1 Introduction

Bernstein type rational functions are defined and studied by Balázs in 1975 as follows (see [6]):

R n (f;x)= 1 ( 1 + a n x ) n k = 0 n f ( k b n ) ( n k ) ( a n x ) k (n=1,2,),

where f is a real- and single-valued function defined on the interval \([ 0,\infty)\), \(a_{n}\) and \(b_{n}\) are real numbers which are appropriately selected and do not depend on x. Later in 1982 Balázs and Szabados together improved the estimate in [7] by choosing appropriate \(a_{n}\) and \(b_{n}\) under some restrictions for \(f ( x )\).

Several q-generalizations of Balázs–Szabados operators have been recently studied by Hamal and Sabancigil [14], Doğru [10], and Özkan [31]. Approximation properties of the q-Balázs–Szabados complex operators were studied by Mahmudov in [21] and by Ispir and Özkan in [16]. The Balázs–Szabados operator based on the q-integers were defined by Mahmudov in [21] as follows:

R n , q (f,x)= 1 ( 1 + a n x ) n k = 0 n f ( [ k ] q b n ) [ n k ] q ( a n x ) k s = 0 n k 1 ( 1 + ( 1 q ) [ s ] q a n x ) ,
(1)

where \(q > 0\), \([ n ]_{q} = 1 + q + q^{2} + \cdots + q^{n - 1}\), \(f: [ 0,\infty ) \to \mathbb{R}\), \(a_{n} = [ n ]_{q}^{\beta - 1}\), \(b_{n} = [ n ]_{q}^{\beta }\),

$$ 0 < \beta \le \frac{2}{3},\qquad n \in \mathbb{N}, \quad \text{and}\quad x \ne - \frac{1}{a_{n}}. $$

On the other hand, the rapid rise of \(( p,q ) \)-calculus has led to the discovery of new generalizations. Recently, Mursaleen et al. introduced and studied \(( p,q ) \)-analogue of Bernstein operators, \(( p,q ) \)-analogue of Bernstein–Stancu operators, Bernstein–Kantorovich operators based on \(( p,q ) \)-calculus, \(( p,q ) \)-Lorentz polynomials on a compact disc, Bleimann–Butzer–Hahn operators defined by \(( p,q ) \)-integers and \(( p,q ) \)-analogue of two parametric Stancu–Beta operators (see [2430]). \(( p,q ) \)-generalization of Szász–Mirakyan operators was studied by Acar (see [1]), Kantorovich modification of \(( p,q ) \)-Bernstein operators was studied by Acar and Aral, see [2]. A generalization of q-Balázs–Szabados operators based on \(( p,q ) \)-integers was studied by Özkan and İspir in [32].

In this paper, we study some approximation properties for the new \(( p,q ) \)-analogue of Balázs–Szabados operators, and we prove a Voronovskaja type theorem. In [32], the authors gave the central moments without any estimations; in this paper we also give the estimation of central moments in detail. Before stating the results for these operators, we give some notations and definitions of \(( p,q ) \)-calculus. For any \(p > 0\), \(q > 0\), nonnegative integer n, the \(( p,q ) \)-integer of the number n is defined as

$$ [ n ]_{p,q} = p^{n - 1} + p^{n - 2}q + p^{n - 3}q^{2} + \cdots + pq^{n - 2} + q^{n - 1} = \textstyle\begin{cases} \frac{p^{n} - q^{n}}{p - q} &\text{if } p \ne q \ne 1, \\ np^{n - 1}& \text{if }p = q \ne 1, \\ [ n ]_{q}& \text{if }p = 1, \\ n& \text{if }p = q = 1. \end{cases} $$

It can be easily seen that \([ n ]_{p,q} = p^{n ( n - 1 ) / 2} [ n ]_{\frac{q}{p}} \).

\(( p,q ) \)-factorial is defined by

$$ [ n ]_{p,q}! = \prod_{k = 1}^{n} [ k ]_{p,q},\quad n \ge 1 \quad \text{and} \quad [ 0 ]_{p,q}! = 1, $$

and \(( p,q ) \)-binomial coefficient is defined by

[ n k ] p , q = [ n ] p , q ! [ k ] p , q ! [ n k ] p , q ! ,0kn,

the formula of \(( p,q ) \)-binomial expansion is defined by

$$\begin{aligned} ( ax + by )_{p,q}^{n} =& \sum_{k = 0}^{n} p^{\frac{(n - k)(n - k - 1)}{2}}q^{\frac{k(k - 1)}{2}}a^{n - k}b^{k}x^{n - k}y^{k} \\ =& ( ax + by ) ( pax + qby ) \bigl( p^{2}ax + q^{2}by \bigr)\cdots \bigl( p^{n - 1}ax + q^{n - 1}by \bigr), \end{aligned}$$

and

$$ ( x - y )_{p,q}^{n} = ( x - y ) ( px - qy ) \bigl( p^{2}x - q^{2}y \bigr) \bigl( p^{3}x - q^{3}y \bigr)\cdots \bigl( p^{n - 1}x - q^{n - 1}y \bigr). $$

From \(( p,q ) \)-binomial expansion, we can see that

k = 0 n p k ( k 1 ) / 2 [ n k ] p , q x k ( 1 x ) p , q n k = p n ( n 1 ) / 2 ,x[0,1].
(2)

2 Operators and estimation of moments

Definition 1

Let \(0 < q < p \le 1\), we introduce a new \(( p,q ) \)-analogue of Balázs–Szabados operators by

R n , p , q ( f , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) / 2 f ( p n k [ k ] p , q b n ) ( a n x 1 + a n x ) k × j = 0 n k 1 ( p j q j a n x 1 + a n x ) ,

where \(a_{n} = [ n ]_{p,q}^{\beta - 1}\), \(b_{n} = [ n ]_{p,q}^{\beta }\), \(0 < \beta \le \frac{2}{3}\), \(n \in \mathbb{N}\), \(x \ge 0\), f is a real-valued function defined on \([ 0,\infty )\).

Note that in the case \(p = 1\) these polynomials reduce to Mahmudov’s q-Balázs–Szabados operator which is defined by (1). Also we consider the following two cases:

case (i) If \(0 < p < q \le 1\) or \(1 \le p < q < \infty \), then the positivity of the operators fails.

case (ii) If \(1 \le q < p < \infty \), then approximation by the new operators becomes difficult because if p is large enough, then \(R_{n,p,q}\) may diverge, so in this paper we study approximation properties of the operators for \(0 < q < p \le 1\).

Moments and central moments play an important role in the approximation theory. In the following lemma, we calculate the first five moments of our operators; in other words, we find formulas for \(R_{n,p,q} ( t^{m},x )\) for \(m = 0, 1, 2, 3, 4\).

Lemma 2

For all \(n \in \mathbb{N}\), \(x \in [ 0,\infty )\) and \(0 < q < p \le 1\), we have the following equalities:

$$\begin{aligned}& R_{n,p,q} ( 1,x ) = 1, \end{aligned}$$
(3)
$$\begin{aligned}& R_{n,p,q} ( t,x ) = \frac{x}{1 + a_{n}x}, \end{aligned}$$
(4)
$$\begin{aligned}& R_{n,p,q} \bigl( t^{2},x \bigr) = \frac{p^{n - 1}}{a_{n}b_{n}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr) + \frac{q [ n - 1 ]_{p,q}}{a_{n}b_{n}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{2}, \end{aligned}$$
(5)
$$\begin{aligned}& R_{n,p,q} \bigl( t^{3},x \bigr) = \frac{p^{2 ( n - 1 )}}{a_{n}b_{n}^{2}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr) + \frac{ ( 2 + \frac{q}{p} )p^{n - 1}q [ n - 1 ]_{p,q}}{a_{n}b_{n}^{2}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{2} \\& \hphantom{ R_{n,p,q} ( t^{3},x ) =}{}+ \frac{q^{3} [ n - 1 ]_{p,q} [ n - 2 ]_{p,q}}{a_{n}b_{n}^{2}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{3}, \end{aligned}$$
(6)
$$\begin{aligned}& R_{n,p,q} \bigl( t^{4},x \bigr) = \frac{p^{3 ( n - 1 )}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr) + \frac{ ( 3 + \frac{3q}{p} + \frac{q^{2}}{p^{2}} )p^{2 ( n - 1 )}q [ n - 1 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{2} \\& \hphantom{R_{n,p,q} ( t^{4},x ) =}{} + \frac{ ( 3 + 2\frac{q}{p^{3}} + \frac{q^{2}}{p^{2}} )p^{n - 1}q^{3} [ n - 1 ]_{p,q} [ n - 2 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{3} \\& \hphantom{R_{n,p,q} ( t^{4},x ) =}{}+ \frac{q^{6} [ n - 1 ]_{p,q} [ n - 2 ]_{p,q} [ n - 3 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{4}. \end{aligned}$$
(7)

Proof

R n , p , q ( 1 , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) / 2 ( a n x 1 + a n x ) k j = 0 n k 1 ( p j q j a n x 1 + a n x ) = 1 , R n , p , q ( t , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) / 2 ( p n k [ k ] p , q b n ) ( a n x 1 + a n x ) k R n , p , q ( t , x ) = × s = 0 n k 1 ( p s q s a n x 1 + a n x ) R n , p , q ( t , x ) = 1 a n 1 p ( n 1 ) ( n 2 ) / 2 k = 0 n 1 [ n 1 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 1 R n , p , q ( t , x ) = × s = 0 n k 2 ( p s q s a n x 1 + a n x ) R n , p , q ( t , x ) = x 1 + a n x , R n , p , q ( t 2 , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) 2 ( p n k [ k ] p , q b n ) 2 ( a n x 1 + a n x ) k R n , p , q ( t 2 , x ) = × s = 0 n k 1 ( p s q s a n x 1 + a n x ) .

Now, by using \([ k ]_{p,q} = p^{k - 1} + q [ k - 1 ]_{p,q}\), we get

R n , p , q ( t 2 , x ) = 1 a n b n 1 p n ( n 1 ) / 2 k = 1 n [ n 1 k 1 ] p , q p k ( k 1 ) 2 + 2 ( n k ) ( p k 1 + q [ k 1 ] p , q ) ( a n x 1 + a n x ) k × s = 0 n k 1 ( p s q s a n x 1 + a n x ) = p n 1 a n b n 1 p ( n 1 ) ( n 2 ) / 2 k = 0 n 1 [ n 1 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 1 × s = 0 n k 2 ( p s q s a n x 1 + a n x ) + q [ n 1 ] p , q a n b n 1 p ( n 2 ) ( n 3 ) / 2 k = 0 n 2 [ n 2 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 2 × s = 0 n k 3 ( p s q s a n x 1 + a n x ) = p n 1 a n b n ( a n x 1 + a n x ) + q [ n 1 ] p , q a n b n ( a n x 1 + a n x ) 2 , R n , p , q ( t 3 , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) 2 ( p n k [ k ] p , q b n ) 3 ( a n x 1 + a n x ) k s = 0 n k 1 ( p s q s a n x 1 + a n x ) = 1 a n b n 2 1 p n ( n 1 ) / 2 k = 1 n [ n 1 k 1 ] p , q p k ( k 1 ) 2 + 3 ( n k ) [ k ] p , q 2 ( a n x 1 + a n x ) k × s = 0 n k 1 ( p s q s a n x 1 + a n x ) .

Again using the identity \([ k ]_{p,q} = p^{k - 1} + q [ k - 1 ]_{p,q}\), we obtain

R n , p , q ( t 3 , x ) = 1 a n b n 2 1 p n ( n 7 ) / 2 k = 1 n { [ n 1 k 1 ] p , q p k ( k 7 ) 2 ( p k 1 + q [ k 1 ] p , q ) 2 × ( a n x 1 + a n x ) k s = 0 n k 1 ( p s q s a n x 1 + a n x ) } = p 2 ( n 1 ) a n b n 2 1 p ( n 1 ) ( n 2 ) / 2 k = 0 n 1 [ n 1 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 1 s = 0 n k 2 ( p s q s a n x 1 + a n x ) + 2 p n 1 q [ n 1 ] p , q a n b n 2 1 p ( n 2 ) ( n 3 ) / 2 k = 0 n 2 [ n 2 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 2 × s = 0 n k 3 ( p s q s a n x 1 + a n x ) + p n 2 q 2 [ n 1 ] p , q a n b n 2 1 p ( n 2 ) ( n 3 ) / 2 k = 0 n 2 [ n 2 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 2 × s = 0 n k 3 ( p s q s a n x 1 + a n x ) + q 3 [ n 1 ] p , q [ n 2 ] p , q a n b n 2 1 p ( n 3 ) ( n 4 ) / 2 k = 0 n 3 [ n 3 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 3 × s = 0 n k 4 ( p s q s a n x 1 + a n x ) .

Then we obtain

R n , p , q ( t 3 , x ) = p 2 ( n 1 ) a n b n 2 ( a n x 1 + a n x ) + 2 p n 1 q [ n 1 ] p , q + p n 2 q 2 [ n 1 ] p , q a n b n 2 ( a n x 1 + a n x ) 2 R n , p , q ( t 3 , x ) = + q 3 [ n 1 ] p , q [ ` n 2 ] p , q a n b n 2 ( a n x 1 + a n x ) 3 , R n , p , q ( t 4 , x ) = 1 p n ( n 1 ) / 2 k = 0 n [ n k ] p , q p k ( k 1 ) 2 ( p n k [ k ] p , q b n ) 4 ( a n x 1 + a n x ) k R n , p , q ( t 4 , x ) = × s = 0 n k 1 ( p s q s a n x 1 + a n x ) R n , p , q ( t 4 , x ) = 1 a n b n 3 1 p n ( n 1 ) / 2 k = 1 n [ n 1 k 1 ] p , q p k ( k 1 ) 2 + 4 ( n k ) [ k ] p , q 3 ( a n x 1 + a n x ) k R n , p , q ( t 4 , x ) = × s = 0 n k 1 ( p s q s a n x 1 + a n x ) .

Using the identity \([ k ]_{p,q} = p^{k - 1} + q [ k - 1 ]_{p,q}\), we have

R n , p , q ( t 4 , x ) = 1 a n b n 3 1 p n ( n 9 ) / 2 k = 1 n [ n 1 k 1 ] p , q p k ( k 9 ) 2 { ( p k 1 + q [ k 1 ] p , q ) 3 × ( a n x 1 + a n x ) k s = 0 n k 1 ( p s q s a n x 1 + a n x ) } = p 3 ( n 1 ) a n b n 3 1 p ( n 1 ) ( n 2 ) / 2 k = 0 n 1 [ n 1 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 1 s = 0 n k 2 ( p s q s a n x 1 + a n x ) + 3 p 2 ( n 1 ) q [ n 1 ] p , q a n b n 3 1 p ( n 2 ) ( n 3 ) / 2 k = 0 n 2 [ n 2 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 2 × s = 0 n k 3 ( p s q s a n x 1 + a n x ) + 3 p 2 n 3 q 2 [ n 1 ] p , q a n b n 3 1 p ( n 2 ) ( n 3 ) / 2 k = 0 n 2 [ n 2 k ] p , q p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 2 × s = 0 n k 3 ( p s q s a n x 1 + a n x ) + 3 p n 1 q 3 [ n 1 ] p , q [ n 2 ] p , q a n b n 3 1 p ( n 3 ) ( n 4 ) / 2 k = 0 n 3 [ n 3 k ] p , q { p k ( k 1 ) 2 ( a n x 1 + a n x ) k + 3 × s = 0 n k 4 ( p s q s a n x 1 + a n x ) } + q 3 [ n 1 ] p , q a n b n 3 1 p n ( n 9 ) / 2 k = 2 n [ n 2 k 2 ] p , q { p k ( k 9 ) 2 ( p k 2 + q [ k 2 ] p , q ) 2 ( a n x 1 + a n x ) × s = 0 n k 1 ( p s q s a n x 1 + a n x ) } .

By some calculations, we get

$$\begin{aligned}& R_{n,p,q} \bigl( t^{4},x \bigr) \\& \quad = \frac{p^{3 ( n - 1 )}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr) + \frac{ ( 3p^{2 ( n - 1 )} + 3p^{2n - 3}q + p^{2n - 4}q^{2} )q [ n - 1 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{2} \\& \qquad {}+ \frac{ ( 3p^{n - 1} + 2p^{n - 4}q + p^{n - 3}q^{2} )q^{3} [ n - 1 ]_{p,q} [ n - 2 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{3} \\& \qquad {}+ \frac{q^{3} [ n - 1 ]_{p,q} [ `n - 2 ]_{p,q} [ n - 3 ]_{p,q}}{a_{n}b_{n}^{3}} \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{4}. \end{aligned}$$

 □

Lemma 3

For all \(n \in \mathbb{N}\), \(x \in [ 0,\infty )\), and \(0 < q < p \le 1\), we have the following central moments:

$$\begin{aligned}& R_{n,p,q} \bigl( (t - x),x \bigr) = \frac{ - a_{n}x^{2}}{1 + a_{n}x}, \end{aligned}$$
(8)
$$\begin{aligned}& R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) = \frac{p}{b_{n}}^{n - 1} \biggl( \frac{1}{a_{n}x + 1} \biggr)x + \biggl\{ \biggl( \frac{a_{n}x}{1 + a_{n}x} \biggr)^{2} - \frac{p^{n - 1}}{ [ n ]_{p,q}}\frac{1}{ ( 1 + a_{n}x )^{2}} \biggr\} x^{2}, \end{aligned}$$
(9)
$$\begin{aligned}& R_{n,p,q} \bigl( ( t - x )^{4},x \bigr) \\& \quad = \biggl\{ \frac{p}{b_{n}^{3}}^{3 ( n - 1 )}\frac{1}{ ( 1 + a_{n}x )} \biggr\} x \\& \qquad {}+ \left\{ \frac{ ( 3p^{2 ( n - 1 )} + 3p^{2n - 3}q + p^{2n - 4}q^{2} ) [ n - 1 ]_{p,q}}{ [ n ]_{p,q}} \right .\frac{1}{b_{n}^{2} ( 1 + a_{n}x )^{2}} \\& \qquad {}\left . - \frac{4p^{2 ( n - 1 )}}{b_{n}^{2} ( 1 + a_{n}x )} \right\} x^{2} + \left\{ \frac{ ( 3p^{n - 1} + 2p^{n - 4}q + p^{n - 3}q^{2} )q^{3} [ n - 1 ]_{p,q} [ n - 2 ]_{p,q}}{ [ n ]_{p,q}^{2}b_{n} ( 1 + a_{n}x )^{3}} \right . \\& \qquad {}- \left . \frac{4 ( 2p^{n - 1} + p^{n - 2}q )q [ n - 1 ]_{p,q}}{ [ n ]_{p,q}b_{n} ( 1 + a_{n}x )^{2}} + \frac{6p^{n - 1}}{b_{n} ( 1 + a_{n}x )} \right\} x^{3} \\& \qquad {}+ \left\{ \frac{q^{3} [ n - 1 ]_{p,q} [ `n - 2 ]_{p,q} [ n - 3 ]_{p,q}}{ [ n ]_{p,q}^{3} ( 1 + a_{n}x )^{4}} \right. - 4\frac{q^{3} [ n - 1 ]_{p,q} [ `n - 2 ]_{p,q}}{ [ n ]_{p,q}^{2} ( 1 + a_{n}x )^{3}} \\& \qquad {}+ \left . 6\frac{q [ n - 1 ]_{p,q}}{ [ n ]_{p,q} ( 1 + a_{n}x )^{2}} - \frac{4}{1 + a_{n}x} + 1 \right\} x^{4}. \end{aligned}$$
(10)

Proof

The proof is done by using the linearity of the operators and the previous lemma. □

Lemma 4

For all \(n \in \mathbb{N}\) and \(0 < q < p \le 1\), we have the following estimations:

$$\begin{aligned}& \bigl( R_{n,p,q} \bigl( (t - x),x \bigr) \bigr)^{2} \le x^{2}, \quad x \in [ 0,\infty ), \end{aligned}$$
(11)
$$\begin{aligned}& R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) \le D_{1} ( 1 + x )^{2}, \quad x \in [ 0,\infty ), \end{aligned}$$
(12)
$$\begin{aligned}& R_{n,p,q} \bigl( ( t - x )^{4},x \bigr) \le \frac{1}{b_{n}^{2}}D_{2} ( 1 + x )^{2},\quad x \in [ 0,\infty ), \end{aligned}$$
(13)

where \(D_{1}\) and \(D_{2}\) are positive constants.

Proof

First, we estimate \(( R_{n,p,q} ( (t - x),x ) )^{2}\). For \(x \in [ 0,\infty )\),

$$\begin{aligned} \bigl( R_{n,p,q} \bigl( (t - x),x \bigr) \bigr)^{2} =& \bigl( R_{n,p,q} ( t,x ) - xR_{n,p,q} ( 1,x ) \bigr)^{2} \\ =& \biggl( \frac{x}{1 + a_{n}x} - x \biggr)^{2} = \biggl( \frac{ - a_{n}x^{2}}{1 + a_{n}x} \biggr)^{2} \\ \le& x^{2},\quad \text{since } \frac{a_{n}x}{1 + a_{n}x} < 1. \end{aligned}$$

For the estimation of \(R_{n,p,q} ( ( t - x )^{2},x )\), we use formula (9) which is given in the previous lemma. For \(x \in [ 0,\infty )\), by using the facts that

$$\frac{1}{ ( 1 + a_{n}x )} \le 1,\qquad \frac{1}{ ( 1 + a_{n}x )^{2}} \le 1,\quad \text{and}\quad \frac{ ( a_{n}x )^{2}}{ ( 1 + a_{n}x )^{2}} \le 1, $$

we get

$$\begin{aligned} R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) \le& \frac{p^{n - 1}}{b_{n}}x + \biggl\{ 1 - \frac{p^{n - 1}}{ [ n ]_{p,q}} \biggr\} x^{2} \\ \le& C_{1} \gamma _{n} ( p,q ) ( 1 + x )^{2}, \end{aligned}$$

where \(C_{1} > 0\) and \(\gamma _{n} ( p,q ) = \max \{ \frac{p^{n - 1}}{b_{n}},1 - \frac{p^{n - 1}}{ [ n ]_{p,q}} \} \). Since \(\lim_{n \to \infty } \frac{p^{n - 1}}{b_{n}} = 0\) and \(\lim_{n \to \infty } \frac{p^{n - 1}}{ [ n ]_{p,q}} = 0\), then there exists a positive constant \(D_{1}\) such that

$$ R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) \le D_{1} ( 1 + x )^{2}. $$

Now, for \(x \in [ 0,\infty )\), we use similar calculations for the estimation of \(R_{n,p,q} ( ( t - x )^{4},x )\), we use formula (10) which is given in the previous lemma. By using the inequalities

$$\begin{aligned}& \frac{1}{ ( 1 + a_{n}x )^{i}} \le 1\quad \text{for } i \in \{ 1, 2, 3, 4 \} , \\& p^{i ( n - 1 )} \le 1 \quad \text{for } p \le 1, i \in \{ 1, 2, 3 \} , \\& p^{n - i} \le 1\quad \text{for } p \le 1, i \in \{ 1, 2, 3, 4 \} , \end{aligned}$$

and the facts

$$\begin{aligned}& q [ n - 1 ]_{p,q} = [ n ]_{p,q} - p^{n - 1}, \\& q^{2} [ n - 2 ]_{p,q} = [ n ]_{p,q} - q p^{n - 2} - p^{n - 1}, \\& q^{3} [ n - 3 ]_{p,q} = [ n ]_{p,q} - q^{2}p^{n - 3} - q p^{n - 2} - p^{n - 1}, \end{aligned}$$

and by substituting these into formula (9) with some calculations, we obtain

$$\begin{aligned} R_{n,p,q} \bigl( ( t - x )^{4},x \bigr) \le& \frac{1}{b_{n}^{2}}\varphi ( p,q )x ( 1 + x ), \\ \le& \frac{1}{b_{n}^{2}}C_{2} \varphi ( p,q ) ( 1 + x )^{2}, \end{aligned}$$

where \(C_{2} > 0\) and \(\varphi ( p,q ) > 0\), so we get

$$ R_{n,p,q} \bigl( ( t - x )^{4},x \bigr) \le \frac{1}{b_{n}^{2}}D_{2} ( 1 + x )^{2},\quad \text{where } D_{2} > 0. $$

 □

Remark 1

To study the convergence results of the operators \(R_{n,p,q}\), let \(q = q_{n}\), \(p = p_{n}\) be the sequences such that \(0 < q_{n} < p_{n} \le 1\), if \(q_{n} \to 1\) as \(n \to \infty \), then by the sandwich theorem, \(p_{n} \to 1\), which implies \(\lim_{n \to \infty } [ n ]_{n,p_{n},q_{n}} = \infty \). For example, if \(0 < c < d\), we can choose \(q_{n} = \frac{n}{n + d}\) and \(p_{n} = \frac{n}{n + c}\) such that \(0 < q_{n} < p_{n} \le 1\), it is obvious that \(\lim_{n \to \infty } q_{n} = 1\), \(\lim_{n \to \infty } p_{n} = 1\), \(\lim_{n \to \infty } q_{n}^{n} = e^{ - d}\), and \(\lim_{n \to \infty } p_{n}^{n} = e^{ - c}\) so \(\lim_{n \to \infty } [ n ]_{n,p_{n},q_{n}} = \infty \).

Lemma 5

Assume that \(0 < q_{n} < p_{n} < 1\), \(q_{n} \to 1\), as \(n \to \infty \) and \(0 < \beta < \frac{1}{2}\). Then we have the following limits:

$$\begin{aligned}& \textup{(i)}\quad \lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x ),x \bigr) = 0, \\& \textup{(ii)}\quad \lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x )^{2},x \bigr) = x, \end{aligned}$$

where \(a_{n,p_{n},q_{n}} = [ n ]_{p_{n},q_{n}}^{\beta - 1}\) and \(b_{n,p_{n},q_{n}} = [ n ]_{p_{n},q_{n}}^{\beta } \).

Proof

For the proof of this lemma, we use the formulas \(R_{n,p_{n},q_{n}} ( t,x )\) and \(R_{n,p_{n},q_{n}} ( t^{2},x )\) given in Lemma 2. The first statement is clear

$$\begin{aligned} \lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x ),x \bigr) =& \lim_{n \to \infty } b_{n,p_{n},q_{n}} \bigl( R_{n,p_{n},q_{n}} ( t,x ) - x \bigr) \\ =& \lim_{n \to \infty } b_{n,p_{n},q_{n}} \biggl( \frac{ - a_{n,p_{n},q_{n}}x^{2}}{1 + a_{n,p_{n},q_{n}}x} \biggr) \\ =& \lim_{n \to \infty } \biggl( \frac{ - [ n ]_{p_{n},q_{n}}^{2\beta - 1}x^{2}}{1 + [ n ]_{p_{n},q_{n}}^{\beta - 1}x} \biggr) = 0. \end{aligned}$$

For the second statement, we write

$$\begin{aligned}& \lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x )^{2},x \bigr) \\& \quad =\lim_{n \to \infty } b_{n,p_{n},q_{n}} \bigl\{ R_{n,p_{n},q_{n}} \bigl( t^{2},x \bigr) - x^{2} - 2xR_{n,p_{n},q_{n}} \bigl( (t - x),x \bigr) \bigr\} \\& \quad = \lim_{n \to \infty } b_{n,p_{n},q_{n}} \biggl\{ \frac{p^{n - 1}_{n}}{b_{n,p_{n},q_{n}} ( 1 + a_{n,p_{n},q_{n}}x )} \biggr\} x \\& \qquad {}+ \lim_{n \to \infty } b_{n,p_{n},q_{n}} \biggl\{ \biggl( \frac{a_{n,p_{n,}q_{n}}x}{1 + a_{n,p_{n,}q_{n}}x} \biggr)^{2} - \frac{p_{n}^{n - 1}}{ [ n ]_{p_{n},q_{n}}}\frac{1}{ ( 1 + a_{n,p_{n,}q_{n}}x )^{2}} \biggr\} x^{2}. \end{aligned}$$

Now, by substituting the following limits into the last equality

$$\begin{aligned}& \lim_{n \to \infty } \biggl( \frac{p_{n}^{n - 1}}{1 + a_{n,p_{n},q_{n}} x} \biggr) = 1,\qquad \lim _{n \to \infty } \frac{ [ n ]_{p_{n,}q_{n}}^{3\beta - 2}x^{2}}{ ( 1 + a_{n,p_{n},q_{n}}x )^{2}} = 0, \\& \lim_{n \to \infty } \frac{p_{n}^{n - 1}}{ [ n ]_{p_{n},q_{n}}}\frac{b_{n,p_{n},q_{n}}}{ ( 1 + a_{n,p_{n},q_{n}}x )^{2}} = 0 , \end{aligned}$$

we get

$$ \lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x )^{2},x \bigr) = x, $$

which proves the lemma. □

3 Local approximation theorem

Here, in this section, the local approximation theorem for the new \(( p,q ) \)-analogue of the Balázs–Szabados operators is established. Let \(C_{B} [ 0,\infty )\) be the space of all real-valued continuous bounded functions f on \([ 0,\infty )\), endowed with the norm \(\Vert f \Vert = \sup_{x \in [ 0,\infty )} \vert f ( x ) \vert \).

We consider Peetre’s K-functional

$$ K_{2} ( f,\delta ): = \inf \bigl\{ \Vert f - g \Vert + \delta \bigl\Vert g'' \bigr\Vert :g \in C_{B}^{2} [ 0,\infty ) \bigr\} ,\quad \delta \ge 0, $$

where

$$ C_{B}^{2} [ 0,\infty ): = \bigl\{ g \in C_{B} [ 0,\infty ):g',g'' \in C_{B} [ 0,\infty ) \bigr\} . $$

An absolute constant \(C_{0} > 0\) exists from the known result given in [9] such that

$$ K_{2} ( f,\delta ) \le C_{0}\omega _{2} ( f, \sqrt{\delta } ), $$
(14)

where

$$ \omega _{2} ( f,\sqrt{\delta } ) = \sup_{0 \le h \le \sqrt{\delta }} \sup _{x \pm h \in [ 0,\infty )} \bigl\vert f ( x - h ) - 2f ( x ) + f ( x + h ) \bigr\vert $$

is the second modulus of smoothness of \(f \in C_{B} [ 0,\infty )\). Also we let

$$ \omega ( f,\delta ) = \sup_{0 < h \le \delta } \sup_{x \in [ 0,\infty )} \bigl\vert f ( x + h ) - f ( x ) \bigr\vert . $$

In the following theorem, we state the first main result of the local approximation for the operators \(R_{n,p,q} ( f,x )\).

Theorem 6

There exists an absolute constant \(C > 0\) such that

$$\begin{aligned}& \bigl\vert R_{n,p,q} ( f,x ) - f ( x ) \bigr\vert \le C \omega _{2} \bigl( f,\sqrt{\eta _{n} ( x )} \bigr) + \omega \bigl( f,\theta _{n} ( x ) \bigr), \end{aligned}$$

where \(f \in C_{B} [ 0,\infty )\), \(0 \le x < \infty \), \(0 < q < p < 1\), and

$$ \eta _{n} ( x ) = \bigl\{ D_{1} ( 1 + x )^{2} + x^{2} \bigr\} , \quad \textit{and}\quad \theta _{n} ( x ) = \frac{a_{n}x^{2}}{1 + a_{n}x}. $$

Proof

Let

$$R_{n,p,q}^{ *} ( f,x ) = R_{n,p,q} ( f,x ) + f ( x ) - f \bigl( \zeta _{n} ( x ) \bigr), $$

where \(f \in C_{B} [ 0,\infty )\), \(\zeta _{n} ( x ) = \frac{x}{1 + a_{n}x}\). From Taylor’s formula we have

$$ g ( t ) = g ( x ) + g' ( x ) ( t - x ) + \int _{x}^{t} ( t - s ) g'' ( s )\,ds, \quad g \in C_{B}^{2} [ 0,\infty ), $$

then we have

$$ R_{n,p,q}^{ *} ( g,x ) = g ( x ) + R_{n,p,q} \biggl( \int _{x}^{t} ( t - s )g'' ( s )\,ds,x \biggr) - \int _{x}^{\zeta _{n} ( x )} \bigl( \zeta _{n} ( x ) - s \bigr) g'' ( s )\,ds. $$

Hence

$$\begin{aligned}& \bigl\vert R_{n,p,q}^{ *} ( g,x ) - g ( x ) \bigr\vert \\& \quad \le R_{n,p,q} \biggl( \biggl\vert \int _{x}^{t} \vert t - s \vert \bigl\vert g'' ( s ) \bigr\vert \,ds \biggr\vert ,x \biggr) + \biggl\vert \int _{x}^{\zeta _{n} ( x )} \bigl\vert \zeta _{n} ( x ) - s \bigr\vert \bigl\vert g'' ( s ) \bigr\vert \,ds \biggr\vert \end{aligned}$$
(15)
$$\begin{aligned}& \quad \le \bigl\Vert g'' \bigr\Vert R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) + \bigl\Vert g'' \bigr\Vert \bigl( \zeta _{n} ( x ) - x \bigr)^{2} \\& \quad = \bigl\Vert g'' \bigr\Vert R_{n,p,q} \bigl( ( t - x )^{2},x \bigr) + \bigl\Vert g'' \bigr\Vert \bigl( R_{n,p,q} \bigl( (t - x),x \bigr) \bigr)^{2} \\& \quad \le \bigl\Vert g'' \bigr\Vert \bigl\{ D_{1} ( 1 + x )^{2} + x^{2} \bigr\} \\& \quad = \bigl\Vert g'' \bigr\Vert \eta _{n} ( x ). \end{aligned}$$
(16)

Using (16) and the uniform boundedness of \(R_{n,p,q}^{ *} \), we get

$$\begin{aligned} \bigl\vert R_{n,p,q} ( f,x ) - f ( x ) \bigr\vert \le& \bigl\vert R_{n,p,q}^{ *} \bigl( (f - g),x \bigr) \bigr\vert + \bigl\vert R_{n,p,q}^{ *} ( g,x ) - g ( x ) \bigr\vert \\ &{}+ \bigl\vert f ( x ) - g ( x ) \bigr\vert + \bigl\vert f \bigl( \zeta _{n} ( x ) \bigr) - f ( x ) \bigr\vert \\ \le& 4 \Vert f - g \Vert + \bigl\Vert g'' \bigr\Vert \eta _{n} ( x ) + \omega \bigl( f, \bigl\vert \zeta _{n} ( x ) - x \bigr\vert \bigr). \end{aligned}$$

If we take the infimum on the right-hand side overall \(g \in C_{B}^{2} [ 0,\infty )\), we obtain

$$ \bigl\vert R_{n,p,q} ( f,x ) - f ( x ) \bigr\vert \le 4K_{2} \bigl( f;\eta _{n} ( x ) \bigr) + \omega \bigl( f, \theta _{n} ( x ) \bigr), $$

which together with (14) gives the proof of the theorem. □

Corollary 7

Let \(0 < q_{n} < p_{n} \le 1\), \(q_{n} \to 1\) as \(n \to \infty \). Then, for each \(f \in C [ 0,\infty )\), the sequence \(\{ R_{n,p_{n},q_{n}} ( f,x ) \} \) converges to f uniformly on \([ 0,a ], a > 0\).

Now, we give a Voronovskaja type theorem for the new \(( p,q ) \)-analogue of the Balázs–Szabados operators.

Theorem 8

Assume that \(0 < q_{n} < p_{n} \le 1\), \(q_{n} \to 1\) as \(n \to \infty \), and let \(0 < \beta < \frac{1}{2}\). For any \(f \in C_{B}^{2} [ 0,\infty )\), the following equality holds:

$$ \lim_{n \to \infty } b_{n,p_{n},q_{n}} \bigl( R_{n,p_{n},q_{n}} ( f,x ) - f ( x ) \bigr) = \frac{1}{2}x f'' ( x ), $$

uniformly on \([ 0,a ]\).

Proof

Let \(f \in C_{B}^{2} [ 0,\infty )\) and \(x \in [ 0,\infty )\) be fixed. By using Taylor’s formula, we write

$$ f ( t ) = f ( x ) + f' ( x ) ( t - x ) + \frac{1}{2}f'' ( x ) ( t - x )^{2} + r ( t,x ) ( t - x )^{2}, $$
(17)

where the function \(r ( t,x )\) is the Peano form of the remainder, \(r ( t,x ) \in C_{B} [ 0,\infty )\) and \(\lim_{t \to x} r ( t,x ) = 0\). Applying \(R_{n,p_{n},q_{n}}\) to (17), we obtain

$$\begin{aligned}& b_{n,p_{n},q_{n}} \bigl( R_{n,p_{n},q_{n}} ( f,x ) - f ( x ) \bigr) \\& \quad = f' ( x )b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( (t - x),x \bigr) + \frac{1}{2}f'' ( x )b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( ( t - x )^{2},x \bigr) \\& \qquad {}+ b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( r ( t,x ) ( t - x )^{2},x \bigr). \end{aligned}$$

By using the Cauchy–Schwartz inequality, we get

$$ R_{n,p_{n},q_{n}} \bigl( r ( t,x ) ( t - x )^{2},x \bigr) \le \sqrt{R_{n,p_{n},q_{n}} \bigl( r^{2} ( t,x ),x \bigr)} \sqrt{R_{n,p_{n},q_{n}} \bigl( ( t - x )^{4},x \bigr)}. $$
(18)

We observe that \(r^{2} ( x,x ) = 0\) and \(r^{2} (\cdot ,x ) \in C_{B} [ 0,\infty )\). Now, from Corollary 7, it follows that

$$ \lim_{n \to \infty } R_{n,p_{n},q_{n}} \bigl( r^{2} ( t,x ),x \bigr) = r^{2} ( x,x ) = 0, $$
(19)

uniformly for \(x \in [ 0,a ]\). Finally, from (18), (19), and Lemma 5, we get immediately

$$\lim_{n \to \infty } b_{n,p_{n},q_{n}}R_{n,p_{n},q_{n}} \bigl( r ( t,x ) ( t - x )^{2},x \bigr) = 0, $$

which completes the proof. □

Theorem 9

Let \(0 < q_{n} < p_{n} \le 1\), \(q_{n} \to 1\) as \(n \to \infty \), \(\alpha \in ( 0,1 ]\) and A be any subset of the interval \([ 0,\infty )\). Then, if \(f \in C_{B} [ 0,\infty )\) is locally \(\operatorname{Lip} ( \alpha )\), i.e., the condition

$$ \bigl\vert f ( y ) - f ( x ) \bigr\vert \le L \vert y - x \vert ^{\alpha }, \quad y \in A \textit{ and } x \in [ 0,\infty ) $$
(20)

holds, then, for each \(x \in [ 0,\infty )\), we have

$$ \bigl\vert R_{n,p_{n},q_{n}} ( f,x ) - f ( x ) \bigr\vert \le L \bigl\{ \lambda _{n}^{\frac{\alpha }{2}} ( x ) + 2 \bigl( d ( x,A ) \bigr)^{\alpha } \bigr\} , $$

where L is a constant depending on α and f and \(d ( x,A )\) is the distance between x and A defined as

$$ d ( x,A ) = \inf \bigl\{ \vert t - x \vert :t \in A \bigr\} , $$

where

$$ \lambda _{n} ( x ) = \bigl[ D_{1} ( 1 + x )^{2} \bigr]. $$

Proof

Let Ā be the closure of A in \([ 0,\infty )\). Then there exists a point \(x_{0} \in \bar{A}\) such that \(\vert x - x_{0} \vert = d ( x,A )\). By the triangle inequality

$$ \bigl\vert f ( t ) - f ( x ) \bigr\vert \le \bigl\vert f ( t ) - f ( x_{0} ) \bigr\vert + \bigl\vert f ( x ) - f ( x_{0} ) \bigr\vert $$

and by (20), we get

$$\begin{aligned} \bigl\vert R_{n,p_{n},q_{n}} ( f,x ) - f ( x ) \bigr\vert \le& R_{n,p_{n},q_{n}} \bigl( \bigl\vert f ( t ) - f ( x_{0} ) \bigr\vert ,x \bigr) + R_{n,p_{n},q_{n}} \bigl( \bigl\vert f ( x ) - f ( x_{0} ) \bigr\vert ,x \bigr) \\ \le& L \bigl\{ R_{n,p_{n},q_{n}} \bigl( \vert t - x_{0} \vert ^{\alpha },x \bigr) + \vert x - x_{0} \vert ^{\alpha } \bigr\} \\ \le& L \bigl\{ R_{n,p_{n},q_{n}} \bigl( \vert t - x \vert ^{\alpha } + \vert x - x_{0} \vert ^{\alpha },x \bigr) + \vert x - x_{0} \vert ^{\alpha } \bigr\} \\ \le& L \bigl\{ R_{n,p_{n},q_{n}} \bigl( \vert t - x \vert ^{\alpha },x \bigr) + 2 \vert x - x_{0} \vert ^{\alpha } \bigr\} . \end{aligned}$$

Now, by using the H¨lder inequality with \(p = \frac{2}{\alpha }\), \(q = \frac{2}{2 - \alpha }\), we get

$$\begin{aligned} \bigl\vert R_{n,p_{n},q_{n}}(f,x) - f(x) \bigr\vert \le& L \bigl\{ \bigl( R_{n,p_{n},q_{n}} \bigl( \vert t - x \vert ^{\alpha p},x \bigr) \bigr)^{\frac{1}{p}} \bigl( R_{n,p_{n},q_{n}} \bigl( 1^{q},x \bigr) \bigr)^{\frac{1}{q}} + 2 \bigl( d ( x,A ) \bigr)^{\alpha } \bigr\} \\ =& L \bigl\{ \bigl( R_{n,p_{n},q_{n}} \bigl( \vert t - x \vert ^{2},x \bigr) \bigr)^{\frac{\alpha }{2}} + 2 \bigl( d ( x,A ) \bigr)^{\alpha } \bigr\} \\ \le& L \bigl\{ \bigl[ D_{1} ( 1 + x )^{2} \bigr]^{\frac{\alpha }{2}} + 2 \bigl( d ( x,A ) \bigr)^{\alpha } \bigr\} , \end{aligned}$$

and the proof is completed. □