1 Introduction

The sawtooth function, denoted by \(( (x) )\), is defined by

$$ \bigl( (x) \bigr)=\textstyle\begin{cases} x-[x]-\frac{1}{2}, & \text{if }x\notin \mathbb{Z}, \\ 0, & \text{if }x\in \mathbb{Z}, \end{cases}\displaystyle \quad (\mbox{see [1--5]}), $$
(1)

where \([x]\) denotes the greatest integer function not exceeding x.

The Dedekind sums are defined by

$$\begin{aligned} S(h,m) &= \sum_{\mu =1}^{m-1} \biggl( \biggl(\frac{\mu }{m} \biggr) \biggr) \biggl( \biggl(\frac{h\mu }{m} \biggr) \biggr) \\ &= \sum_{\mu =1}^{m-1} \biggl( \frac{\mu }{m}-\frac{1}{2} \biggr) \biggl( \biggl( \frac{h\mu }{m} \biggr) \biggr) \\ &=\sum_{\mu =1}^{m-1} \frac{\mu }{m} \biggl( \biggl(\frac{h\mu }{m} \biggr) \biggr), \end{aligned}$$
(2)

where h is any integer and m is a positive integer (see [911, 17, 19, 20]).

It is well known that the Bernoulli polynomials are defined by

$$ \frac{t}{e^{t}-1}e^{xt}=\sum_{n=0}^{\infty }B_{n}(x) \frac{t^{n}}{n!}\quad \bigl( \vert t \vert < 2 \pi \bigr), (\text{see [1--13, 17, 19, 20]}). $$
(3)

When \(x=0\), \(B_{n}=B_{n}(0)\), (\(n\ge 0\)) are called the Bernoulli numbers.

From (3), we note that

B n (x)= l = 0 n ( n l ) B n l x l (n0),(see [7–13]).
(4)

By (3), we easily get

$$ \sum_{l=0}^{n-1}l^{m}= \frac{1}{m+1} \bigl(B_{m+1}(n)-B_{m+1} \bigr),\quad (n\in \mathbb{N}, m\ge 0), (\text{see [13]}), $$
(5)

and

$$ d^{n-1}\sum_{l=0}^{d-1}B_{n} \biggl(\frac{x+i}{d} \biggr)=B_{n}(x),\quad (n\ge 0, d\in \mathbb{N}), (\text{see [10, 13]}). $$
(6)

The modified Hardy’s polyexponential function of index k is defined by

$$ \operatorname{Ei}_{k}(x)=\sum_{n=1}^{\infty } \frac{x^{n}}{n^{k}(n-1)!}\quad (k\in \mathbb{Z}), (\text{see [7]}). $$
(7)

Note that \(\operatorname{Ei}_{1}(x)=e^{x}-1\).

Recently, the type 2 poly-Bernoulli polynomials of index k are defined by

$$ \frac{\operatorname{Ei}_{k}(\log (1+t))}{e^{t}-1}e^{xt}=\sum_{n=0}^{\infty }B_{n}^{(k)}(x) \frac{t^{n}}{n!} \quad (k\in \mathbb{Z}). $$
(8)

When \(x=0\), \(B_{n}^{(k)}=B_{n}^{(k)}(0)\), (\(n\ge 0\)) are called the type 2 poly-Bernoulli numbers of index k. Note that \(B_{n}^{(1)}(x)=B_{n}(x)\), (\(n\ge 0\)).

It is well known that the polylogarithmic function of index k is defined by

$$ \operatorname{Li}_{k}(x) =\sum_{n=1}^{\infty } \frac{x^{n}}{n^{k}},\quad (k \in \mathbb{Z}), \vert x \vert < 1, (\text{see [6, 9, 12]}). $$
(9)

Note that \(\operatorname{Li}_{1}(x)=-\log (1-x)\).

In [6, 7, 12], the poly-Bernoulli polynomials of index k are defined by the generating function

$$ \frac{\operatorname{Li}_{k}(1-e^{-t})}{e^{t}-1}e^{xt}=\sum_{n=0}^{\infty } \beta _{n}^{(k)}(x)\frac{t^{n}}{n!}. $$
(10)

When \(x=0\), \(\beta _{n}^{(k)}= \beta _{n}^{(k)}(0)\) are called the poly-Bernoulli numbers of index k.

From (10), we note that

l = 0 n ( n l ) β n l ( k ) x l = β n ( k ) (x),(n0),(see [6, 7, 12]).
(11)

The fractional part of x is defined by

$$\begin{aligned}& \langle x\rangle =x-[x]. \end{aligned}$$

The Bernoulli functions are defined by

$$\begin{aligned}& \overline{B}_{n}(x)=B_{n} \bigl(\langle x\rangle \bigr), \quad (n\ge 0), (\text{see [1, 2]}). \end{aligned}$$

From (2), we have

$$\begin{aligned} S(h,m) &= \sum_{\mu =1}^{m-1} \frac{\mu }{m} \biggl(\frac{h\mu }{m}- \biggl[\frac{h\mu }{m} \biggr]-\frac{1}{2} \biggr) \\ &= \sum_{\mu =1}^{m-1} \biggl( \frac{\mu }{m}-\frac{1}{2} \biggr) \biggl( \frac{h\mu }{m}- \biggl[\frac{h\mu }{m} \biggr]-\frac{1}{2} \biggr) \\ &= \sum_{\mu =1}^{m-1}\overline{B}_{1} \biggl(\frac{\mu }{m} \biggr) \overline{B}_{1} \biggl( \frac{h\mu }{m} \biggr), \end{aligned}$$
(12)

where h, m are relatively prime positive integers.

Apostol considered the generalized Dedekind sums, which are given by

$$ S_{p}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{p} \biggl( \frac{h\mu }{m} \biggr), $$
(13)

and showed in [1, 2] that they satisfy the reciprocity relation

(p+1) ( h m p S p ( h , m ) + m h p S p ( m , h ) ) =p B p + 1 + s = 0 p + 1 ( p + 1 s ) ( 1 ) s B s B p + 1 s h s m p + 1 s .

As one generalization of Apostol’s generalized Dedekind sums, the poly-Dedekind sums associated with the type 2 poly-Bernoulli functions of index k

$$ S_{P}^{(k)}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{p}^{(k)} \biggl( \frac{h\mu }{m} \biggr) $$
(14)

were recently introduced (see [13]) and, among other things, a reciprocity relation for them was derived.

In this paper, as another generalization of Apostol’s generalized Dedekind sums, we consider the poly-Dedekind sums defined by

$$ T_{p}^{(k)}(h,m)= \sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{\beta }_{p}^{(k)} \biggl( \frac{h\mu }{m} \biggr), $$

where \(\overline{\beta }_{p}^{(k)}(x)=\beta _{p}^{(k)}(\langle x \rangle )\) are the poly-Bernoulli functions of index k (see (10)). Note here that \(T_{p}^{(1)}(h,m)=S_{p}(h,m)\). We show the following reciprocity relation for the poly-Dedekind sums given by (see Theorem 7)

h m p T p ( k ) ( h , m ) + m h p T p ( k ) ( m , h ) = μ = 0 m 1 j = 0 p ν = 0 h 1 l = 1 p j + 1 ( m h ) j 1 l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k × ( p j ) ( 1 ) p j + 1 l ( ( μ h ) m p j + ( m ν ) h p j ) B j ( ν h + μ m ) .

For \(k=1\), this reciprocity relation for the poly-Dedekind sums reduces to that for Apostol’s generalized Dedekind sums given by (see Corollary 8)

$$\begin{aligned} &hm^{p}S_{p}(h,m)+mh^{p}S_{p}(m,h) \\ &\quad = \sum_{\mu =0}^{m-1}\sum _{\nu =0}^{h-1}(mh)^{p-1}(\mu h+m\nu ) \overline{B}_{p} \biggl(\frac{\nu }{h}+\frac{\mu }{m} \biggr). \end{aligned}$$

We recommend the readers to look at the articles [15, 16, 18, 21] and the more recent one [14], which are related to the present paper. In Sect. 2, we derive various facts about the poly-Bernoulli polynomials that will be needed in the next section. In Sect. 3, we define the poly-Dedekind sums associated with the poly-Bernoulli functions and demonstrate a reciprocity relation for them.

2 Poly-Dedekind sums associated with poly-Bernoulli functions

Let n be a nonnegative integer. Then the Stirling numbers of the second kind are defined by

$$\begin{aligned}& x^{n}=\sum_{k=0}^{n}S_{2}(n,k) (x)_{k},\quad (n\ge 0), ( \text{see [1--14, 17, 19]}), \end{aligned}$$

where \((x)_{0}=1\), \((x)_{n}=x(x-1)\cdots (x-n+1)\), (\(n\ge 1\)).

From (9) and (10), we note that

$$ \frac{\operatorname{Li}_{k}(1-e^{-t})}{e^{t}-1}=\sum_{n=0}^{\infty } \beta _{n}^{(k)} \frac{t^{n}}{n!}. $$
(15)

Thus, by (15), we get

$$\begin{aligned} \operatorname{Li}_{k} \bigl(1-e^{-t} \bigr) &= \Biggl( \sum_{l=0}^{\infty } \beta _{l}^{(k)} \frac{t^{l}}{l!} \Biggr) \bigl(e^{t}-1 \bigr) \\ &= \sum_{n=0}^{\infty } \bigl(\beta _{n}^{(k)}(1)-\beta _{n}^{(k)} \bigr)\frac{t^{n}}{n!}. \end{aligned}$$
(16)

On the other hand,

$$\begin{aligned} \operatorname{Li}_{k} \bigl(1-e^{-t} \bigr) &= \sum _{m=1}^{\infty } \frac{1}{m^{k}} \bigl(1-e^{-t} \bigr)^{m} = \sum _{m=1}^{\infty } \frac{(-1)^{m}m!}{m^{k}} \frac{1}{m!} \bigl(e^{-t}-1 \bigr)^{m} \\ &= \sum_{m=1}^{\infty }\frac{(-1)^{m}m!}{m^{k}} \sum_{n=m}^{\infty }S_{2}(n,m) (-1)^{n} \frac{t^{n}}{n!} \\ &= \sum_{m=1}^{\infty } \Biggl(\sum _{m=1}^{n} \frac{(-1)^{n-m}m!}{m^{k}}S_{2}(n,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(17)

Therefore, by (16) and (17), we obtain the following theorem.

Theorem 1

For \(n\in \mathbb{N}\), we have

$$\begin{aligned}& \beta _{n}^{(k)}(1)-\beta _{n}^{(k)}= \sum_{m=1}^{n} \frac{(-1)^{n-m}m!}{m^{k}}S_{2}(n,m). \end{aligned}$$

From Theorem 1, we note that

$$\begin{aligned}& \beta _{0}^{(k)}=1,\qquad \beta _{1}^{(k)}=-1+ \frac{1}{2^{k}},\qquad \beta _{2}^{(k)}=1- \frac{3}{2^{k}}+\frac{2}{3^{k}}, \ldots . \end{aligned}$$

Taking \(k=1\) in Theorem 1 gives us the following corollary.

Corollary 2

For \(n\in \mathbb{N}\), we have

$$\begin{aligned}& \sum_{m=1}^{n}(-1)^{n-m}(m-1)!S_{2}(n,m)= \delta _{n,1}, \end{aligned}$$

where \(\delta _{n,k}\) is the Kronecker symbol.

The three identities in the following lemma can be shown just as in Theorem 3, Corollary 4, and Theorem 5 of [13], and hence their proofs are left to the reader as exercises.

Lemma 3

For \(s,p\in \mathbb{N}\), we have

ν = 0 p ( p ν ) β ν ( k ) p ν + 2 = ( p + 1 s ) β p s + 1 ( k ) ( 1 ) p + 1 + s 1 p + 1 ( p + 2 s ) β p s + 2 ( k ) ( 1 ) p + 2 , ν = 0 p s + 1 ( p ν ) ( p ν + 2 s ) β ν ( k ) p ν + 2 = ( p + 1 s ) β p s + 1 ( k ) ( 1 ) p + 1 + s 1 p + 1 ( p + 2 s ) β p s + 2 ( k ) ( 1 ) p + 2 1 s ( p s 2 ) β p s + 2 ( k ) ,

and

s = 0 p ( p s ) β s ( k ) 1 p + 2 s = β p + 1 ( k ) ( 1 ) p + 1 β p + 2 ( k ) ( 1 ) ( p + 1 ) ( p + 2 ) + β p + 2 ( k ) ( p + 1 ) ( p + 2 ) .

As a further generalization of Apostol’s Dedekind sums, we study poly-Dedekind sums associated with poly-Bernoulli functions of index k, which are given by

$$ T_{p}^{(k)}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{\beta }_{p}^{(k)} \biggl( \frac{h\mu }{m} \biggr), $$
(18)

where \(h,m,p\in \mathbb{N}\), \(k\in \mathbb{Z}\), and \(\overline{\beta }_{p}^{(k)}(x)=\beta _{p}^{(k)} (\langle x\rangle )\) are the poly-Bernoulli functions of index k.

Note that

$$\begin{aligned}& T_{p}^{(1)}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{p} \biggl(\frac{h\mu }{m} \biggr)=S_{p}(h,m). \end{aligned}$$

The two identities in Lemma 4 can be proved in the same way as in Proposition 6 and Theorem 7 in [13], while the identity in Lemma 5 can be shown just as in Theorem 8 in [13]. Therefore their proofs are left to the reader.

Lemma 4

Let p be an odd positive integer ≥3, and \(m\in \mathbb{N}\). Then we have

m p T p ( k ) ( 1 , m ) = ν = 0 p ( p ν ) β ν ( k ) p + 2 ν m p + 1 + i = 1 p 1 ν = 0 p + 1 i ( p ν ) ( p + 2 ν i ) β ν ( k ) p + 2 ν B i m p + 1 i + B p + 1

and

( p + 1 ) m p T p ( k ) ( 1 , m ) = i = 0 p + 1 ( p + 1 i ) B i m p + 1 i β p + 1 i ( k ) ( 1 ) + 1 p + 2 i = 0 p + 1 ( p + 2 i ) ( i 1 ) B i m p + 1 i ( β p + 2 i ( k ) ( 1 ) β p + 2 i ( k ) ) .

Lemma 5

For \(m,n,h\in \mathbb{N}\) with \((h,m)=1\), and p any positive odd integer ≥3, we have

s = 0 p + 1 ( p + 1 s ) B s β p + 1 s ( k ) ( 1 ) ( m h ) p + 1 s = m p μ = 0 m 1 s = 0 p + 1 ( p + 1 s ) h s β s ( k ) ( μ m ) B p + 1 s ( h [ h μ m ] ) .

For \(d\in \mathbb{N}\), we observe that

n = 0 β n ( k ) ( x ) t n n ! = Li k ( 1 e t ) e t 1 e x t = Li k ( 1 e t ) e d t 1 i = 0 d 1 e ( i + x ) t = 1 d t Li k ( 1 e t ) i = 0 d 1 d t e d t 1 e ( i + x d ) d t = j = 0 d j 1 i = 0 d 1 B j ( x + i d ) t j j ! 1 t l = 1 l ! l k 1 l ! ( 1 e t ) l = j = 0 d j 1 i = 0 d 1 B j ( x + i d ) t j j ! 1 t l = 1 ( 1 ) l l ! l k m = l S 2 ( m , l ) ( t ) m m ! = j = 0 d j 1 i = 0 d 1 B j ( x + i d ) t j j ! m = 0 1 m + 1 l = 1 m + 1 l ! ( 1 ) l + m 1 l k S 2 ( m + 1 , l ) t m m ! = n = 0 ( j = 0 n i = 0 d 1 l = 1 n j + 1 ( n j ) d j 1 B j ( x + i d ) l ! ( 1 ) n j + 1 l ( n j + 1 ) l k S 2 ( n j + 1 , l ) ) t n n ! .
(19)

Therefore, by (19), we obtain the following theorem.

Theorem 6

For \(k\in \mathbb{Z}\), \(d\in \mathbb{N}\), and \(n\ge 0\), we have

β n ( k ) (x)= j = 0 n i = 0 d 1 l = 1 n j + 1 ( n j ) d j 1 B j ( x + i d ) l ! ( 1 ) n j + 1 l ( n j + 1 ) l k S 2 (nj+1,l).

By (18), Lemmas 35, and Theorem 6, we get

h m p T p ( k ) ( h , m ) + m h p T p ( k ) ( m , h ) = h m p μ = 0 m 1 μ m β p ( k ) ( h μ m ) + m h p ν = 0 h 1 ( μ h ) β p ( k ) ( m ν h ) = h m p μ = 0 m 1 μ m j = 0 p h j 1 ( p j ) ν = 0 h 1 l = 1 p j + 1 l ! ( 1 ) p j + 1 l ( p j + 1 ) l k S 2 ( p j + 1 , l ) B j ( μ m + ν h ) + m h p ν = 0 h 1 ν h j = 0 p m j 1 ( p j ) μ = 0 m 1 l = 1 p j + 1 l ! ( 1 ) p j + 1 l ( p j + 1 ) l k S 2 ( p j + 1 , l ) B j ( ν h + μ m ) = μ = 0 m 1 μ m j = 0 p m p j ( m h ) j ( p j ) ν = 0 h 1 l = 1 p j + 1 B j ( μ m + ν h ) l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k ( 1 ) p j + 1 l + ν = 0 h 1 ν h j = 0 p h p j ( m h ) j ( p j ) μ = 0 m 1 l = 1 p j + 1 B j ( ν h + μ m ) l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k ( 1 ) p j + 1 l = μ = 0 m 1 j = 0 p ν = 0 h 1 l = 1 p j + 1 ( μ h ) ( m h ) 1 m p j ( m h ) j ( p j ) × B j ( μ m + ν h ) l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k ( 1 ) p j + 1 l + μ = 0 m 1 j = 0 p ν = 0 h 1 l = 1 p j + 1 ( m ν ) ( m h ) 1 h p j ( m h ) j ( p j ) × B j ( ν h + μ m ) l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k ( 1 ) p j + 1 l = μ = 0 m 1 j = 0 p ν = 0 h 1 l = 1 p j + 1 ( m h ) j 1 l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k × ( p j ) ( 1 ) p j + 1 l ( ( μ h ) m p j + ( m ν ) h p j ) B j ( ν h + μ m ) .
(20)

Therefore, by (20), we obtain the following reciprocity theorem for the poly-Dedekind sums associated with poly-Bernoulli functions with index k.

Theorem 7

For \(m,h,p\in \mathbb{N}\) and \(k\in \mathbb{Z}\), we have

h m p T p ( k ) ( h , m ) + m h p T p ( k ) ( m , h ) = μ = 0 m 1 j = 0 p ν = 0 h 1 l = 1 p j + 1 ( m h ) j 1 l ! S 2 ( p j + 1 , l ) ( p j + 1 ) l k × ( p j ) ( 1 ) p j + 1 l ( ( μ h ) m p j + ( m ν ) h p j ) B j ( ν h + μ m ) .

In case of \(k = 1\), by making use of Corollary 2, we obtain the following reciprocity relation for the generalized Dedekind sums defined by Apostol.

Corollary 8

For \(m,h,p \in \mathbb{N}\), we have

$$\begin{aligned} hm^{p}T_{p}^{(1)}(h,m)+mh^{p}T_{p}^{(1)}(m,h) &=mh^{p}S_{p}(h,m)+mh^{p}S_{p}(m,h) \\ &= \sum_{\mu =0}^{m-1}\sum _{\nu =0}^{h-1}(mh)^{p-1} (\mu h+m \nu ) \overline{B}_{p} \biggl(\frac{\nu }{h}+\frac{\mu }{m} \biggr). \end{aligned}$$

3 Conclusion

The quantity called the Dedekind sum,

$$\begin{aligned}& S(h,m) = \sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{1} \biggl( \frac{h\mu }{m} \biggr), \end{aligned}$$

occurs in the transformation behavior of the logarithm of the Dedekind eta-function under substitutions from the modular group. It was shown by Dedekind that they satisfy the following reciprocity relation:

$$ S(h,m)+S(m,h)=\frac{1}{12} \biggl(\frac{h}{m}+ \frac{1}{hm}+\frac{m}{h} \biggr)-\frac{1}{4} $$

if h and m are relatively prime positive integers.

Apostol considered the generalized Dedekind sums

$$\begin{aligned}& S_{p}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{p} \biggl( \frac{h\mu }{m} \biggr) \end{aligned}$$

and derived a reciprocity relation for them. Recently, as one generalization of the generalized Dedekind sums, the poly-Dedekind sums

$$\begin{aligned}& S_{P}^{(k)}(h,m)=\sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{B}_{p}^{(k)} \biggl( \frac{h\mu }{m} \biggr), \end{aligned}$$

associated with the type 2 poly-Bernoulli functions of arbitrary indices, were introduced and were shown to satisfy a reciprocity relation. In this paper, as another generalization of the generalized Dedekind sums, we considered the poly-Dedekind sums

$$\begin{aligned}& T_{p}^{(k)}(h,m)= \sum_{\mu =1}^{m-1} \frac{\mu }{m}\overline{\beta }_{p}^{(k)} \biggl( \frac{h\mu }{m} \biggr), \end{aligned}$$

associated with the poly-Bernoulli functions of arbitrary indices, and derived a reciprocity relation for these poly-Dedekind sums.