1 Introduction and main results

In this paper, we consider the first and second expansions of positive weak large solutions near the boundary for the quasilinear elliptic problem of the form

$$ \Delta_{p}u=b(x)f(u),\quad x\in\Omega, \qquad u|_{\partial\Omega }= \infty, $$
(1.1)

where \(\Delta_{p}u=\operatorname{div}(|\nabla u|^{p-2}\nabla u)\) (\(p>2\)), \(\Omega\subset R^{N}\) (\(N\geq2\)) is a bounded domain with \(C^{4}\)-smooth boundary, \(b(x)\) satisfies (b1) and (b2), and f satisfies (f1), (f2), and (f3), where

(b1):

\(b(x)\in C^{\alpha}(\overline{\Omega})\) for some \(\alpha\in(0,1)\), and \(b(x)\) is positive in Ω;

(b2):

there exist \(k\in\Lambda\) and \(b_{0}\in R\) such that

$$\lim_{d(x)\rightarrow0}\frac{b(x)}{K^{p-2}(d(x))k^{p}(d(x))}=b_{0}, $$

where Λ denotes the set of all positive nondecreasing functions in \(C^{1}(0,\delta_{0})\) (\(\delta_{0}>0\)) such that

$$\lim_{t\rightarrow 0+}\frac{d}{dt}\biggl(\frac{K(t)}{k(t)} \biggr):=C_{k}\in[0,\infty), \quad K(t)= \int^{t}_{0}k(s)\, ds; $$
(f1):

\(f\in C^{1}[0,\infty)\), \(f(0)=0\), f is increasing in \((0,\infty)\);

(f2):

\(\int^{\infty}_{1}f^{-\frac{1}{p-1}}(v)\, dv<\infty\);

(f3):

there exists \(C_{f}>0\) such that \(\lim_{s\rightarrow\infty}f'(s)\int^{\infty}_{s}\frac{dv}{f(v)}=C_{f}\).

Note that, some basic examples for \(k\in\Lambda\) can be given as follows:

  1. (1)

    \(k(t)=t^{\frac{\alpha}{2}}\), \(\alpha>0\), \(C_{k}=2(2+\alpha)^{-1}\);

  2. (2)

    \(k(t)=e^{-t^{-\alpha}}\), \(\alpha>0\), \(C_{k}=0\);

  3. (3)

    \(k(t)=\frac{1}{(-\ln t)^{\alpha}}\), \(\alpha>0\), \(C_{k}=1\);

  4. (4)

    \(k(t)=e^{-e^{t^{-\alpha}}}\), \(\alpha>0\), \(C_{k}=0\);

  5. (5)

    \(k(t)=(\ln(1+t))^{\alpha}\), \(\alpha>0\), \(C_{k}=(1+\alpha)^{-1}\).

p-Laplacian equations like (1.1) usually occur in the study of the generalized reaction-diffusion theory, non-Newtonian fluid theory, non-Newtonian filtration, and the turbulent flow of a gas in porous medium. In the non-Newtonian theory, the quantity p is a characteristic of the medium. Media with \(p>2\) are called dilatant fluids, and those with \(p<2\) are called pseudoplastics. If \(p=2\), then they are Newtonian fluids. The p-Laplacian operator also appears in the study of torsional creep (elastic for \(p=2 \) and plastic for \(p<2\); see [1]), flow through porous media (\(p=\frac{3}{2}\); see [2]), and glacial sliding (\(p\in(1,\frac{3}{4}]\); see [3]).

We are concerned with the positive weak large solutions for problem (1.1). By a solution for problem (1.1) we understand a function \(u\in W^{1,p}_{\mathrm{loc}}(\Omega)\cap L^{\infty}_{\mathrm{loc}}(\Omega)\) that satisfies \(\Delta_{p}u=b(x)f(u)\) in the weak sense and \(u(x)\rightarrow\infty\) as \(d(x)=\operatorname{dist}(x,\partial\Omega)\rightarrow 0\). Sometimes, the solution is also called a large solution, an explosive solution, or a boundary blow-up solution.

The study of large solutions started from the work of Bieberbach [4] for the case \(b(x)=1\), \(f(u)=e^{u}\), \(p=2\), and \(N=2\), which plays an important role in the theories of Riemannian surfaces of negative constant curvatures and automorphic functions. More exactly, if a Riemannian metric of the form \(|ds|^{2}=e^{2u(x)}|dx|^{2}\) has a constant Gaussian curvature \(-b^{2}\), then \(\Delta u=b^{2}e^{2u}\). Rademacher [5] extended the results in [4] to the three-dimensional space. Later, C Bandle et al. discussed the existence, uniqueness, and accurate estimate of boundary behavior of large solutions for problem (1.1) with \(p=2\) and \(b(x)\), \(f(u)\) satisfying some proper conditions and obtained some better results dealing with a gradient term (see [440] and the references therein). Also, some results in [440] have been extended to \(p>2\) (see [4154]). Recently, boundary blow-up problems have been applied to Liouville theorems for logistic-like equations in \(R^{N}\) in [13], the analysis of blow-up for a parabolic equation with a nonlinear boundary condition in [14], and the characterization of the long-time behavior of positive solutions for the parabolic equations in [15, 16].

However, Cirstea and Rădulescu [17] first introduced Karamata regular variation theory approaching to study the uniqueness and asymptotic behavior of boundary blow-up solutions, which enables us to obtain some qualitative behavior of the boundary blow-up solutions in a general framework. The asymptotic behavior of the boundary blow-up solutions near the boundary has been investigated by many researchers (see [1739] and their references). It is well known that the first-order asymptotic expansion of the solution \(u(x)\) in terms of \(d(x)\) is independent of the geometry of the domain, whereas the second-order asymptotic expansion of the solution \(u(x)\) depends linearly on the mean curvature of the boundary of Ω. There have been many results about the first expansion of large solution for problem (1.1) with \(p=2\) and \(b(x)\), \(f(u)\) satisfying some proper conditions under different regularity boundary conditions (see [2128]) and the second expansion (see[2934] and references therein). Bandle and Marcus [29] first studied the influence of the geometry of Ω on the boundary behavior of the unique radially symmetric solution for problem (1.1) in a ball or an annulus when \(f(u)\) is of power form. Their results were extended by Bandle, Anedda, Porru et al. to more general boundary smooth domains, weights, and nonlinearities (see [3034]). Specially, Cirstea et al. [17, 3540] used the Karamata regular variation theory, nonlinear transformations, the perturbed method, the upper and lower solution method, and localization method to establish the first and second expansion of large solutions for problem (1.1) with \(p=2\), and Cirstea and Rădulescu [17] first introduced the set Λ. Recently, some results in [17, 3540] have been extended to \(p>2\). For instance, Huang et al. [4648] studied the existence and the first and second expansions of weak solutions when \(b(x)\) and \(f(u)\) satisfy some suitable conditions, which are different from the conditions in our paper. For more results about the p-Laplacian equations, we refer to [4953] and references therein.

Inspired by the above works, in this paper, we introduce the constants \(C_{f}\) and \(C_{k}\) to get the asymptotic expansion of solutions for problem (1.1). In particular, when \(b(x)=K^{p-2}(d(x))k(d(x))\) near the boundary and \(f(s)=s^{m}\pm f_{1}(s)\) for sufficiently large s, where \(m>p-1\), and \(f_{1}\) satisfies

(f4):

there exists \(m_{1}\in(0,p-1)\) such that

$$\lim_{s\rightarrow\infty}\frac{sf'_{1}(s)}{f_{1}(s)}=m_{1}, $$

we show the influence of the geometry of Ω on the boundary behavior of solutions for problem (1.1). Finally, we prove the existence and uniqueness of the solution for problem (1.1). More precisely, we obtain the following results.

Theorem 1

Let f satisfy (f1)-(f3), and b satisfy (b1)-(b2). Suppose that \(1< C_{f}<\frac{p-1}{p-2}\) in (f3) and

$$ 2C_{f}+C_{k}>2+\frac{p-2}{p-1}C_{f}C_{k}. $$
(1.2)

Then, for any solution u of problem (1.1), we have

$$ \lim_{d(x)\rightarrow0}\frac{u(x)}{\phi(\gamma K^{2}(d(x)))}=1, $$
(1.3)

where ϕ is uniquely defined by

$$ \int^{\infty}_{\phi(t)}f^{-\frac{1}{p-1}}(\mu)\, d\mu=t, \quad \forall t>0 $$
(1.4)

and

$$ \gamma=\frac{1}{2} \biggl(\frac{b_{0}}{p-1}\cdot \frac{(p-1)(C_{f}-1)-C_{f}}{(2-C_{k})(p-1)(C_{f}-1)-C_{f}C_{k}} \biggr)^{\frac{1}{p-1}}. $$
(1.5)

Remark 1

By (1.2) one can see that if \(C_{f}>1\), then \(C_{k}\) can be equal to zero and if \(C_{k}>0\), then \(C_{f}\) can be equal to 1.

Theorem 2

Let f satisfy (f1), \(f(s)=s^{m}\pm f_{1}(s)\) for sufficiently large s, \(m>p-1\), \(f_{1}\) satisfy (f4), and \(b(x)=K^{p-2}(d(x))k(d(x))\) near the boundary, where k satisfies

(k1):

\(k\in C[0,a]\cap C^{2}(0,a]\) for some \(a>0\), \(k(t)>0\), \(k'(t)>0\), \(\forall t\in(0,a]\), and \(k(0)=0\);

(k2):

\(k\in\Lambda\) with \(C_{k}>0\);

(k3):

\(\lim_{t\rightarrow0}\frac{d^{2}}{dt^{2}}(\frac {K(t)}{k(t)})=0\).

The following two results hold:

  1. (1)

    if \(m+1-p>2m_{1}\), then, in a sufficiently small neighborhood of Ω, for any solution u of problem (1.1), we have

    $$ u(x)=C_{1}\bigl(K\bigl(d(x)\bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \biggl(1+C_{2}(N-1)H(\overline {x})\frac{K(d(x))}{k(d(x))}+o\bigl(d(x)\bigr) \biggr), $$
    (1.6)

    where

    $$\begin{aligned}& C_{1}= \biggl( \biggl(\frac{2(p-1)}{m+1-p} \biggr)^{p} \biggl(p-1+\frac {(m+1-p)C_{k}}{2} \biggr) \biggr)^{\frac{1}{m+1-p}}, \\& C_{2}=\frac{m+1-p}{2(p-1)(m-1)+(m+1)(m+1-p)C_{k}}. \end{aligned}$$
  2. (2)

    if \(m+1-p\leq2m_{1}\) and \(k(t)=t^{\frac{\theta}{2}}\) with \(\theta>0\) such that \(\frac{\theta}{2+\theta}>\frac{2m_{1}-(m+p-1)}{m+1-p}\), then (1) still holds.

Remark 2

Some basic examples of k that satisfy (k1)-(k3) can be given as follows:

  1. (1)

    \(k(t)=t^{\frac{\alpha}{2}}\), \(\alpha>0\), where \(C_{k}=\frac{2}{2+\alpha}\);

  2. (2)

    \(k(t)=e^{t^{\alpha}}-1\), \(\alpha>1\), where \(C_{k}=\frac{1}{1+\alpha}\);

  3. (3)

    \(k(t)=\ln(1+t^{\alpha})\), \(\alpha>1\), where \(C_{k}=\frac{1}{1+\alpha}\).

Remark 3

If \(k(t)=(\ln(1+t))^{\alpha}\), \(\alpha>0\), then \(\lim_{t\rightarrow 0+}\frac{d^{2}}{dt^{2}}(\frac{K(t)}{k(t)})=\frac{\alpha}{2(1+\alpha )(2+\alpha)}\). In this case, \(k(t)\) does not satisfy (k3).

This paper is organized as follows. In Section 2, we present some notation and results in regular variation theory. Theorems 1 and 2 will be proved in Section 3. Finally, we prove the existence and uniqueness of the solution for problem (1.1) in Appendices A.1 and A.2.

2 Preliminary results

2.1 Properties of regularly varying function

Karamata regular variation theory was established by Karamata in 1930 and is a basic tool in stochastic process. In 1970, Haan improved the results, which have been applied in stochastic process, analytical function theory, integral functions, integral transform and asymptotic estimation of an integral sequence (see [5557]).

In this section, we recall some basic definitions and qualities in regular variation theory.

Definition 1

A positive measurable function f defined on \([a,\infty)\) for some \(a>0\) is called regularly varying at infinity with index ρ (written as \(f\in \mathit{RV}_{\rho}\)) if for each \(\xi >0\) and some \(\rho\in R\),

$$ \lim_{t\rightarrow\infty}\frac{f(\xi t)}{f(t)}=\xi^{\rho}. $$
(2.1)

In particular, when \(\rho=0\), f is called slowly varying at infinity. Clearly, if \(f\in \mathit{RV}_{\rho}\), then \(L(s):=\frac{f(s)}{s^{\rho}}\) is slowly varying at infinity.

Definition 2

A positive measurable function f defined on \([a,\infty)\) for some \(a>0\) is called rapidly varying at infinity if for each \(\rho>1\),

$$ \lim_{s\rightarrow\infty}\frac{f(s)}{s^{\rho}}=\infty. $$
(2.2)

Some basic examples of slowly varying functions at infinity are listed as follows:

  1. (1)

    every measurable function on \([a,\infty)\) which has a positive limit at infinity;

  2. (2)

    \((\ln t)^{s}\) and \((\ln( \ln t))^{s}\), \(s\in R\);

  3. (3)

    \(e^{(\ln t)^{s}}\), \(0< s<1\).

Some basic examples of rapidly varying functions at infinity are given as follows:

  1. (1)

    \(e^{t}\) and \(e^{e^{t}}\);

  2. (2)

    \(e^{e^{(\ln t)^{s}}}\), \(e^{e^{t^{s}}}\) and \(e^{e^{t^{s}}}\), \(s>0\);

  3. (3)

    \(t^{\gamma}e^{(\ln t)^{q}}\) and \((\ln t)^{\gamma}e^{(\ln t)^{q}}\), \(q>1\), \(\gamma\in R\);

  4. (4)

    \((\ln t)^{\gamma}e^{t^{q}}\) and \(t^{\gamma}e^{t^{\gamma}}\), \(q>0\), \(\gamma\in R\).

We see that a positive measurable function h defined on \((0,a)\) for some \(a>0\) is regularly varying at zero with index σ (written as \(g\in \mathit{RVZ}_{\sigma}\)) if \(t\rightarrow g(\frac{1}{t})\) belongs to \(\mathit{RV}_{-\sigma}\). Similarly, g is called rapidly varying at zero if \(t\rightarrow g(\frac{1}{t})\) is rapidly varying at infinity.

Proposition 1

(Uniform convergence theorem)

If \(f\in \mathit{RV}_{\rho}\), then (2.1) holds uniformly for \(\xi\in[c_{1},c_{2}]\) with \(0< c_{1}< c_{2}\). Moreover, if \(\rho<0\), then uniform convergence holds on intervals of the form \((a_{1},\infty)\) with \(a_{1}>0\); if \(\rho>0\), then uniform convergence holds on intervals \((0,a_{1}]\), provided that f is bounded on \((0,a_{1}]\) for all \(a_{1}>0\).

Proposition 2

(Representation theorem)

A function L is slowly varying at infinity if and only if it can be written in the form

$$ L(s)=\varphi(s)\exp\biggl( \int^{s}_{a_{1}}\frac{y(t)}{t}\, dt\biggr),\quad s \geq a_{1} $$
(2.3)

for some \(a_{1}\geq a\), where the functions φ and y are measurable and as \(s\rightarrow\infty\), \(y(s)\rightarrow0\) and \(\varphi(s)\rightarrow c_{0}>0\).

We say that

$$ \hat {L}(s)=c_{0}\exp\biggl( \int^{s}_{a_{1}}\frac{y(t)}{t}\, dt\biggr),\quad s \geq a_{1}, $$
(2.4)

is normalized slowly varying at infinity and

$$ f(s)=c_{0}s^{\rho} \hat {L}(s), \quad s\geq a_{1}, $$
(2.5)

is normalized regularly varying at infinity with index ρ (written as \(f\in \mathit{NRV}_{\rho}\)).

Similarly, g is called normalized regularly varying at zero with index σ (written as \(g\in \mathit{NRVZ}_{\sigma}\)) if \(t\rightarrow g(\frac{1}{t})\) belongs to \(\mathit{NRV}_{-\sigma}\). A function \(f\in \mathit{RV}_{\rho}\) belongs to \(\mathit{NRV}_{\rho}\) if and only if

$$ f\in C^{1}[a_{1},\infty) \quad \mbox{for some } a_{1}>0 \quad \mbox{and}\quad \lim_{s\rightarrow\infty} \frac{sf'(s)}{f(s)}=\rho. $$
(2.6)

Proposition 3

If functions \(L_{1}\), \(L_{2}\) are slowly varying at infinity, then

  1. (1)

    \(L^{\sigma}\) for every \(\sigma\in R\), \(c_{1}L+c_{2}L_{1}\) (\(c_{1}\geq0\), \(c_{2}\geq0\) with \(c_{1}+c_{2}>0\)), \(L\circ L_{1}\) (if \(L_{1}(t)\rightarrow+\infty\) as \(t\rightarrow+\infty\)) are also slowly varying at infinity;

  2. (2)

    for every \(\theta>0\), \(t^{\theta}L(t)\rightarrow+\infty\) and \(t^{-\theta}L(t)\rightarrow0\) as \(t\rightarrow\infty\);

  3. (3)

    for \(\rho\in R\), \(\frac{\ln(L(t))}{\ln t}\rightarrow0\) and \(\frac{\ln(t^{\rho}L(t))}{\ln t}\rightarrow\rho\) as \(t\rightarrow+\infty\).

Proposition 4

If \(f_{1}\in \mathit{RV}_{\rho_{1}}\), \(f_{2}\in \mathit{RV}_{\rho_{2}}\) with \(\lim_{t\rightarrow\infty}f_{2}(t)=\infty\), then \(f_{1}\circ f_{2}\in \mathit{RV}_{\rho_{1}\rho_{2}}\).

Proposition 5

(Asymptotic behavior)

If a function L is slowly varying at infinity, then for \(a\geq0\) and \(t\rightarrow\infty\), we have

  1. (1)

    \(\int^{t}_{a}s^{\beta}L(s)\, ds\cong(\beta+1)^{-1}t^{1+\beta}L(t)\) for \(\beta>-1\);

  2. (2)

    \(\int^{\infty}_{t}s^{\beta}L(s)\, ds\cong(-\beta-1)^{-1}t^{1+\beta}L(t)\) for \(\beta<-1\).

Proposition 6

(Asymptotic behavior)

If a function H is slowly varying at infinity, then for \(a>0\) and \(t\rightarrow0^{+}\), we have

  1. (1)

    \(\int^{t}_{0}s^{\beta}H(s)\, ds\cong(\beta+1)^{-1}t^{1+\beta}H(t)\) for \(\beta>-1\);

  2. (2)

    \(\int^{\infty}_{t}s^{\beta}H(s)\, ds\cong(-\beta-1)^{-1}t^{1+\beta}H(t)\) for \(\beta<-1\).

2.2 Auxiliary results

In this section, we give some auxiliary results, which will be used in Theorems 1 and 2.

Lemma 1

[38, 40]

  1. (I)

    If \(k\in\Lambda\), then we have:

    1. (1)

      \(\lim_{t\rightarrow0+}\frac{K(t)}{k(t)}=0\);

    2. (2)

      \(C_{k}\in[0,1]\) and \(\lim_{t\rightarrow0+}\frac{K(t)k'(t)}{k^{2}(t)}=1-C_{k}\).

  2. (II)

    (k1)-(k3) implies that

    1. (3)

      \(\lim_{t\rightarrow0+} (\frac{K(t)k'(t)}{k^{2}(t)}-(1-C_{k}) )\frac{k(t)}{K(t)}=0\).

Lemma 2

[40]

Let f satisfy (f1), (f2), and (f3). Then

  1. (1)

    \(C_{f}\in[1,\infty)\);

  2. (2)

    there exists \(S_{0}>0\) such that \(\frac{f(s)}{s^{q}}\) is increasing in \([S_{0},\infty)\), where \(q\in(p-1,\frac{C_{f}}{C_{f}-1})\) for \(1< C_{f}<\frac{p-1}{p-2}\) and \(q\in(p-1,\infty)\) for \(C_{f}=1\);

  3. (3)

    f satisfies the Keller-Osserman condition

    $$ \int^{\infty}_{1}\frac{dt}{(p'F(t))^{\frac{1}{p}}}< \infty,\quad F(t)= \int ^{t}_{0}f(s)\, ds, $$
    (2.7)

    where \(\frac{1}{p'}+\frac{1}{p}=1\);

  4. (4)

    (f3) holds for \(C_{f} > 1\) if and only if \(f\in \mathit{NRV}_{\frac{C_{f}}{C_{f}-1}}\);

  5. (5)

    \(C_{f}=1\), and f is rapidly varying at infinity.

Lemma 3

Let f satisfy (f1)-(f3), and ϕ be the solution for the problem

$$\int^{\infty}_{\phi(t)}f^{-\frac{1}{p-1}}(s)\, ds=t, \quad \forall t>0. $$

Then we have

  1. (1)

    \(-\phi'(t)=f^{\frac{1}{p-1}}(\phi(t))\), \(\phi(t)>0\), \(t>0\), \(\phi (0):=\lim_{t\rightarrow0+}\phi(t)=+\infty\), \(\phi''(t)=\frac{1}{p-1}f^{\frac{2}{p-1}-1}(\phi(t))f'(\phi(t))\);

  2. (2)

    \(\lim_{t\rightarrow0+}\frac{t\phi'(t)}{\phi(t)}=-\frac {(p-1)(C_{f}-1)}{C_{f}-(p-1)(C_{f}-1)}\), i.e., \(\phi\in \mathit{NRVZ}_{-\frac{(p-1)(C_{f}-1)}{C_{f}-(p-1)(C_{f}-1)}}\);

  3. (3)

    \(\lim_{t\rightarrow0+}\frac{t\phi''(t)}{\phi'(t)}=-\frac {C_{f}}{C_{f}-(p-1)(C_{f}-1)}\), i.e., \(-\phi'\in \mathit{NRVZ}_{-\frac{C_{f}}{C_{f}-(p-1)(C_{f}-1)}}\);

  4. (4)

    \(\lim_{t\rightarrow0+}\frac{\ln(\phi(t))}{-\ln t}=\frac{(p-1)(C_{f}-1)}{C_{f}-(p-1)(C_{f}-1)}\), \(\lim_{t\rightarrow0+}\frac{\ln(\phi'(t))}{-\ln t}=\frac{(p-1)C_{f}}{C_{f}-(p-1)(C_{f}-1)}\).

Proof

(1) By the definition of ϕ and a direct calculation we can show (1).

(2) It follows from Proposition 5 that

$$\begin{aligned} \lim_{t\rightarrow0+}\frac{t\phi'(t)}{\phi(t)} = & -\lim_{t\rightarrow0+} \frac{t f^{\frac{1}{p-1}}(\phi(t))}{\phi(t)} \\ = & -\lim_{u\rightarrow\infty}\frac{(f(u))^{\frac{1}{p-1}}}{u} \int^{\infty }_{u}\frac{dv}{f^{\frac{1}{p-1}(v)}} \\ = & -\lim_{u\rightarrow\infty}u^{\frac{C_{f}}{(p-1)(C_{f}-1)}-1}\hat {L}^{\frac{1}{p-1}}(u) \int^{\infty}_{u}v^{-\frac{C_{f}}{(p-1)(C_{f}-1)}}\hat {L}^{-\frac {1}{p-1}}(v) \, dv \\ = & - \biggl(\frac{C_{f}}{(p-1)(C_{f}-1)}-1 \biggr)^{-1} \\ &{} \cdot\lim_{u\rightarrow\infty}u^{\frac{C_{f}}{(p-1)(C_{f}-1)}-1}\hat {L}^{\frac{1}{p-1}}(u) u^{-\frac{C_{f}}{(p-1)(C_{f}-1)}+1}\hat {L}^{-\frac{1}{p-1}}(u) \\ = & -\frac{(p-1)(C_{f}-1)}{C_{f}-(p-1)(C_{f}-1)}. \end{aligned}$$

(3) (f3) implies that

$$\begin{aligned} \lim_{t\rightarrow0+}\frac{t\phi''(t)}{\phi'(t)} = & -\frac{1}{p-1}\lim _{t\rightarrow0+}tf^{\frac{1}{p-1}-1}\bigl(\phi(t)\bigr)f'\bigl( \phi(t)\bigr) \\ = & -\frac{1}{p-1}\cdot\lim_{u\rightarrow\infty}f^{\frac{1}{p-1}-1}(u)f'(u) \int^{\infty}_{u}\frac{dv}{f^{\frac{1}{p-1}}(v)} \\ = & -\frac{1}{p-1}\cdot\lim_{u\rightarrow\infty}\frac{u f'(u)}{f(u)} \frac{f^{\frac{1}{p-1}}(u)}{u} \int^{\infty}_{u}\frac{dv}{f^{\frac{1}{p-1}}(v)} \\ = & -\frac{1}{p-1}\cdot\frac{(p-1)(C_{f}-1)}{C_{f}-(p-1)(C_{f}-1)}\cdot\frac {C_{f}}{C_{f}-1} \\ = & -\frac{C_{f}}{C_{f}-(p-1)(C_{f}-1)}. \end{aligned}$$

The last result (4) follows from (2)-(3) and Proposition 3(3). □

Lemma 4

Under the hypotheses in Theorem  2, let \(k\in\Lambda\) and

$$\Phi(t)=\bigl(K(t)\bigr)^{-\frac{2(p-1)}{m+1-p}}\bigl(1+h(t)\bigr) $$

with \(\lim_{t\rightarrow0}h(t)=0\). The following two results hold:

  1. (1)

    if \(m+1-p>2m_{1}\), then \(k(t)(K(t))^{\frac{(m+p-1)(p-1)}{m+1-p}}f_{1}(\Phi(t))\rightarrow0\) as \(t\rightarrow0\);

  2. (2)

    if \(m+1-p\leq2m_{1}\) and \(k(t)=t^{\frac{\theta}{2}}\) with \(\theta>0\) such that \(\frac{\theta}{2+\theta}>\frac{2m_{1}-(m+p-1)}{m+1-p}\), then (1) still holds.

Proof

We know that \(f_{1}\in \mathit{NRV}_{m_{1}}\) by (f4) with \(m_{1}\in(0,m)\) and \(f_{1}(s)=c_{0}s^{m_{1}}\hat {L}(s)\) for sufficiently large s, where is normalized slowly varying at infinity, and \(c_{0}>0\).

Let

$$\Phi_{1}(t)=\bigl(K(t)\bigr)^{-\frac{2(p-1)}{m+1-p}}. $$

We see that \(\hat {L}(\Phi_{1}(t))\) is also normalized slowly varying at zero, and by a similar argument as in Propositions 1 and 3(2), for every \(\beta>0\) and \(t\rightarrow0+\), we have

$$ \bigl(\Phi_{1}(t)\bigr)^{\beta} \hat {L}\bigl( \Phi_{1}(t)\bigr)\rightarrow0 \quad \mbox{and}\quad \hat {L}\bigl( \Phi(t)\bigr) \bigl(\hat {L}\bigl(\Phi _{1}(t)\bigr) \bigr)^{-1}\bigl(1+h(t)\bigr)^{m_{1}}\rightarrow 0. $$
(2.8)

(1) If \(m+1-p>2m_{1}\), let \(2\beta\in(0,m+p-1-2m_{1})\), then by (2.8) we have

$$\begin{aligned}& k(t) \bigl(K(t)\bigr)^{\frac{(m+p-1)(p-1)}{m+1-p}}f_{1}\bigl(\Phi(t)\bigr) \\& \quad = k(t) \bigl(K(t)\bigr)^{\frac{(m+p-1)(p-1)}{m+1-p}}c_{0}\bigl(\Phi (t) \bigr)^{m_{1}}\hat {L}\bigl(\Phi(t)\bigr) \\& \quad = c_{0}k(t) \bigl(K(t)\bigr)^{\frac{(m+p-1)(p-1)-2(p-1)m_{1}-2(p-1)\beta }{m+1-p}}\bigl( \Phi_{1}(t)\bigr)^{\beta} \hat {L}\bigl(\Phi_{1}(t) \bigr) \\& \qquad {}\cdot \hat {L}\bigl(\Phi(t)\bigr) \bigl(\hat {L}\bigl(\Phi _{1}(t)\bigr)\bigr)^{-1}\bigl(1+h(t)\bigr)^{m_{1}} \rightarrow0\quad \mbox{as } t\rightarrow0. \end{aligned}$$

(2) If \(m+1-p\leq2m_{1}\) and \(k(t)=t^{\frac{\theta}{2}}\) with \(\theta>0 \) such that \(\frac{\theta}{2+\theta}>\frac{2m_{1}-(m+p-1)}{m+1-p}\) and \(\frac{2(p-1)m_{1}}{m+1-p}\in(0,\frac{\theta}{2+\theta}-\frac {2m_{1}-(m+p-1)}{m+1-p})\), then we get

$$\begin{aligned}& k(t) \bigl(K(t)\bigr)^{\frac{(m+p-1)(p-1)}{m+1-p}}f_{1}\bigl(\Phi(t)\bigr) \\& \quad = ct^{\sigma}\bigl(\Phi_{1}(t)\bigr)^{\beta} \hat {L}\bigl(\Phi_{1}(t)\bigr) \hat {L}\bigl(\Phi(t)\bigr) \bigl( \hat {L}\bigl(\Phi _{1}(t)\bigr)\bigr)^{-1}\bigl(1+h(t) \bigr)^{m_{1}}\rightarrow0 \quad \mbox{as } t\rightarrow0, \end{aligned}$$

where

$$\begin{aligned}& c=c_{0}\biggl(\frac{\theta+2}{2}\biggr)^{\frac{(p-1)(2m_{1}+2\beta-m+1-p)}{m+1-p}}, \\& \sigma=\frac{\theta(m+1-p)-(2+\theta)(p-1)(2m_{1}+2\beta-m+1-p)}{2(m+1-p)}>0. \end{aligned}$$

 □

3 Proofs of main results

In this section, we mainly prove Theorem 1 and Theorem 2. For the proofs, we use the upper and lower solution method. One critical step is to set up the comparison principle. Thus, we first give the comparison principle in general form for quasilinear elliptic equations.

Lemma 5

[54]

Suppose that D is a bounded domain in \(R^{N}\) and \(a(x)\) and \(\beta(x)\) are continuous functions on D with \(\|a\|_{L^{\infty}(D)}<\infty\), \(\beta(x)\geq0\), \(\beta(x)\neq0\) for \(x\in D\). Let \(u_{1}, u_{2}\in C^{1}(D)\) be positive in D and satisfy in the sense of distributions

$$\begin{aligned}& -\Delta_{p}u_{1}-a(x)u_{1}^{p-1}+ \beta(x)g(u_{1})\geq0\geq-\Delta _{p}u_{2}-a(x)u_{2}^{p-1}+ \beta(x)g(u_{2}), \\ & \varlimsup_{d(x,\partial\Omega)\rightarrow 0}\bigl(u_{2}^{p-1}-u_{1}^{p-1} \bigr)\leq0, \end{aligned}$$

where \(g\in C^{0}([0,\infty))\), and \(\frac{g(s)}{s^{p-1}}\) is increasing for

$$s\in \Bigl(\inf_{D}\{u_{1},u_{2}\}, \sup_{D}\{u_{1},u_{2}\} \Bigr). $$

Then \(u_{1}\geq u_{2}\) in D.

Next, fix \(\epsilon>0\). For all \(\delta>0\), we define \(\Omega_{\delta}=\{x\in\Omega:0< d(x)<\delta\}\). Since Ω is smooth, there exists \(\delta_{0}>0\) such that \(d\in C^{2}(\Omega_{\delta_{0}})\) and

$$ \bigl\vert \nabla d(x)\bigr\vert =1,\qquad \Delta d(x)=-(N-1)H( \overline{x})d(x)+o(1),\quad \forall x\in \Omega_{\delta_{0}}. $$
(3.1)

Proof of Theorem 1

Let \(\epsilon\in(0,\frac{b_{0}}{4})\) and \(\gamma_{1}=\gamma-\frac{2\epsilon\gamma}{b_{0}}\), \(\gamma_{2}=\gamma+\frac{2\epsilon\gamma}{b_{0}}\). We have

$$\frac{\gamma}{2}< \gamma_{1}< \gamma< \gamma_{2}< 2\gamma. $$

Set

$$\begin{aligned}& d_{1}(x)=d(x)-\rho, \qquad d_{2}(x)=d(x)+ \rho, \end{aligned}$$
(3.2)
$$\begin{aligned}& \overline{u}_{\epsilon}=\phi\bigl(\gamma_{1} K^{2} \bigl(d_{1}(x)\bigr)\bigr),\quad x\in D^{-}_{\rho} \quad \mbox{and}\quad \underline{u}_{\epsilon}=\phi\bigl( \gamma_{2} K^{2}\bigl(d_{2}(x)\bigr)\bigr),\quad x\in D^{+}_{\rho}. \end{aligned}$$
(3.3)

Then, for \(x\in D^{-}_{\rho}\),

$$\begin{aligned} \begin{aligned} &\Delta_{p}\overline{u}_{\epsilon}-b(x)f(\overline{u}_{\epsilon}) \\ &\quad = (p-1) \bigl\vert 2\gamma_{1}\phi'\bigl(\gamma _{1}K^{2}\bigl(d_{1}(x)\bigr)\bigr)K \bigl(d_{1}(x)\bigr)k\bigl(d_{1}(x)\bigr)\bigr\vert ^{p-2} \\ &\qquad {}\cdot (\phi''\bigl(\gamma_{1}K ^{2}\bigl(d_{1}(x)\bigr)\bigr)4\gamma_{1}^{2}K ^{2}\bigl(d_{1}(x)\bigr)k^{2} \bigl(d_{1}(x)\bigr) \\ &\qquad {}+\phi'\bigl(\gamma_{1}K ^{2} \bigl(d_{1}(x)\bigr)\bigr)2\gamma_{1}k^{2} \bigl(d_{1}(x)\bigr)+\phi'\bigl(\gamma_{1}K ^{2}\bigl(d_{1}(x)\bigr)\bigr)2\gamma_{1}K \bigl(d_{1}(x)\bigr)k'\bigl(d_{1}(x)\bigr) \\ &\qquad {}+2\gamma_{1}\phi'\bigl(\gamma_{1}K ^{2}\bigl(d_{1}(x)\bigr)\bigr)K\bigl(d_{1}(x) \bigr)k\bigl(d_{1}(x)\bigr)\Delta d(x) ) \\ &\qquad {}-b_{0}K^{p-2}\bigl(d_{1}(x) \bigr)k^{p}\bigl(d_{1}(x)\bigr) f\bigl(\phi\bigl( \gamma_{1}K^{2}\bigl(d_{1}(x)\bigr)\bigr)\bigr) \\ &\quad = (p-1) (2\gamma_{1})^{p-2}f\bigl(\phi\bigl(\gamma _{1}K^{2}\bigl(d_{1}(x)\bigr)\bigr) \bigr)K^{p-2}\bigl(d_{1}(x)\bigr)k^{p} \bigl(d_{1}(x)\bigr) \\ &\qquad {}\cdot \biggl(4\gamma_{1} \biggl(\frac{\gamma_{1}K^{2}(d_{1}(x))\phi''(\gamma _{1}K^{2}(d_{1}(x)))}{-\phi'(\gamma_{1}K^{2}(d_{1}(x)))}- \frac{C_{f}}{C_{f}-(p-1)(C_{f}-1)} \biggr) \\ &\qquad {}-2\gamma_{1} \biggl(\frac {K(d_{1}(x))k'(d_{1}(x))}{k^{2}(d_{1}(x))}-(1-C_{k}) \biggr)-2\gamma _{1}\frac{K(d_{1}(x))}{k(d_{1}(x))}\Delta d(x) \\ &\qquad {}- \biggl(\frac{1}{(2\gamma_{1})^{p-2}(p-1)}\frac {b(x)}{K^{p-2}(d_{1}(x))k^{p}(d_{1}(x))}-\frac{b_{0}}{(2\gamma _{1})^{p-2}(p-1)} \biggr) \\ &\qquad {}-\frac{b_{0}}{(2\gamma_{1})^{p-2}(p-1)}+\frac{4\gamma _{1}C_{f}}{C_{f}-(p-1)(C_{f}-1)}-2\gamma_{1}(1-C_{k})-2 \gamma_{1} \biggr). \end{aligned} \end{aligned}$$

By (b1), (b2), and Lemmas 1-3 we see that there exists \(\delta_{\epsilon}\in(0,\frac{\delta_{0}}{2})\) sufficiently small such that

(r1):

\((b_{0}-\epsilon)K^{p-2}(d(x)-\rho)k^{p}(d(x)-\rho)\leq(b_{0}-\epsilon )K^{p-2}(d(x))k^{p}(d(x))< b(x)\), \(x\in D^{-}_{\rho}=\Omega_{2\delta_{\epsilon}}/\overline{\Omega}_{\rho}\); \(b(x)<(b_{0}+\epsilon)K^{p-2}(d(x))k^{p}(d(x))\leq(b_{0}+\epsilon )K^{p-2}(d(x)+\rho)k^{p}(d(x)+\rho) \), \(x\in D^{+}_{\rho}=\Omega_{2\delta_{\epsilon}-{\rho}}\), where \(\rho\in(0,\delta_{\epsilon})\),

(r2):
$$\begin{aligned}& 4\gamma\biggl\vert \gamma_{1}\frac{K^{2}(t)\phi''(\gamma_{1}K^{2}(t))}{\phi '(\gamma_{1}K^{2}(t))} -\frac{C_{f}}{C_{f}-(p-1)(C_{f}-1)} \biggr\vert +2\gamma\biggl\vert \frac {K(t)k'(t)}{k^{2}(t)}-(1-C_{k})\biggr\vert \\& \quad {}+2\gamma\frac{K(t)}{k(t)}\bigl\vert \Delta d(x)\bigr\vert < \epsilon, \quad \forall(x,t)\in \Omega_{2\delta_{\epsilon}}\times(0,2\delta_{\epsilon}), \end{aligned}$$

and by the value of \(\gamma_{1}\) in Theorem 1,

$$-\frac{b_{0}}{(2\gamma_{1})^{p-2}(p-1)}+\frac{4\gamma _{1}C_{f}}{C_{f}-(p-1)(C_{f}-1)}-2\gamma_{1}(1-C_{k})-2 \gamma_{1}=0. $$

Then

$$\Delta_{p}\overline{u}_{\epsilon}-b(x)f(\overline{u}_{\epsilon}) \leq0, $$

i.e., \(\overline{u}_{\epsilon}\) is a supersolution of Eq. (1.1) in \(D^{-}_{\rho}\).

Similarly, we can show that \(\underline{u}_{\epsilon}\) is a subsolution of Eq. (1.1) in \(D^{+}_{\rho}\).

Now let u be an arbitrary solution of problem (1.1) and \(C_{1}(\delta_{\epsilon}):=\max_{d(x)\geq \delta_{\epsilon}}u(x)\). We see that

$$u\leq C_{1}(\delta_{\epsilon})+\overline{u}_{\epsilon} \quad \mbox{on } \partial D^{-}_{\rho}. $$

Since ϕ is decreasing and \(\gamma_{1}>\gamma\), we have

$$\underline{u}_{\epsilon}\leq\phi\bigl(\gamma K(2\delta_{\epsilon }) \bigr):=C_{2}(\delta_{\epsilon}) \quad \mbox{whenever } d(x)=2 \delta _{\epsilon}-\rho $$

and

$$\underline{u}_{\epsilon}\leq u+C_{2}(\delta_{\epsilon}) \quad \mbox{on } \partial D^{+}_{\rho}. $$

It follows by (f1) and Lemma 5 that

$$ u\leq C_{1}(\delta_{\epsilon})+\overline{u}_{\epsilon},\quad x\in D^{-}_{\rho} \quad \mbox{and} \quad \underline{u}_{\epsilon} \leq u+C_{2}(\delta_{\epsilon}), \quad x\in D^{+}_{\rho}. $$
(3.4)

Hence, letting \(\rho\rightarrow0\), we have, for \(x\in D^{-}_{\rho}\cap D^{+}_{\rho}\),

$$1-\frac{C_{2}(\delta_{\epsilon})}{\phi(\gamma_{2}K^{2}(d(x)))}\leq\frac {u(x)}{\phi(\gamma_{2}K^{2}(d(x)))} $$

and

$$\frac{u(x)}{\phi(\gamma_{1}K^{2}(d(x)))}\leq1+\frac{C_{1}(\delta _{\epsilon})}{\phi(\gamma_{1})K^{2}(d(x))}. $$

Consequently,

$$1\leq\liminf_{d(x)\rightarrow0}\frac{u(x)}{\phi(\gamma_{2}K^{2}(d(x)))} \quad \mbox{and} \quad \limsup_{d(x)\rightarrow0}\frac{u(x)}{\phi(\gamma _{1}K^{2}(d(x)))}\leq 1. $$

Thus, letting \(\epsilon\rightarrow0\), we have

$$1\leq\liminf_{d(x)\rightarrow0}\frac{u(x)}{\phi(\gamma K^{2}(d(x)))} \quad \mbox{and} \quad \limsup_{d(x)\rightarrow0}\frac {u(x)}{\phi(\gamma K^{2}(d(x)))}\leq1, $$

that is,

$$\lim_{d(x)\rightarrow0}\frac{u(x)}{\phi(\gamma K^{2}(d(x)))}=1. $$

The proof is complete. □

Proof of Theorem 2

Let \(\epsilon\in(0,1)\) and

$$\begin{aligned}& \overline{u}_{\epsilon}=C_{1}\bigl(K\bigl(d_{1}(x) \bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac {K(d_{1}(x))}{k(d_{1}(x))} \biggr),\quad x\in D^{-}_{\rho}, \\& \underline{u}_{\epsilon}=C_{1}\bigl(K\bigl(d_{1}(x) \bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})- \epsilon\bigr)\frac {K(d_{2}(x))}{k(d_{2}(x))} \biggr),\quad x\in D^{+}_{\rho}. \end{aligned}$$

Using Lemma 4 and a direct calculation we see that, for \(x\in D^{-}_{\rho}\),

$$\begin{aligned}& K^{p-2}\bigl(d_{1}(x)\bigr)k^{p} \bigl(d_{1}(x)\bigr)f\bigl(\overline{u}_{\epsilon}(x)\bigr) \\& \quad = K^{p-2}\bigl(d_{1}(x)\bigr)k^{p} \bigl(d_{1}(x)\bigr) \bigl(\overline{u}^{m}_{\epsilon}(x) \pm c_{0}\overline{u}^{m_{1}}_{\epsilon}(x)\hat {L} \bigl(\overline {u}_{\epsilon}(x)\bigr)\bigr) \\& \quad = K^{p-2}\bigl(d_{1}(x)\bigr)k^{p} \bigl(d_{1}(x)\bigr) \\& \qquad {}\cdot \biggl[ C_{1}^{m}\bigl(K\bigl(d_{1}(x) \bigr)\bigr)^{-\frac{2m(p-1)}{m+1-p}} \biggl(1+mC_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac {K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\& \qquad {}\pm c_{0}C^{m_{1}}_{1}\bigl(K \bigl(d_{1}(x)\bigr)\bigr)^{-\frac{2m_{1}(p-1)}{m+1-p}}\hat {L}\bigl( \overline{u}_{\epsilon}(x)\bigr) \\& \qquad {}\cdot \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon \bigr)\frac {K(d_{1}(x))}{k(d_{1}(x))} \biggr)^{m_{1}} \biggr] \\& \quad = K^{p-2}\bigl(d_{1}(x)\bigr)k^{p-1} \bigl(d_{1}(x)\bigr) \bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac {2m(p-1)}{m+1-p}+1} \\& \qquad {}\cdot \biggl[C_{1}^{m}\frac {k(d_{1}(x))}{K(d_{1}(x))}+mC_{1}^{m}C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr) \\& \qquad {}\pm\bigl(K\bigl(d_{1}(x)\bigr)\bigr)^{-\frac{2(m_{1}+m)(p-1)}{m+1-p}-1}k(t) \hat {L}\bigl(\overline{u}_{\epsilon}(x)\bigr) \\& \qquad {}\cdot \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon \bigr)\frac {K(d_{1}(x))}{k(d_{1}(x))} \biggr)^{m_{1}} \biggr] \end{aligned}$$

and

$$\begin{aligned}& |\nabla\overline{u}_{\epsilon}| = \bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac{m+p-1}{m+1-p}}k\bigl(d_{1}(x)\bigr)\nabla d(x) \\& \hphantom{|\nabla\overline{u}_{\epsilon}|={}}{}\cdot \biggl(1+C_{2}(N-1) (H\overline{x}+\epsilon) \frac {K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\& \hphantom{|\nabla\overline{u}_{\epsilon}|={}}{}+{\biggl. C_{1}\bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac{2(p-1)}{m+1-p}}C_{2}(N-1) \bigl(H(\overline {x}+\epsilon)\bigr) \frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}}\nabla d(x), \\& \Delta _{p}\overline{u}_{\epsilon} = (p-1)|\nabla \overline{u}_{\epsilon}|^{p-2} \times \biggl[\frac{2(p-1)(m+p-1)}{(m+1-p)^{2}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot\bigl(K\bigl(d_{1}(x)\bigr)\bigr)^{-\frac{m+p-1}{m+1-p}-1}k^{2} \bigl(d_{1}(x)\bigr) \biggl(1+C_{2}(N-1) \bigl(H( \overline{x})+\epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} \bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac{m+p-1}{m+1-p}}k'\bigl(d_{1}(x)\bigr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{} \cdot \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} \bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac{m+p-1}{m+1-p}}k\bigl(d_{1}(x)\bigr)\Delta d(x) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{4(p-1)C_{1}}{(m+1-p)} \bigl(K\bigl(d_{1}(x)\bigr) \bigr)^{-\frac{m+p-1}{m+1-p}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot {\biggl.k\bigl(d_{1}(x)\bigr)C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr)\frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+{\biggl.C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr) \bigl(K\bigl(d_{1}(x)\bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \frac{d^{2}}{dt^{2}} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr) \bigl(K\bigl(d_{1}(x)\bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \frac{d}{dt} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot {\biggl.\biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \Delta d(x) \biggr] \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon}}= (p-1) \biggl(\frac{2(p-1)C_{1}}{m+1-p} \biggr)^{p-2}\bigl(K \bigl(d_{1}(x)\bigr)\bigr)^{-\frac{(p-1)(p-2)+mp}{m+1-p}}k^{p} \bigl(d_{1}(x)\bigr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot \biggl[\frac{2(p-1)(m+p-1)C_{1}}{(m+1-p)^{2}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+\frac{2(p-1)(m+p-1)C_{1}C_{2}}{(m+1-p)^{2}} (N-1) \bigl(H(\overline{x})+\epsilon\bigr) \frac{K(d_{1}(x))}{k(d_{1}(x))} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} \biggl(\frac{K(d_{1}(x))k'(d_{1}(x))}{k^{2}(d_{1}(x))}-(1-C_{k}) \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} \biggl(\frac{K(d_{1}(x))k'(d_{1}(x))}{k^{2}(d_{1}(x))}-(1-C_{k}) \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot C_{2}(N-1) \bigl(H(\overline{x})+\epsilon \bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} (1-C_{k}) \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}}{(m+1-p)} \frac{K(d_{1}(x))}{k(d_{1}(x))}\Delta d(x) \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr) \frac{K(d_{1}(x))}{k(d_{1}(x))} \biggr) \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-{\biggl.\frac{4(p-1)C_{1}C_{2}}{(m+1-p)} \frac{K(d_{1}(x))}{k(d_{1}(x))} (N-1) \bigl(H( \overline{x})+\epsilon\bigr) \biggl(\frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \\ & \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-C_{k}+C_{k}\biggr) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+{\biggl.C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K^{2}(d_{1}(x))}{k^{2}(d_{1}(x))} \frac{d^{2}}{dt^{2}} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+{\biggl.C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \frac{d}{dt} \biggl(\frac{K^{2}(t)}{k^{2}(t)} \biggr) \biggr|_{t=d_{1}(x)}}\Delta d(x) \biggr] \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon}}= (p-1) \biggl(\frac{2(p-1)C_{1}}{m+1-p} \biggr)^{p-2}\bigl(K \bigl(d_{1}(x)\bigr)\bigr)^{-\frac {(p-1)(m+p-1)}{m+1-p}}k^{p-1} \bigl(d_{1}(x)\bigr) \biggl[\frac{k(d_{1}(x))}{K(d_{1}(x))} \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot \biggl(\frac{2(p-1)(m+p-1)C_{1}}{(m+1-p)^{2}}-\frac {2(p-1)C_{1}}{(m+1-p)}(1-C_{k}) \biggr) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr) \biggl(\frac{2(p-1)(m+p-1)}{(m+1-p)^{2}}-\frac{2(p-1)}{(m+1-p)}(1-C_{k}) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{4(p-1)C_{k}}{(m+1-p)} \biggr) -\frac{2(p-1)C_{1}}{(m+1-p)} \Delta d(x)-\frac{2(p-1)C_{1}}{(m+1-p)} \biggl(\frac{K(d_{1}(x))k'(d_{1}(x))}{k^{2}(d_{1}(x))} \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-(1-C_{k}) \biggr) \frac{k(d_{1}(x))}{K(d_{1}(x))}- \frac{2(p-1)C_{1}C_{2}}{(m+1-p)} \biggl(\frac{K(d_{1}(x))k'(d_{1}(x))}{k^{2}(d_{1}(x))}-(1-C_{k}) \biggr) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot(N-1) \bigl(H(\overline{x})+\epsilon\bigr) - \frac{4(p-1)C_{1}C_{2}}{(m+1-p)} (N-1) \bigl(H(\overline{x})+\epsilon\bigr) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}\cdot {\biggl.\biggl(\frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}}-C_{k} \biggr) \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}-\frac{2(p-1)C_{1}C_{2}}{(m+1-p)} \Delta d(x) (N-1) \bigl(H( \overline{x})+\epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+{\biggl.C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \frac{d^{2}}{dt^{2}} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}} \\& \hphantom{\Delta _{p}\overline{u}_{\epsilon} ={}}{}+{\biggl.C_{1}C_{2}(N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(d_{1}(x))}{k(d_{1}(x))} \frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \biggr|_{t=d_{1}(x)}}\Delta d(x) \biggr]. \end{aligned}$$

By the value of \(C_{1}\), \(C_{2}\) from Theorem 2 and (3.1) we know that

$$\begin{aligned}& \frac{2(p-1)(m +p-1)C_{1}}{(m+1-p)^{2}}-\frac{2(p-1)C_{1}(1-C_{k})}{(m+1-p)}= \frac{C_{1}^{m}}{p-1}\biggl( \frac{2(p-1)C_{1}}{m+1-p}\biggr)^{-(p-2)}, \\& \frac{2(p-1)(m +p-1)C_{1}C_{2}}{(m+1-p)^{2}}-\frac{2(p-1)C_{1}C_{2}(1-C_{k})}{(m+1-p)}- \frac{4(p-1)C_{1}C_{2}C_{k}}{(m+1-p)} \\& \quad {}+\frac{2(p-1)C_{1}}{(m+1-p)}=\frac{mC_{1}^{m}C_{2}}{p-1}\biggl(\frac {2(p-1)C_{1}}{m+1-p} \biggr)^{-(p-2)}, \end{aligned}$$

and by Lemmas 1 and 4 we get that there exists \(\delta_{\epsilon}\in(0,\frac{\delta}{2})\) sufficiently small such that, for \((x,t)\in\Omega_{2\delta_{\epsilon}}\times(0,2\delta_{\epsilon})\),

$$\begin{aligned}& -\frac{2(p-1)C_{1}}{(m+1-p)} \biggl(\frac{K(t)k'(t)}{k^{2}(t)}-(1-C_{k}) \biggr) \frac{k(t)}{K(t)} \\& \qquad {} -\frac{2(p-1)C_{1}C_{2}}{(m+1-p)} \biggl(\frac{K(t)k'(t)}{k^{2}(t)}-(1-C_{k}) \biggr) \\& \qquad {}\cdot(N-1) \bigl(H(\overline{x})+\epsilon\bigr)-\frac{4(p-1)C_{1}C_{2}}{(m+1-p)}(N-1) \bigl(H(\overline{x})+\epsilon\bigr) \biggl(\frac{d}{dt} \biggl( \frac{K(t)}{k(t)} \biggr)-C_{k} \biggr) \\& \qquad {}-\frac{2(p-1)C_{1}C_{2}}{(m+1-p)} \Delta d(x) (N-1) \bigl(H(\overline{x})+ \epsilon\bigr)\frac{K(t)}{k(t)} \\& \qquad {}+C_{1}C_{2}(N-1) \bigl(H(\overline{x})+\epsilon \bigr)\frac{K(t)}{k(t)} \frac{d^{2}}{dt^{2}} \biggl(\frac{K(t)}{k(t)} \biggr) \\& \qquad {}+C_{1}C_{2}(N-1) \bigl(H(\overline{x})+\epsilon \bigr)\frac{K(t)}{k(t)} \frac{d}{dt} \biggl(\frac{K(t)}{k(t)} \biggr) \Delta d(x)\mp\frac{c_{0}C^{m}_{1}}{p-1}\biggl(\frac{2(p-1)C_{1}}{m+1-p}\biggr)^{-(p-2)} \\& \qquad {}\cdot \bigl(K(t)\bigr)^{-\frac{2(m_{1}+m)(p-1)}{m+1-p}-1}k(t)\hat {L}\bigl(\Phi(t)\bigr) \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr) \frac{K(t)}{k(t)} \biggr)^{m_{1}} \\& \quad \leq\frac{C_{1}(N-1)}{m+1-p}\epsilon, \end{aligned}$$

where \(\Phi(t)\) is given in Lemma 4 with \(h(t)=\pm C_{2}(N-1)(H(\overline{x})+1)\frac{K(t)}{k(t)}\).

Thus, for \(x\in D^{-}_{\rho}\), we have

$$\begin{aligned}& \Delta_{p}\overline{u}_{\epsilon }(x)-K^{p-2} \bigl(d_{1}(x)\bigr)k^{p}\bigl(d_{1}(x)\bigr)f\bigl( \overline{u}_{\epsilon}(x)\bigr) \\& \quad \leq (p-1) \biggl(\frac{2(p-1)C_{1}}{m+1-p} \biggr)^{p-2}\bigl(K \bigl(d_{1}(x)\bigr)\bigr)^{-\frac {(p-1)(m+p-1)}{m+1-p}} \\& \qquad {}\cdot k^{p-1}\bigl(d_{1}(x)\bigr) \biggl(- \frac{2C_{1}(N-1)}{m+1-p}\epsilon+\frac{C_{1}(N-1)}{m+1-p}\epsilon\biggr) \\& \quad \leq 0, \end{aligned}$$

i.e., \(\overline{u}_{\epsilon}(x)\) is a supersolution of Eq. (1.1) in \(D^{-}_{\rho}\).

Similarly, we can show that \(\underline{u}_{\epsilon}\) is a subsolution of Eq. (1.1) in \(D^{+}_{\rho}\).

By (3.4) and letting \(\rho\rightarrow0\), we have that, for \(x\in D^{-}_{\rho}\cap D^{+}_{\rho}\),

$$\begin{aligned}& C_{1}\bigl(K\bigl(d(x)\bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})+\epsilon\bigr) \frac{K(d(x))}{k(d(x))} \biggr)+C_{1}(\delta_{\epsilon})\geq u(x), \end{aligned}$$
(3.5)
$$\begin{aligned}& C_{1}\bigl(K\bigl(d(x)\bigr)\bigr)^{-\frac{2(p-1)}{m+1-p}} \biggl(1+C_{2}(N-1) \bigl(H(\overline{x})-\epsilon\bigr) \frac{K(d(x))}{k(d(x))} \biggr)-C_{2}(\delta_{\epsilon})\leq u(x). \end{aligned}$$
(3.6)

The proof is complete. □