Abstract
This paper deals with the existence and multiplicity of positive solutions for a system of nonlinear singular higher-order fractional differential equations with fractional multi-point boundary conditions. The main tool used in the proof is fixed point index theory. Some limit type conditions for ensuring the existence of positive solutions are given, and our conditions are suitable for more general functions.
Similar content being viewed by others
1 Introduction
We discuss the following multi-point boundary problem of the system for nonlinear singular higher-order fractional differential equations:
where \(D^{\alpha}_{0+}\), \(D^{\beta}_{0+}\) are the standard Riemann-Liouville fractional derivative of order \(\alpha\in(n-1,n]\), \(\beta\in(m-1,m]\), \(\mu\in [1,n-2]\), \(\nu\in[1,m-2]\) for \(n,m\in\mathbb{N}^{+}\) and \(n,m\geq3\), \(a_{i},b_{j}\in\mathbb{R}^{+}\), \(i=1,2,\ldots,p\), \(j=1,2,\ldots,q\) for \(p,q\in \mathbb{N}^{+}\), \(f_{k}\in C([0,1]\times\mathbb{R}^{+}\times\mathbb {R}^{+},\mathbb{R}^{+})\), \(h_{k}\in C((0,1),\mathbb{R}^{+})\), \(\mathbb{R}^{+}=[0,+\infty)\), \(h_{k}(x)\) (\(k=1,2\)) is allowed to be singular at \(x = 0\) and/or \(x = 1\) and
Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology, control theory, fitting of experimental data, and so forth. Hence fractional differential equations have attracted great research interest in recent years, and for more details we refer the reader to [1–7] and the references cited therein. Recently, the existence and multiplicity of positive solutions for the nonlinear fractional differential equations have been researched, see [8–16] and the references therein. For instance, Zhang et al. [17] studied the existence of two positive of following singular fractional boundary value problems:
where \(D^{\alpha}_{0+}\) is the standard Riemann-Liouville fractional derivative of order \(\alpha\in(2,3]\), \(\beta\in[1,2],\xi_{i},\eta_{i}\in (0,1),\alpha-\beta\geq1\) with \(\sum_{i=0}^{\infty}\xi_{i}\eta_{i}^{\alpha -\beta-1}<1\).
In [18–21], the authors studied the existence of a positive solutions of two types of systems for nonlinear fractional differential equations
with boundary conditions:
and
where \(D^{\alpha}_{0+},D^{\beta}_{0+}\), and \(D_{0+}^{\gamma}\) are the standard Riemann-Liouville fractional derivative, \(\alpha,\beta\in (n-1,n],\gamma\in[1,n-2]\) for \(n\geq3,\lambda,\mu>0\). Equations (2) with \(\lambda f(t,u,v)\) and \(\mu g(t,u,v)\) replaced by \(\widetilde{f}(t,v)\) and \(\widetilde{g}(t,u)\), respectively, the existence and multiplicity of positive solutions of the system (2), (3) was investigated in [22]. The extreme limits
are used in [19, 20], where \(\theta\in(0,\frac{1}{2}),\delta =0^{+}\) or +∞. Some similar extreme limits are used in [18, 21, 23–25]. However, for equation systems [18–21, 23–25] and a single equation using the extreme limits, there is no essential difference.
Motivated by the above mentioned work, in this paper, we present some limit type conditions and discuss the existence and multiplicity of positive solutions of the singular fractional multi-point boundary problems (1) by using fixed point index theory in a cone. The results obtained here are different from those in [18–21, 23–25], and some examples explain our conditions are applicable for more general functions.
2 Preliminaries
Definition 2.1
[26]
The Riemann-Liouville fractional integral of order \(\alpha>0\) of a function \(u:(0,+\infty)\rightarrow\mathbb{R}\) is given by
provided the right side is pointwise defined on \((0,+\infty)\), where \(\Gamma(\alpha)\) is the Euler gamma function. The Riemann-Liouville fractional derivative of order \(\alpha>0\) of a continuous function \(u:(0,+\infty)\rightarrow\mathbb{R}\) is given by
where \(n=[\alpha]+1,[\alpha]\) denotes the integer part of number α, provided the right side is pointwise defined on \((0,+\infty)\).
Lemma 2.2
[27]
Let \(x\in L^{p}(0,1)\) (\(1\leq p\leq+\infty\)), \(\rho>\sigma>0\).
-
(i)
\(D^{\sigma}_{0+}I^{\rho}_{0+}x(t)=I^{\rho-\sigma}_{0+}x(t), D^{\sigma}_{0+}I^{\sigma}_{0+}x(t)=x(t), I^{\rho}_{0+}I^{\sigma}_{0+}x(t)=I^{\rho +\sigma}_{0+}x(t)\) hold at almost every point \(t\in(0,1)\). If \(\rho+\sigma>1\), then the above third equation holds at any point of \([0,1]\);
-
(ii)
\(D^{\sigma}_{0+}t^{\rho-1}=\Gamma(\rho)t^{\rho-\sigma-1}/\Gamma (\rho-\sigma),t>0\).
Lemma 2.3
[27]
Let \(\alpha>0,n=[\alpha]+1\) for \(\alpha\notin\mathbb{N}\) and \(n=\alpha \) for \(\alpha\in\mathbb{N}\), n is the smallest integer greater than or equal to α. Then, for any \(y_{1}\in L^{1}(0,1)\), the solution of the fractional differential equation \(D^{\alpha}_{0+}u(t)+y_{1}(t)=0\) (\(0 < t < 1\)) is
where \(c_{1}, c_{2}, \ldots, c_{n}\) are arbitrary real constants.
Lemma 2.4
Let \(\sum^{p}_{j=1}a_{j}\xi_{j}^{\alpha-\mu-1}\in [0,1),\alpha\in(n-1,n],\mu\in[1,n-2] \) (\(n\geq3\)) and \(y_{1}\in C[0,1]\). Then the solution of the fractional boundary value problem
is given by
where \(d_{1}=1-\sum^{p}_{j=1}a_{j}\xi_{j}^{\alpha-\mu-1}\),
Proof
By using Lemma 2.3, the solution for the above equation is
where \(c_{1},c_{2},\ldots,c_{n}\) are arbitrary real constants. By \(u(0)=0\), we have \(c_{n}=0\). Then
Differentiating (9), we have
By \(u'(0)=0\), we have \(c_{n-1}=0\). Similarly, we get \(c_{2}=c_{3}=\cdots =c_{n-2}=0\). Hence
By \(D_{0+}^{\mu}u(1)=\sum^{p}_{j=1}a_{j}D_{0+}^{\mu}u(\xi_{j})\) and Lemma 2.2, we get
Substituting \(c_{1}\) into (10), we see that the unique solution of the problem (4) is
i.e. (5) holds.
Conversely, if \(u\in C[0,1]\) is a solution of the integral equation (5), from Lemma 2.2 we easily see that u satisfies the equation and boundary conditions of (4). □
Lemma 2.5
Under the assumptions of Lemma 2.4, the functions \(g_{1}(t,s)\) and \(h_{1}(\xi_{j},s)\) defined by (7) and (8) have the following properties:
-
(i)
\(g_{1}(t,s)\geq0\) is continuous on \([0,1]\times[0,1]\) and \(g_{1}(t,s)>0\) for all \(t,s\in(0,1)\).
-
(ii)
\(\max_{t\in[0,1]}g_{1}(t,s)=g_{1}(1,s)\) for all \(s\in[0,1]\), where
$$g_{1}(1,s)=\frac{1}{\Gamma(\alpha)} \bigl[(1-s)^{\alpha-\mu-1}-(1-s)^{\alpha -1} \bigr]. $$ -
(iii)
\(g_{1}(t,s)\geq t^{\alpha-1}g_{1}(1,s)\) for all \(t,s\in[0,1]\), and there are \(\theta\in(0,\frac{1}{2}),\gamma_{\alpha}\in(0,1)\) such that \(\min_{t\in J_{\theta}}g_{1}(t,s)\geq\gamma_{\alpha}g_{1}(1,s)\) for each \(s\in[0,1]\), where \(J_{\theta}=[\theta,1-\theta],\gamma_{\alpha}=\theta^{\alpha-1}\).
-
(iv)
\(h_{1}(t,s)\geq0\) is continuous on \([0,1]\times[0,1]\) and \(h_{1}(t,s)>0\) for all \(t,s\in(0,1)\).
Proof
For the proof of (i), (ii), and (iv), respectively, see Theorem 3.2 in [28] and Lemma 2.6 in [19]. It remains to prove (iii). We have by (7)
Hence \(g_{1}(t,s)\geq t^{\alpha-1}g_{1}(1,s)\) for all \(t,s\in[0,1]\), and so \(\min_{t\in J_{\theta}}g_{1}(t,s)\geq\gamma_{\alpha}g_{1}(1,s)\) for all \(s\in[0,1]\). □
From Lemma 2.5 it is easy to get the following result.
Lemma 2.6
Under the assumptions of Lemma 2.4, the Green’s function \(G_{1}(t,s)\) defined by (6) has the following properties:
-
(i)
\(G_{1}(t,s)\geq0\) is continuous on \([0,1]\times[0,1]\) and \(G_{1}(t,s)>0\) for all \(t,s\in(0,1)\).
-
(ii)
\(\max_{t\in[0,1]}G_{1}(t,s)=G_{1}(1,s)\) for each \(s\in[0,1]\), where
$$ G_{1}(1,s)=g_{1}(1,s)+\frac{1}{d_{1}}\sum ^{p}_{j=1}a_{j}h_{1}( \xi_{j},s)\leq \frac{(1-s)^{\alpha-\mu-1}}{d_{1}\Gamma(\alpha)}. $$(11) -
(iii)
\(G_{1}(t,s)\geq t^{\alpha-1}G_{1}(1,s)\) for all \(t,s\in[0,1]\), there are \(\theta\in(0,\frac{1}{2}),\gamma_{\alpha}\in(0,1)\) such that \(\min_{t\in J_{\theta}}G_{1}(t,s)\geq\gamma_{\alpha}G_{1}(1,s)\) for each \(s\in[0,1]\), where \(J_{\theta}=[\theta,1-\theta],\gamma_{\alpha}=\theta^{\alpha-1}\).
We can also formulate similar results as Lemmas 2.4-2.6 above, for the fractional differential equation with fractional multi-point boundary conditions
where \(m,q\in\mathbb{N}^{+}, m\geq3, 0 <\eta_{1} < \cdots<\eta_{q} < 1, b_{j}\geq0\) for all \(j=1,2,\ldots,q\) and \(y_{2}\in C[0,1]\). We denote by \(d_{2}=1-\sum^{q}_{j=1}b_{j}\eta_{j}^{\beta-\nu-1} ,\gamma_{\beta}\) and \(g_{2}(t,s),h_{2}(\eta _{j},s),G_{2}(t,s),G_{2}(1,s)\) the corresponding constants and functions for the problem (2) defined in a similar manner to \(d_{1},\gamma_{\alpha}\) and \(g_{1}(t,s),h_{1}(\xi _{j},s),G_{1}(t,s),G_{1}(1,s)\), respectively. From Lemma 2.6 we know that \(G_{1}(t,s)\) and \(G_{2}(t,s)\) have the same properties, and there exists \(\gamma_{\beta}=\theta^{\beta-1}\) such that \(\min_{t\in J_{\theta}}G_{2}(t,s)\geq\gamma_{\beta}G_{2}(1,s)\). Let \(\gamma=\min\{\gamma_{\alpha},\gamma_{\beta}\}\),
For convenience we list the following assumptions:
(H1) \(h_{k}\in C((0,1),\mathbb{R}^{+}),h_{k}(x)\not\equiv0\) on any subinterval of \((0,1)\) and
(H2) There exist \(a,b\in C(\mathbb{R}^{+},\mathbb{R}^{+})\) such that
-
(1)
\(a(\cdot)\) is concave and strictly increasing on \(\mathbb{R}^{+}\) with \(a(0)=0\);
-
(2)
\(f_{10}=\liminf_{v\rightarrow0+}\frac {f_{1}(x,u,v)}{a(v)}>0,f_{20}=\liminf_{u\rightarrow0+}\frac {f_{2}(x,u,v)}{b(u)}>0\) uniformly with respect to \((x,u)\in J_{\theta}\times\mathbb{R}^{+}\) and \((x,v)\in J_{\theta}\times \mathbb{R}^{+}\), respectively (specifically, \(f_{10}=f_{20}=+\infty\));
-
(3)
\(\lim_{u\rightarrow0+}\frac{a(Cb(u))}{u}=+\infty\) for any constant \(C>0\).
(H3) There exists \(\tau\in(0,+\infty)\) such that
uniformly with respect to \((x,u)\in[0,1]\times\mathbb{R}^{+}\) and \((x,v)\in[0,1]\times\mathbb{R}^{+}\), respectively (specifically, \(f^{\infty}_{1}=f^{\infty}_{2}=0\)).
(H4) There exist \(p,q\in C(\mathbb{R}^{+},\mathbb{R}^{+})\) such that
-
(1)
p is concave and strictly increasing on \(\mathbb{R}^{+}\);
-
(2)
\(f_{1\infty}=\liminf_{v\rightarrow+\infty}\frac {f_{1}(x,u,v)}{p(v)}>0, f_{2\infty}=\liminf_{u\rightarrow+\infty }\frac{f_{2}(x,u,v)}{q(u)}>0\) uniformly with respect to \((x,u)\in J_{\theta}\times\mathbb{R}^{+}\) and \((x,v)\in J_{\theta}\times \mathbb{R}^{+}\), respectively (specifically, \(f_{1\infty}=f_{2\infty }=+\infty\));
-
(3)
\(\lim_{u\rightarrow+\infty}\frac{p(Cq(u))}{u}=+\infty\) for any constant \(C>0\).
(H5) There exists \(\varsigma\in(0,+\infty)\) such that
uniformly with respect to \((x,u)\in[0,1]\times\mathbb{R}^{+}\) and \((x,v)\in[0,1]\times\mathbb{R}^{+}\), respectively (specifically, \(f^{0}_{1}=f^{0}_{2}=0\)).
(H6) There exists \(r>0\) such that \(f_{1}(x,u,v)\) and \(f_{2}(x,u,v)\) are nondecreasing in the second variable and the third variable \(u,v\in[0,r]\) for all \(x\in[0,1]\), and
(H7) There exists \(R>r>0\) such that \(f_{1}(x,u,v)\) and \(f_{2}(x,u,v)\) are nondecreasing in the second variable and the third variable \(u,v\in[0,R]\) for all \(x\in[0,1]\), and
Let \(E=C[0,1],\Vert u\Vert =\max_{t\in[0,1]} \vert u(t)\vert \), the product space \(E\times E\) be equipped with norm \(\Vert (u, v)\Vert =\Vert u\Vert +\Vert v\Vert \) for \((u,v)\in E\times E\), and
Then E is a real Banach space and P is a cone of E. By (H1), we can define operators \(A_{k}:P\times P\rightarrow E\) as follows:
\(A(u,v)=(A_{1}(u,v),A_{2}(u,v))\). Clearly \((u,v)\) is a positive solution of the system (1) if and only if \((u,v)\in P\times P\setminus\{ (0,0)\}\) is a fixed point of A. Let \(B_{r}=\{u\in E:\Vert u\Vert < r\}\) for \(r>0\).
Lemma 2.7
Assume that the condition (H1) is satisfied, then \(A:P\times P\rightarrow P\times P\) is a completely continuous operator.
Proof
First of all, we show that \(A_{1}:P\times P\rightarrow P\) is uniformly bounded continuous operator. For any \((u,v)\in P\times P\), it follows from (12) that \(A_{1}(u,v)(x)\geq0,x\in[0,1]\),
and
Hence \(A_{1}(P\times P)\subset P\).
Let \(\Omega\subset P\times P\) be a bounded set, we assume that \(\Vert (u,v)\Vert \leq d\) for any \((u, v)\in\Omega\). Let \(M=\max_{x\in [0,1],(u,v)\in\Omega}f_{1}(x,u,v)+1\). Equation (11) and (H1) imply that
from this we know that \(A_{1}(\Omega)\) is a bounded set.
We show that \(A_{1}:P\times P\rightarrow P\) is continuous. Let \((u_{n},v_{n}),(u_{0},v_{0})\in P\times P\), \(\Vert (u_{n},v_{n})-(u_{0},v_{0})\Vert =\Vert (u_{n}-u_{0},v_{n}-v_{0})\Vert \rightarrow0\) (\(n\rightarrow\infty\)). Then \(\{(u_{n},v_{n})\}\) is a bounded set, we assume that \(\Vert (u_{n},v_{n})\Vert \leq d \) (\(n=0,1,2,\ldots \)). From (H1), \(f_{1}\in C([0,1]\times\mathbb {R}^{+}\times\mathbb{R}^{+},\mathbb{R}^{+})\),
and the Lebesgue control convergent theorem, we know that \(A_{1}\) is a continuous operator.
Now we show that \(A_{1}\) is equicontinuous on Ω. For any given \(\varepsilon>0\), taking \(\delta\in (0,\min\{\frac{d_{1}\Gamma(\alpha )\varepsilon}{Ml_{1}(\alpha-1)},1\} )\), for each \((u,v)\in\Omega, x_{1},x_{2} \in[0,1],x_{1}< x_{2}\), and \(x_{2}-x_{1}<\delta\), we have by (7) and (8)
By means of the Arzela-Ascoli theorem, \(A_{1}:P \times P\rightarrow P\) is completely continuous. Similarly, we can prove that \(A_{2}:P \times P\rightarrow P\) is completely continuous. Hence \(A:P \times P\rightarrow P\times P\) is a completely continuous operator. □
Lemma 2.8
[29]
Assume that \(A : \overline{B}_{r}\cap P\rightarrow P\) is a completely continuous operator. If there exists \(u_{0} \in P\setminus\{0\}\) such that
then the fixed point index \(i(A,B_{r}\cap P,P)=0\).
Lemma 2.9
Assume that \(A : \overline{B}_{r}\cap P\rightarrow P\) is a completely continuous operator.
-
(1)
If \(u\nleq Au\) or \(\Vert Au\Vert \leq \Vert u\Vert \) for all \(u\in\partial B_{r}\cap P\), then the fixed point index \(i(A,B_{r}\cap P,P)=1\).
-
(2)
If \(u\ngeq Au\) or \(\Vert Au\Vert \geq \Vert u\Vert \) for all \(u\in\partial B_{r}\cap P\), then the fixed point index \(i(A,B_{r}\cap P,P)=0\).
In the following, we adopt the convention that \(C_{1},C_{2},C_{3},\ldots \) stand for different positive constants. Let \(\Omega_{r}=\{(u,v)\in E\times E:\Vert (u,v)\Vert < r\}\) for \(r>0\).
3 Existence of a positive solution
Theorem 3.1
Assume that the conditions (H1)-(H3) are satisfied, then the system (1) has at least one positive solution.
Proof
By (H2), there are \(\xi_{1}>0,\eta_{1}>0\) and a sufficiently small \(\rho >0\) such that
and
where \(K_{1}=\max\{\eta_{1}\gamma G_{2}(1,y)h_{2}(y):y\in J_{\theta}\}\). We claim that
where \(\varphi\in P\setminus\{0\}\). If not, there are \(\lambda\geq0\) and \((u,v)\in\partial\Omega_{\rho}\cap(P\times P)\) such that \((u,v)=A(u,v)+\lambda(\varphi,\varphi)\), then \(u\geq A_{1}(u,v),v\geq A_{2}(u,v)\). By using the monotonicity and concavity of \(a(\cdot)\), Jensen’s inequality and Lemma 2.6, we have by (13) and (14)
Consequently, \(\Vert u\Vert =0\). Next, (13) and (14) yield
this means that \(a(\Vert v\Vert )=0\). It follows from the strict monotonicity of \(a(v)\) and \(a(0)=0\) that \(\Vert v\Vert =0\). Hence \(\Vert (u,v)\Vert =0\), which is a contradiction. Lemma 2.8 implies that
On the other hand, by (H3), there exist \(\zeta>0\) and \(C_{1}>0,C_{2}>0\) such that
where
Let
We prove that W is bounded. Indeed, for any \((u,v)\in W\), there exists \(\lambda\in[0,1]\) such that \(u=\lambda A_{1}(u,v), v=\lambda A_{2}(u,v)\). Then (18) implies that
Consequently,
Since
there exists \(r_{1}>r\), when \(\Vert (u,v)\Vert >r_{1}\), (19) and (20) yield
Hence \(\Vert (u,v)\Vert \leq2(C_{3}+C_{4})\) and W is bounded.
Select \(G>2(C_{3}+C_{4})\). We obtain from the homotopic invariant property of fixed point index that
So A has at least one fixed point on \((\Omega_{G}\setminus\overline {\Omega}_{\rho}) \cap(P\times P)\). This means that the system (1) has at least one positive solution. □
Theorem 3.2
Assume that the conditions (H1), (H4), and (H5) are satisfied. Then the system (1) has at least one positive solution.
Proof
By (H4), there are \(\xi_{2}>0,\eta_{2}>0,C_{5}>0,C_{6}>0\), and \(C_{7}>0\) such that
and
where \(K_{2}=\max\{\eta_{2}\gamma G_{2}(1,y)h_{2}(y):y\in J_{\theta}\}\). Then we have
We affirm that the set
is bounded, where \(\varphi\in P\setminus\{0\}\). Indeed, \((u,v)\in W\) implies that \(u\geq A_{1}(u,v),v\geq A_{2}(u,v)\) for some \(\lambda\geq0\). We have by (23)
By the monotonicity and concavity of \(p(\cdot)\) as well as Jensen’s inequality, (25) implies that
Since \(p(v(x))\geq p(v(x)+C_{9})-p(C_{9})\), we have by (22), (24), and (26)
Hence \(\Vert u\Vert \leq C_{11}\).
Since \(p(v(x))\geq\gamma p(\Vert v\Vert )\) for \(x\in J_{\theta},v\in P\), it follows from (26), (22), and (24) that
Hence \(p(\Vert v\Vert )\leq C_{13}\). By (1) and (3) of the condition (H5), we know that \(\lim_{v\rightarrow+\infty}p(v)=+\infty\), thus there exists \(C_{14}>0\) such that \(\Vert v\Vert \leq C_{14}\). This shows W is bounded. Then there exists a sufficiently large \(K>0\) such that
Lemma 2.8 yields
On the other hand, by (H5), there is a \(\sigma>0\) and sufficiently small \(\rho>0\) such that
where
We claim that
If not, there exists a \((u,v)\in\partial\Omega_{\rho}\cap(P\times P)\) such that \((u,v)\leq A(u,v)\), that is, \(u\leq A_{1}(u,v),v\leq A_{2}(u,v)\). Then (29) implies that
and
Equations (31) and (32) imply that \(\Vert (u,v)\Vert =0\), which contradicts \(\Vert (u,v)\Vert =\rho\), and the inequality (30) holds. Lemma 2.9 yields
Hence A has a fixed point on \((\Omega_{K}\setminus\overline{\Omega }_{\rho})\cap(P\times P)\). This means that the system (1) has at least one positive solution. □
Theorem 3.3
Assume that the conditions (H1), (H6), and (H7) are satisfied. Then the system (1) has at least one positive solution.
Proof
Since \(\gamma r\leq u(x),v(x)\leq r\) for \((u,v)\in\partial\Omega_{r}\cap(P\times P) ,x\in[\theta,1-\theta]\), we know from (H6) that
Hence \(\Vert A(u,v)\Vert >r=\Vert (u,v)\Vert \) for any \((u,v)\in\partial\Omega_{r}\cap (P\times P)\). Lemma 2.9 yields
On the other hand, for any \(x\in[0,1],0\leq u, v\leq R\), (H7) implies that
Hence \(\Vert A(u,v)\Vert \leq R=\Vert (u,v)\Vert \) for \((u,v)\in\partial\Omega_{R}\cap (P\times P)\). Lemma 2.9 yields
So A has a fixed point on \((\Omega_{R}\setminus\overline{\Omega}_{r})\cap (P\times P)\). This means that the system (1) has at least one positive solution. □
4 Existence of multiple positive solutions
Theorem 4.1
Assume that the conditions (H1), (H3), (H5), and (H6) hold. Then the system (1) has at least two positive solutions.
Proof
We may take \(G>r>\sigma\) such that (21), (33), and (34) hold. Then we have
Hence A has a fixed point on \((\Omega_{G}\setminus\overline{\Omega }_{r})\cap(P\times P)\) and \((\Omega_{r}\setminus\overline{\Omega}_{\sigma}) \cap(P\times P)\), respectively. This means the system (1) has at least two positive solutions. □
Theorem 4.2
Assume that the conditions (H1), (H2), (H4), and (H7) hold. Then the system (1) has at least two positive solutions.
Proof
We may take \(K>R>\rho\) such that (17), (28), and (35) hold. Then we have
Hence A has a fixed point on \((\Omega_{K}\setminus\overline{\Omega }_{R})\cap(P\times P)\) and \((\Omega_{R}\setminus\overline{\Omega}_{\rho})\cap(P\times P)\), respectively. This means the system (1) has at least two positive solutions. □
Theorem 4.3
Assume that the conditions (H1), (H4), (H5), (H6), and (H7) hold. Then the system (1) has at least three positive solutions.
Proof
We may take \(K>R>r>\sigma\) such that (28), (33), (34), and (35) hold. From the proof of Theorem 3.3, Theorem 4.1, and Theorem 4.2 we know that (36), (37), and (38) hold. Hence A has a fixed point on \((\Omega_{K}\setminus\overline{\Omega }_{R})\cap(P\times P), (\Omega_{R}\setminus\overline{\Omega}_{r})\cap (P\times P)\) and \((\Omega_{r}\setminus\overline{\Omega}_{\sigma})\cap(P\times P)\), respectively. Hence the system (1) has at least three positive solutions. □
Similar to the proof of Theorem 3.3, we can get the following result.
Theorem 4.4
Assume that (H1) holds. If there are 2l positive numbers \(d_{k},D_{k}\) (\(k=1,2,\ldots,l\)) with
such that \(f_{1}(x,u,v)\) and \(f_{2}(x,u,v)\) are nondecreasing in the second variable and the third variable \(u,v\in[0,D_{l}]\) for all \(x\in[0,1]\), and
(H8) \(f_{1}(x,\gamma d_{k},\gamma d_{k})\geq(\gamma\delta_{1})^{-1}d_{k}\), \(f_{2}(x,\gamma d_{k},\gamma d_{k})\geq(\gamma\delta_{2})^{-1}d_{k}\) for all \(x\in J_{\theta}\), \(k=1,2,\ldots,l\),
(H9) \(f_{1}(x,D_{k},D_{k})\leq\mu^{-1}_{1}\frac{D_{k}}{2}\), \(f_{2}(x,D_{k},D_{k})\leq\mu^{-1}_{2}\frac{D_{k}}{2}\) for all \(x\in [0,1],k=1,2,\ldots,l\).
Then the system (1) has at least l positive solutions \((u_{k},v_{k})\) satisfying
5 Some examples
In the following, we give some examples to illustrate our main results. In Examples 5.1-5.4, the meaning of \(\alpha,\beta,\mu,\nu\) is the same as in the system (1).
Example 5.1
Let \(h_{1}(x)=1/(1-x)^{\alpha-\mu-1},h_{2}(x)=1/(1-x)^{\beta-\nu-1},x\in (0,1)\), \(f_{1}(x,u,v)=e^{x}(1+e^{-(u+v)}),f_{2}(x,u,v)=1-e^{-(u+v)},x\in [0,1],u,v\in\mathbb{R}^{+}\), \(a(v)=v^{\frac{1}{2}},b(u)=u^{\frac{1}{2}},\tau=1/2\). Clearly,
but \(\int_{0}^{1}h_{k}(y)\,dy=+\infty \) (\(k=1,2\)) for \(\alpha-\mu-1\geq1,\beta-\nu -1\geq1\). The results of [18–25, 28, 31] are not suitable for the problem. It is easy to verify that the conditions (H1)-(H3) hold, hence Theorem 3.1 implies that the system (1) has at least one positive solution. Here \(f_{1}(x,u,v)\) and \(f_{2}(x,u,v )\) are sublinear on u and v at 0 and +∞.
Example 5.2
Let \(h_{k}(x)\) be as in Example 5.1, \(f_{1}(x,u,v)=e^{x}(1+e^{-(u+v)})\), \(f_{2}(x,u,v)=u^{\frac{3}{2}}, a(v)=v^{\frac{1}{3}},b(u)=u^{2},\tau=1/2\). It is easy to verify that the conditions (H1)-(H3) hold, Theorem 3.1 implies that the system (1) has at least one positive solution. Here \(f_{1}(x,u,v)\) is sublinear on u and v at 0 and +∞, whereas \(f_{2}(x,u,v )\) is superlinear on u at 0 and +∞.
Example 5.3
Let \(h_{k}(x)\) be as in Example 5.1, \(f_{1}(x,u,v)=(1+e^{-u})v^{3},f_{2}(x,u,v)=u^{3}\), \(p(v)=v^{\frac {1}{2}},q(u)=u^{3},\varsigma=3\). It is easy to verify that the conditions (H1), (H4), and (H5) hold. Theorem 3.2 shows that the system (1) has at least one positive solution. Here \(f_{1}(x,u,v)\) is superlinear on v at 0 and +∞, \(f_{2}(x,u,v)\) is superlinear on u at 0 and +∞.
Example 5.4
Let \(h_{k}(x)\) be as in Example 5.1, \(f_{1}(x,u,v)=(1+e^{-u})v^{\frac {2}{3}},f_{2}(x,u,v)=(1+e^{-v})u^{5}\), \(p(v)=v^{\frac {1}{3}},q(u)=u^{4},\varsigma=1/3\). It is easy to see that the conditions (H1), (H4), and (H5) hold. Theorem 3.2 shows that the system (1) has at least one positive solution. Here \(f_{1}(x,u,v)\) is sublinear on v at 0 and +∞, whereas \(f_{2}(x,u,v )\) is superlinear on u at 0 and +∞.
Example 5.5
Consider the system of nonlinear singular fractional differential equations with fractional three-point boundary conditions:
where \(\alpha=\beta=\frac{5}{2},\mu=\nu=1\), \(a_{1}=b_{1}=\frac{\sqrt {2}}{2},\xi_{1}=\eta_{1}=\frac{1}{2}\), \(h_{1}(x)=(1-x)^{-\frac{1}{2}}\),
By a simple calculation, we have \(d_{1}=\frac{1}{2},\gamma=\frac {1}{8},\delta_{1}=\int_{\frac{1}{4}}^{\frac{3}{4}}G_{1}(1,s)h_{1}(s)\,ds=\frac {3\sqrt{2}-1}{3\sqrt{2\pi}}\). Take \(r=1,\tau=\varsigma=\frac{1}{2}\) in (H3) and (H5), it is easy to verify that the conditions (H1), (H3), (H5), and (H6) hold. From Theorem 4.1 one concludes that the system (39) has two positive solutions.
Example 5.6
Consider the singular system (39), where
Take \(r=1,\tau=\varsigma=3\) in (H3) and (H5), it is easy to verify that the conditions (H1), (H3), (H5), and (H6) hold. From Theorem 4.1 one concludes that the system (39) has two positive solutions.
Example 5.7
Consider the singular system (39), where
By a simple calculation, we get \(\mu_{1}=\mu_{2}=\int _{0}^{1}G_{1}(1,s)h_{1}(s)\,ds=\frac{2(3\sqrt{2}-2)}{3\sqrt{2\pi}}\). Take \(R=4,a(v)=p(v)=v^{\frac{2}{3}}\), \(b(u)=u^{\frac{1}{2}},q(u)=u^{2}\), it is easy to see that the conditions (H1), (H2), (H4), and (H7) hold. From Theorem 4.2 one concludes that the system (39) has two positive solutions.
Example 5.8
Consider the singular system (39), where
Take \(R=4,a(v)=p(v)=v^{\frac{1}{2}}\), \(b(u)=q(u)=u^{\frac{1}{2}}\), it is easy to see that the conditions (H1), (H2), (H4), and (H7) hold. From Theorem 4.2 one concludes that the system (39) has two positive solutions.
Remark 5.9
From Examples 5.1-5.8 we know that the conditions (H2)-(H5) are applicable to more general functions and our results are different from those in [18–21, 23–25].
Remark 5.10
If \(n,m\geq2\), \(n-1<\alpha\leq n,m-1<\beta\leq m,\mu=\nu =0\) in the system (1), all our conclusion is true because the corresponding Green’s function \(g_{k}(t,s) \) (\(k=1,2\)) satisfies a Harnack-like inequality (see [19]). Hence our results improve and generalize some corresponding results in [19, 28, 31] and [32].
References
Ahmad, B, Nieto, JJ: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838-1843 (2009)
Ur Rehman, M, Ali Khan, R: Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations. Appl. Math. Lett. 23, 1038-1044 (2010)
Jia, M, Zhang, X, Gu, X: Nontrivial solutions for a higher fractional differential equation with fractional multi-point boundary conditions. Bound. Value Probl. 2012, Article ID 70 (2012)
Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64-69 (2009)
Zhang, Y, Bai, C, Feng, T: Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance. Comput. Math. Appl. 61, 1032-1047 (2011)
Zhu, C, Zhang, X, Wu, Z: Solvability for a coupled system of fractional differential equations with nonlocal integral boundary conditions. Taiwan. J. Math. 17, 2039-2054 (2013)
Zhang, X, Liu, L, Wu, Y, Wiwatanapataphee, B: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252-263 (2015)
Zhang, S: Existence results of positive solutions to fractional differential equation with integral boundary conditions. Math. Bohem. 135, 299-317 (2010)
Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, Article ID 720702 (2011)
Wang, L, Zhang, X: Positive solutions of m-point boundary value problems for a class of nonlinear fractional differential equations. J. Appl. Math. Comput. 42, 387-399 (2013)
Tian, Y, Zhou, Y: Positive solutions for multipoint boundary value problem of fractional differential equations. J. Appl. Math. Comput. 38, 417-427 (2012)
Tian, Y: Positive solutions to m-point boundary value problem of fractional differential equation. Acta Math. Appl. Sinica (Engl. Ser.) 29, 661-672 (2013)
Zhang, X, Liu, L, Wu, Y: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 219, 1420-1433 (2012)
Zhang, X, Liu, L, Wu, Y: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26-33 (2014)
Zhang, X, Liu, L, Wiwatanapataphee, B, Wu, Y: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412-422 (2014)
Zhang, X, Wu, Y, Caccetta, L: Nonlocal fractional order differential equations with changing-sign singular perturbation. Appl. Math. Model. 39, 6543-6552 (2015)
Zhang, X, Zhong, Q: Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations. Bound. Value Probl. 2016, Article ID 65 (2016)
Goodrich, CS: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 62, 1251-1268 (2011)
Henderson, J, Luca, R: Positive solution for a system of nonlocal fractional boundary value problems. Fract. Calc. Appl. Anal. 16, 985-1008 (2013)
Henderson, J, Luca, R: Positive solutions for a system of fractional differential equations with coupled integral boundary conditions. Appl. Math. Comput. 249, 182-197 (2014)
Liu, W, Yan, X, Qi, W: Positive solutions for coupled nonlinear fractional differential equations. J. Appl. Math. 2014, Article ID 790862 (2014)
Henderson, J, Luca, R: Existence and multiplicity of positive solutions for a system of fractional boundary value problems. Bound. Value Probl. 2014, Article ID 60 (2014)
Yang, W: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput. Math. Appl. 63, 288-297 (2012)
Zhai, C, Hao, M: Multiple positive solutions to nonlinear boundary value problems of a system for fractional differential equations. Sci. World J. 2014, Article ID 817542 (2014)
Zhao, Y, Sun, S, Han, Z, Feng, W: Positive solutions for a coupled system of nonlinear differential equations of mixed fractional orders. Adv. Differ. Equ. 2011, Article ID 10 (2011)
Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Goodrich, CS: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050-1055 (2010)
Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
Guo, D, Laksmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
Li, C, Luo, X, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363-1375 (2010)
Xie, S: Positive solutions for a system of higher-order singular nonlinear fractional differential equations with nonlocal boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2015, 18 (2015)
Acknowledgements
The work was supported by Natural Science Foundation of Anhui Province and Anhui Provincial Education Department (1508085MA08, KJ2014A043), P.R. China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors, S Xie and Y Xie, contributed to each part of this work equally and read and approved the final version of the manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Xie, S., Xie, Y. Positive solutions of a system for nonlinear singular higher-order fractional differential equations with fractional multi-point boundary conditions. Bound Value Probl 2016, 134 (2016). https://doi.org/10.1186/s13661-016-0643-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0643-2