3\langle V^{\prime}(x),x\rangle+\langle V''(x)x,x\rangle\neq0\), \(\forall x\in\Omega\);

\((V11)\) :

\(\langle V^{\prime}(x),x\rangle>0\), \(\forall x\in \Omega\);

\((V12)\) :

\(\exists\alpha\in(0,2)\), such that \(\langle V^{\prime}(x), x\rangle\geq-\alpha V(x)\), \(\forall x\in\Omega\);

\((V13)\) :

\(\exists\beta\in(0,2)\) and \(r>0\) such that \(\langle V^{\prime}(x), x\rangle\leq-\beta V(x)\), \(\forall0<\vert x\vert <r\);

\((V14)\) :

\(G_{\infty}\geq0\); where \(G_{\infty}=\lim_{\vert x\vert \rightarrow\infty }\inf G(x)\), \(G(x)=[V(x)+\frac{1}{2}\langle V^{\prime}(x),x\rangle]\).

Then \(\forall h<0\), the system (1.1)-(1.2) (referred to as \((P_{h})\)) has at least one non-constant weak periodic solution with the given energy h.

Using a simpler constrained variational minimizing method, we obtain the following result.

Theorem 1.3

Suppose \(V\in C^{2}(\mathbb{R}^{n},\mathbb{R})\) and \(h \in\mathbb{R}\) satisfy

\((V_{1})\) :

\(V(-q)=V(q)\);

\((V_{2})\) :

\(\langle V^{\prime}(q),q\rangle>0\), \(\forall q\neq0\);

\((V_{3})\) :

\(3\langle V^{\prime}(q),q\rangle+\langle V''(q)q,q\rangle>0\), \(\forall q\neq0\);

\((V_{4})\) :

\(\exists\mu_{1}>0\), \(\mu_{2}\geq0\), such that \(\langle V^{\prime}(q), q\rangle\geq\mu_{1} V(q)-\mu_{2}\);

\((V_{5})\) :

\(\lim_{\vert q\vert \rightarrow\infty }\sup[V(q)+\frac{1}{2}\langle V^{\prime}(q),q\rangle]\leq A\);

\((V_{6})\) :

\(\frac{\mu_{2}}{\mu_{1}}< h< A\).

Then the system (1.1)-(1.2) has at least one non-constant periodic solution with the given energy h.

Remark 1.4

Comparing Theorem 16.7 of Ambrosetti and Coti Zelati [9] with our Theorem 1.3, we notice that our condition \((V_{2})\) corresponds to their \((V11)\), our condition \((V_{3})\) corresponds to their \((V10)\), our condition \((V_{4})\) corresponds to their \((V12)\) and \((V13)\), our conditions \((V_{5})\) and \((V_{6})\) correspond to their \((V14)\). Since the potential in Theorem 16.7 of Ambrosetti and Coti Zelati has a singularity, but the potential in Theorem 1.3 has no singularity, the two theorems are essentially different.

Remark 1.5

Take for \(V(x)\) the following \(C^{\infty}\) function:

$$\begin{aligned}& V(x)=e^{\frac{-1}{\vert x\vert }}, \quad \forall x\neq0; \\& V(0)=0. \end{aligned}$$

Then \(V(x)\) satisfies (\(V_{1}\))-(\(V_{5}\)) in Theorem 1.3 if we take \(\mu_{1}=\mu_{2}>0\) and \(A=1\), but \((V_{6})\) does not hold.

Proof of Theorem 1.3

We verify (\(V_{1}\))-(\(V_{5}\)) by calculation:

(1) It is obvious for \((V_{1})\).

(2) For \((V_{2})\) and \((V_{3})\), we notice that

$$\begin{aligned}& \bigl\langle V^{\prime}(x),x\bigr\rangle =\frac{1}{\vert x\vert }e^{\frac{-1}{\vert x\vert }}>0,\quad \forall x\neq0, \\& \bigl\langle V''(x)x,x\bigr\rangle =e^{\frac{-1}{\vert x\vert }} \biggl(\frac{-2}{\vert x\vert }+\frac{1}{\vert x\vert ^{2}}\biggr), \\& 3\bigl\langle V^{\prime}(x),x\bigr\rangle +\bigl\langle V''(x)x,x \bigr\rangle =e^{\frac {-1}{\vert x\vert }}\biggl(\frac{1}{\vert x\vert }+\frac{1}{\vert x\vert ^{2}}\biggr) >0,\quad \forall x\neq0. \end{aligned}$$

(3) For \((V_{4})\), we set

$$ w(x)=\biggl(\frac{1}{\vert x\vert }-\mu_{1}\biggr)e^{\frac {-1}{\vert x\vert }}; \quad x\neq0, w(0)=0. $$

We will prove \(w(x)>-\mu_{1}\); in fact,

$$ w^{\prime}(x)=\biggl[\frac{1}{\vert x\vert }-(1+\mu_{1})\biggr] \frac {x}{\vert x\vert ^{3}}e^{\frac{-1}{\vert x\vert }}; \quad x\neq0, w^{\prime}(0)=0. $$

From \(w^{\prime}(x)=0\), we have \(x=-\frac{1}{1+\mu_{1}}\) or 0 or \(\frac{1}{1+\mu_{1}}\).

It is easy to see that \(w(x)\) is strictly increasing on \((-\infty ,-\frac{1}{1+\mu_{1}}]\) and \([0,\frac{1}{1+\mu_{1}}]\), but strictly decreasing on \([\frac {-1}{1+\mu_{1}},0]\) and \([\frac{1}{1+\mu_{1}},+\infty)\). We notice that

$$\lim_{\vert x\vert \rightarrow+\infty}w(x)=-\mu_{1} $$

and

$$w(0)=0. $$

So

$$w(x)>-\mu_{1}. $$

When we take \(\mu_{2}=\mu_{1}>0\), \((V_{4})\) holds.

(4) For \((V_{5})\), we have

$$\begin{aligned}& V(x)+\frac{1}{2}\bigl\langle V^{\prime}(x),x\bigr\rangle =e^{\frac{-1}{\vert x\vert }}\biggl(1+\frac{1}{2}\frac {1}{\vert x\vert }\biggr) < 1,\quad \forall x\neq0; \\& V(0)+\frac{1}{2}\bigl\langle V^{\prime}(0),0\bigr\rangle =0. \end{aligned}$$

 □

Corollary 1.6

Given \(a>0\), \(n\in\mathbb{N}\), define \(V(x)=a\vert x\vert ^{2n}+e^{\frac{-1}{\vert x\vert }}\), \(x\neq0\); \(V(0)=0\). Then, for \(h>1\), the system (1.1)-(1.2) has at least one non-constant periodic solution with the given energy h.

Remark 1.7

The potential \(V(x)=e^{\frac{-1}{\vert x\vert }}\), \(\forall x\neq0\); \(V(0)=0\) in Remark 1.5 is noteworthy since the potential function is non-convex and bounded which satisfies neither of the conditions of Theorems 1.1, Offin’s geometrical conditions [10], nor Berg-Pasquotto-Vandervorst’s complex topological assumptions [11]. For this potential, the potential well \(\{x\in\mathbb{R}^{n}:V(x)\leq h\}\) is a bounded set if \(h<1\), but for \(h\geq1\) it is \(\mathbb{R}^{n}\) - an unbounded set. We also notice that the symmetrical condition on the potential simplified our Theorem 1.2 and its proof. It would be interesting to obtain non-constant periodic solutions when the symmetrical condition is deleted.

2 A few lemmas

Let

$$ H^{1}=W^{1,2}\bigl(\mathbb{R}_{\mathrm{per}}, \mathbb{R}^{n}\bigr)=\bigl\{ u:\mathbb{R}\rightarrow \mathbb{R}^{n},u(t+1)=u(t), u\in L^{2}[0,1],\dot{u}\in L^{2}[0,1]\bigr\} $$

denotes the periodic functional space of period 1. Then the standard \(H^{1}\) norm is

$$ \Vert u\Vert =\Vert u\Vert _{H^{1}}= \biggl( \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt \biggr)^{1/2}+ \biggl( \int^{1}_{0}\vert u\vert ^{2}\,dt \biggr)^{1/2}. $$

Lemma 2.1

[12]

For \(u\in H^{1}\), define

$$\begin{aligned}& g(u)= \int_{0}^{1}\biggl[V(u)+\frac{1}{2}\bigl\langle V^{\prime}(u),u\bigr\rangle \biggr]\,dt, \\& M=\bigl\{ u\in H^{1}:g(u)=h\bigr\} . \end{aligned}$$

For \(u,v\in H^{1}\) and \(s \in\mathbb{R}\), let

$$\phi(s)=g(u+sv). $$

Then

$$\phi^{\prime}(0)=\bigl\langle g'(u),v\bigr\rangle = \frac{1}{2} \int_{0}^{1}\bigl\{ 3 \bigl\langle V^{\prime}(u),v\bigr\rangle +\bigl\langle V''(u)v,u \bigr\rangle \bigr\} \,dt $$

and

$$\bigl\langle g'(u),u\bigr\rangle =\frac{1}{2} \int_{0}^{1}\bigl\{ 3 \bigl\langle V^{\prime }(u),u\bigr\rangle +\bigl\langle V''(u)u,u \bigr\rangle \bigr\} \,dt; $$

therefore, if \((V_{3})\) holds, then on M, \(g'(u)\neq0\), which implies M is a \(C^{1}\) manifold with codimension 1 in \(H^{1}\).

Let

$$ f(u)=\frac{1}{4} \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt \int^{1}_{0}\bigl\langle V^{\prime}(u),u\bigr\rangle \,dt $$
(2.1)

and \(\widetilde{u}\in M\) such that \(f^{\prime}(\widetilde{u})=0\) and \(f(\widetilde{u})>0\). Set

$$ \frac{1}{T^{2}}=\frac{\int^{1}_{0}\langle V^{\prime}(\widetilde {u}),\widetilde{u}\rangle\,dt}{\int^{1}_{0}\vert \dot{\widetilde {u}}\vert ^{2}\,dt}. $$

If \((V_{2})\) holds, then \(\widetilde{q}(t)=\widetilde{u}(t/T)\) is a non-constant T-periodic solution for (1.1)-(1.2).

When the potential is even, then by Palais’ symmetrical principle [13] and Lemma 2.1 we have the following.

Lemma 2.2

[12]

Let

$$ F=\biggl\{ u\in M:u\biggl(t+\frac{1}{2}\biggr)=-u(t)\biggr\} $$
(2.2)

and suppose (\(V_{1}\))-(\(V_{3}\)) hold. If \(\widetilde{u}\in F\) is such that \(f^{\prime}(\widetilde{u})=0\) and \(f(\widetilde{u})>0\), then \(\widetilde{q}(t)=\widetilde{u}(\frac{t}{T})\) is a non-constant T-periodic solution for (1.1)-(1.2); in addition, we have

$$ \forall u\in F,\quad \int_{0}^{1}u(t)\,dt=0. $$

Wirtinger’s inequality [14] implies

$$\int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt\geq(2\pi)^{2} \int^{1}_{0}\vert u\vert ^{2}, $$

from which it follows that \((\int^{1}_{0}\vert \dot{u}\vert ^{2}\,dt )^{1/2}\) is an equivalent norm for the space \(H^{1}\).

Lemma 2.3

Let X be a Banach space and \(F\subset X\) a weakly closed subset. Suppose Φ defined on F is Gateaux-differentiable, weakly lower semi-continuous and bounded from below on F. Suppose further that Φ satisfies the following \((\mathit{WPS})_{\inf\Phi ,F}\) condition:

  • If \(\{x_{n}\}\subset F\) such that \(\Phi(x_{n}) \rightarrow c\) and \(\Vert \Phi'(x_{n})\Vert \rightarrow0\), then \(\{x_{n}\}\) has a weakly convergent subsequence.

Then Φ attains its infimum on F.

Proof

By Ekeland’s variational principle [15, 16], we know that there is a sequence \(\{x_{n}\}\subset F\) satisfying

$$\Phi(x_{n})\rightarrow\inf\Phi\quad \hbox{and}\quad \bigl\Vert \Phi'(x_{n})\bigr\Vert \rightarrow0. $$

Since Φ satisfies the \((\mathit{WPS})_{\inf\Phi,F}\) condition, \(\{x_{n}\}\) has a weakly convergent subsequence which as a weak limit x. Because \(F\subset X\) is a weakly closed subset, we have \(x\in F\). Finally, by the weakly lower semi-continuous assumption on Φ, we conclude that Φ attains its infimum on F. □

3 The proof of Theorem 1.3

We prove Theorem 1.3 by the following sequence of lemmas. In the following, f and F are defined as in (2.1) and (2.2), respectively.

Lemma 3.1

If (\(V_{1}\))-(\(V_{6}\)) hold, then, for any given \(c>0\), f satisfies the \((\mathit{PS})_{c,F}\) condition; that is, if \(\{u_{n}\}\subset F\) satisfies

$$\begin{aligned} f(u_{n})\rightarrow c>0 \quad \textit{and}\quad f|_{F}^{\prime}(u_{n}) \rightarrow0, \end{aligned}$$
(3.1)

then \(\{u_{n}\}\) has a strongly convergent subsequence.

Proof

We first prove that under our assumptions the constrained set \(F\neq\emptyset\). For any given \(u\in H^{1}\) satisfying \(u(t)\neq0\), \(\forall t\in[0,1]\) and for \(a>0\), let

$$\begin{aligned} g_{u}(a)=g(au)= \int^{1}_{0}\biggl[V(au)+\frac{1}{2}\bigl\langle V^{\prime }(au),au\bigr\rangle \biggr] \,dt. \end{aligned}$$
(3.2)

By the assumption \((V_{3})\), we have

$$\begin{aligned} \frac{d}{da}g_{u}(a)>0 \end{aligned}$$
(3.3)

and so \(g_{u}\) is strictly increasing. Since \(V\in C^{2}\), we know that, for any given \(a>0\),

$$\biggl[V\bigl(au(t)\bigr)+\frac{1}{2}\bigl\langle V^{\prime} \bigl(au(t)\bigr),au(t)\bigr\rangle \biggr] $$

is uniformly continuous on \([0,1]\).

Hence by \((V_{5})\), we have

$$\begin{aligned} \lim_{a\rightarrow+\infty}g_{u}(a)\leq \int^{1}_{0}\lim_{a\rightarrow +\infty}\sup \biggl[V(au)+\frac{1}{2}\bigl\langle V^{\prime}(au),au\bigr\rangle \biggr] \,dt\leq A. \end{aligned}$$
(3.4)

By \((V_{4})\), we notice that

$$\begin{aligned} g_{u}(0)=V(0)\leq\frac{\mu_{2}}{\mu_{1}}. \end{aligned}$$
(3.5)

Since \(\frac{\mu_{2}}{\mu_{1}}< h< A\), we see that the equation \(g_{u}(a)=h\) has a unique solution \(a(u)\) with \({a(u)u\in M}\).

By \(f(u_{n})\rightarrow c\), we have

$$\begin{aligned} \frac{1}{4} \int^{1}_{0}\bigl\vert \dot{u_{n}}(t) \bigr\vert ^{2}\,dt\cdot \int^{1}_{0}\bigl\langle V^{\prime}(u_{n}),u_{n} \bigr\rangle \,dt\rightarrow c, \end{aligned}$$
(3.6)

and by \((V_{4})\) we see that

$$\begin{aligned} h= \int^{1}_{0}\biggl[V(u_{n})+ \frac{1}{2}\bigl\langle V^{\prime}(u_{n}),u_{n} \bigr\rangle \biggr]\,dt\leq\biggl(\frac{1}{\mu_{1}}+\frac{1}{2}\biggr) \int_{0}^{1}\bigl\langle V^{\prime }(u_{n}),u_{n} \bigr\rangle \,dt+\frac{\mu_{2}}{\mu_{1}}. \end{aligned}$$
(3.7)

By (3.6) and (3.7), we have

$$\begin{aligned} \int_{0}^{1}\bigl\langle V^{\prime}(u_{n}),u_{n} \bigr\rangle \,dt\geq\frac{h-\frac{\mu_{2}}{\mu_{1}}}{\frac{1}{2}+\frac {1}{\mu_{1}}}. \end{aligned}$$
(3.8)

Condition \((V_{6})\) provides \(h>\frac{\mu_{2}}{\mu_{1}}\). Then (3.6) and (3.8) imply \(\int^{1}_{0}\vert \dot{u_{n}}(t)\vert ^{2}\,dt\) is bounded and \(\Vert u_{n}\Vert =\Vert \dot{u}_{n}\Vert _{L^{2}}\) is bounded.

We know that \(H^{1}\) is a reflexive Banach space, so \(\{u_{n}\}\) has a weakly convergent subsequence; furthermore, by the embedding theorem the weakly convergent subsequence also uniformly converges to some \(u\in H^{1}\). The standard argument can show that \(\{u_{n}\}\) has a subsequence which converges under the \(H^{1}\) norm. We omit the details of this standard demonstration. □

Lemma 3.2

\(f(u)\) is weakly lower semi-continuous on F.

Proof

For any \(u_{n}\subset F\) with \(u_{n}\rightharpoonup u\), by Sobolev’s embedding theorem we have the uniform convergence

$$ \bigl\vert u_{n}(t)-u(t)\bigr\vert _{\infty}\rightarrow0. $$

Since \(V\in C^{1}(\mathbb{R}^{n},\mathbb{R})\), we have

$$ \bigl\vert V\bigl(u_{n}(t)\bigr)-V\bigl(u(t)\bigr)\bigr\vert _{\infty}\rightarrow0. $$

By the weakly lower semi-continuity of the norm, we see that

$$ \liminf\biggl[ \int^{1}_{0}\vert \dot{u}_{n}\vert ^{2}\,dt\biggr]^{\frac {1}{2}}\geq\biggl( \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt\biggr)^{\frac{1}{2}}, $$

and so

$$ \liminf\biggl( \int^{1}_{0}\vert \dot{u}_{n}\vert ^{2}\,dt\biggr)\geq \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt. $$

Then

$$\begin{aligned} \liminf f(u_{n})&=\liminf\frac{1}{4} \int^{1}_{0}\vert \dot{u_{n}}\vert ^{2}\,dt \int^{1}_{0}\bigl\langle V^{\prime}(u_{n}),u_{n} \bigr\rangle \,dt \\ &\geq\frac{1}{4} \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt \int^{1}_{0}\bigl\langle V^{\prime}(u),u\bigr\rangle \,dt=f(u). \end{aligned}$$

 □

Lemma 3.3

F is a weakly closed subset in \(H^{1}\).

Proof

This follows easily from Sobolev’s embedding theorem and \(V\in C^{1}(\mathbb{R}^{n},\mathbb{R})\). □

Lemma 3.4

The functional \(f(u)\) has a positive lower bound on F.

Proof

By the definitions of \(f(u)\), F, and the assumption \((V_{2})\), we have

$$ f(u)=\frac{1}{4} \int^{1}_{0}\vert \dot{u}\vert ^{2} \,dt \int^{1}_{0}\bigl\langle V^{\prime}(u),u\bigr\rangle \,dt\geq0,\quad \forall u\in F. $$

We claim further that

$$\inf f(u)>0 ; $$

otherwise, \((V_{2})\) implies \(u(t)=\mathit{const}\), and by the symmetrical property \(u(t+1/2)=-u(t)\) we have \(u(t)=0\), \(\forall t\in\mathbb{R}\). But assumptions \((V_{4})\) and \((V_{6})\) imply

$$ V(0)\leq\frac{\mu_{2}}{\mu_{1}}< h, $$

which contradicts the definition of F since \(V(0)=h \) if we have \(0\in F\). Now by Lemmas 3.1-3.4 and Lemma 2.3, we see that \(f(u)\) attains the infimum on F and we know that the minimizer is non-constant. □