1 Introduction and background

The statistical convergence was derived from the convergence of real sequences by Fast [1] and Schoenberg [2]. After the studies of Šalát [3], Fridy [4], and Connor [5] in this area, many studies have been conducted. Kostyrko et al. [6] introduced the concept of ideal convergence by expanding the concept of statistical convergence. After basic properties of \(\mathcal{I}\)-convergence were given by Kostyrko et al. [7], some studies [810] have been the basis of other studies.

Matloka [11] was the first scholar who introduced the notion of convergence of a sequence of fuzzy numbers, and he proved some basic theorems. In later years, Nanda [12] studied the sequences of fuzzy numbers again and Ṣenc̣imen and Pehlivan [13] introduced the notions of a statistically convergent sequence and a statistically Cauchy sequence in a fuzzy normed linear space. The concepts of \(\mathcal{I}\)-convergence, \(\mathcal{I}^{\ast }\)-convergence, and \(\mathcal{I}\)-Cauchy sequence were studied by Hazarika [14] in a fuzzy normed linear space. Especially, the studies of Savaş [1517], Et et al. [18], Işık [19], C̣ınar [20], and Altınok et al. [21] on difference sequences and fuzzy numbers made important contributions to this field. Recently, Türkmen and C̣ınar [22] studied lacunary statistical convergence in fuzzy normed spaces. Türkmen and Dündar [23] scrutinized same concepts for double sequences, and Türkmen [24] reinterpreted these works in fuzzy n-normed spaces.

In this paper, we introduce and study the concepts of lacunary \(\mathcal {I}_{2}\)-convergence, lacunary convergence, \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-limit point, and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster point for double sequences in a fuzzy normed space. Also, we scrutinize their relations.

Now, we recall the concept of double sequence, statistical convergence, ideal convergence, double lacunary sequence, fuzzy norm, and some basic definitions (see [13, 18, 2123, 2549]).

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential idea is that each element \(x\in X\) is assigned a membership grade \(u(x)\) taking values in \([0,1]\), with \(u(x)=0\) corresponding to nonmembership, \(0< u(x)<1\) to partial membership, and \(u(x)=1 \) to full membership.

According to Zadeh, a fuzzy subset of X is a nonempty subset \(\{(x,u(x)):x\in X\}\) of \(X\times [ 0,1 ] \) for some function \(u:X\rightarrow [ 0,1 ] \). The function u itself is often used for the fuzzy set. The function u is called a fuzzy number under certain conditions. Also, all fuzzy numbers are denoted as \(L(\mathbb{R})\) and the set of all nonnegative fuzzy numbers as \(L^{\ast} ( \mathbb {R} )\).

For \(u\in L(\mathbb{R})\), the α level set of u is defined by

$$ [ u ] _{\alpha}=\left \{ \textstyle\begin{array}{l@{\quad}l} {\{x\in\mathbb{R}:u(x)\geq\alpha\}} , & {{\text{if }} \alpha\in ( 0,1 ],} \\ \sup u , & {{\text{if }} \alpha=0.}\end{array}\displaystyle \right . $$

For \(u,v\in L(\mathbb{R})\), the supremum metric on \(L(\mathbb{R})\) is defined as

$$ D ( u,v ) =\sup_{0\leq\alpha\leq1}\max \bigl\{ \bigl\vert u_{\alpha}^{-}-v_{\alpha}^{-} \bigr\vert , \bigl\vert u_{\alpha }^{+}-v_{\alpha}^{+} \bigr\vert \bigr\} . $$

A sequence \(x=(x_{k})\) of fuzzy numbers is said to be convergent to a fuzzy number \(x_{0}\) if there exists a positive integer \(k_{0}\) such that \(D ( x_{k},x_{0} ) <\varepsilon\), for every \(\varepsilon >0\) and \(k>k_{0}\). A sequence \(x=(x_{k})\) of fuzzy numbers convergent to levelwise to \(x_{0}\) if and only if \(\lim_{k\rightarrow\infty } [x_{k} ] _{\alpha}^{-}= [ x_{0} ] _{\alpha}^{-} \) and \(\lim_{k\rightarrow\infty} [ x_{k} ] _{\alpha}^{+}= [ x_{0} ] _{\alpha}^{+}\), where \([ x_{k} ] _{\alpha }= [ (x_{k} ) _{\alpha}^{-}, ( x_{k} ) _{\alpha }^{+} ] \) and \([ x_{0} ] _{\alpha}= [ ( x_{0} ) _{\alpha}^{-}, ( x_{0} ) _{\alpha}^{+} ] \), for every \(\alpha\in ( 0,1 ) \).

A sequence \(x= ( x_{k} ) \) of fuzzy numbers is said to be statistically convergent to a fuzzy number \(x_{0}\) if every \(\varepsilon>0\),

$$ \lim_{n}\frac{1}{n} \bigl\vert \bigl\{ k\leq n:\overline{d} ( x_{k},x_{0} ) \geq\varepsilon \bigr\} \bigr\vert =0. $$

Later, many mathematicians studied statistical convergence of fuzzy numbers and extended this notion to fuzzy normed spaces.

Let X be a vector space over \(\mathbb{R}\), \(\Vert \cdot \Vert :X\rightarrow L^{\ast} ( \mathbb{R} )\), and let the mappings \(L,R: [ 0,1 ] \times [ 0,1 ] \rightarrow [ 0,1 ] \) be symmetric, nondecreasing in both arguments, and satisfy \(L ( 0,0 ) =0\) and \(R(1,1)=1\). The quadruple \(( X, \Vert \cdot \Vert ,L,R ) \) is called a fuzzy normed linear space (briefly, \(( X, \Vert \cdot \Vert ) \)FNS) and \(\Vert \cdot \Vert \) is a fuzzy norm if the following axioms are satisfied:

  1. (1)

    \(\Vert x \Vert =\widetilde{0}\) if and only if \(x=0\),

  2. (2)

    \(\Vert rx \Vert = \vert r \vert \odot \Vert x \Vert \) for \(x\in X\), \(r\in\mathbb{R}\),

  3. (3)

    for all \(x,y\in X\),

    1. (a)

      \(\Vert x+y \Vert (s+t )\ge L ( \Vert x \Vert (s ), \Vert y \Vert (t ) )\), whenever \(s\le \Vert x \Vert _{1}^{-} \), \(t\le \Vert y \Vert _{1}^{-} \) and \(s+t\le \Vert x+y \Vert _{1}^{-}\),

    2. (b)

      \(\Vert x+y \Vert (s+t )\le R ( \Vert x \Vert (s ), \Vert y \Vert (t ) )\), whenever \(s\ge \Vert x \Vert _{1}^{-} \), \(t\ge \Vert y \Vert _{1}^{-} \) and \(s+t\ge \Vert x+y \Vert _{1}^{-}\).

Let \(( X, \Vert \cdot \Vert ) \) be a fuzzy normed linear space. A sequence \(( x_{n} ) _{n=1}^{\infty}\) in X is convergent to \(L\in X\) with respect to the fuzzy norm on X and it is denoted by \(x_{n}\overset{\mathrm{FN}}{\rightarrow}L\), provided \(( D ) \text{-}\lim_{n\rightarrow\infty} \Vert x_{n}-L \Vert =\widetilde{0}\), i.e., for every \(\varepsilon>0\) there exists an \(N ( \varepsilon ) \in\mathbb{N}\) such that \(D ( \Vert x_{n}-L \Vert ,\widetilde{0} ) <\varepsilon\), for all \(n\geq N ( \varepsilon ) \). This means that for every \(\varepsilon>0\) there exists an integer \(N ( \varepsilon ) \in\mathbb{N}\) such that

$$ \sup_{\alpha\in [ 0,1 ] } \Vert x_{n}-L \Vert _{\alpha }^{+}= \Vert x_{n}-L \Vert _{0}^{+}< \varepsilon $$

for all \(n\geq N ( \varepsilon ) \).

Let \(( X, \Vert \cdot \Vert ) \) be an FNS. A sequence \(( x_{n} ) \) in X is statistically convergent to \(L\in X\) with respect to the fuzzy norm on X and it is denoted by \(x_{n}\overset {\mathrm{FS}}{\rightarrow}L\), provided that for each \(\varepsilon>0\), we have \(\delta ( \{ n\in\mathbb{N}:D ( \Vert x_{n}-L \Vert ,\tilde{0} ) \geq\varepsilon \} ) =0\). This implies that for each \(\varepsilon>0\), the set \(K ( \varepsilon ) = \{ n\in \mathbb{N}: \Vert x_{n}-L \Vert _{0}^{+}\geq\varepsilon \} \) has natural density zero, namely, for each \(\varepsilon>0\), \(\Vert x_{n}-L \Vert _{0}^{+}<\varepsilon\) for almost all n.

A double sequence \(x=(x_{mn})_{ ( m,n ) \in\mathbb{N}\times \mathbb{N}}\) is said to be Pringsheim’s convergent (or P-convergent) if for given \(\varepsilon>0\) there exists an integer \(N ( \varepsilon ) \) such that \(\vert x_{mn}-L \vert <\varepsilon\), whenever \(m,n\geq N ( \varepsilon ) \). It is denoted by \(\lim_{m,n\rightarrow\infty}x_{mn}=L\), where m and n tend to infinity independent of each other.

Let \(( X, \Vert \cdot \Vert ) \) be an FNS. If for every \(\varepsilon>0\) there exist a number \(N=N ( \varepsilon ) \) such that

$$ D \bigl( \Vert x_{mn}-L \Vert ,\widetilde{0} \bigr) < \varepsilon $$

for all \(m,n\geq N\), then the double sequence \(x=(x_{mn})\) is said to be convergent to \(L\in X\) with respect to the fuzzy norm on X. In this case, it is denoted by \(x_{mn}\overset{\mathrm{FN}}{\longrightarrow}L\). This means that for every \(\varepsilon>0\) there exist a number \(N=N ( \varepsilon ) \) such that \(\sup_{\alpha\in [ 0,1 ] } \Vert x_{mn}-L \Vert _{\alpha}^{+}= \Vert x_{mn}-L \Vert _{0}^{+}<\varepsilon\), for all \(m,n\geq N\).

Let \(K \subset\mathbb{N} \times\mathbb{N}\). Let \(K_{mn}\) be the number of \((j,k)\in K\) such that \(j\leq m\), \(k\leq n\). If the sequence \(\{\frac{K_{mn}}{m.n} \}\) has a limit in Pringsheim’s sense then we say that K has double natural density denoted by

$$\begin{aligned} \delta_{2}(K)= \lim_{m,n \rightarrow\infty} \frac{K_{mn}}{m.n}. \end{aligned}$$

Let \(( X, \Vert \cdot \Vert ) \) be an FNS. If for every \(\varepsilon>0\),

$$ \delta_{2} \bigl( \bigl\{ ( m,n ) \in\mathbb{N}\times\mathbb {N}:D \bigl( \Vert x_{mn}-L \Vert ,\widetilde{0} \bigr) \geq\varepsilon \bigr\} \bigr) =0, $$

then the double sequence \(x=(x_{mn})\) is said to be statistically convergent to \(L\in X\) with respect to the fuzzy norm on X. This implies that \(\Vert x_{mn}-L \Vert _{0}^{+}<\varepsilon\) for almost all m, n and each \(\varepsilon>0\). In this case, it is denoted \(\text{FS}_{2}\text{-}\lim \Vert x_{mn}-L \Vert =\widetilde{0}\) or \(x_{mn}\overset {\mathrm{FS}_{2}}{\longrightarrow}L\).

Let \(X\neq\emptyset\) and (i) \(\emptyset\in\mathcal{I}\), (ii) \(A,B\in \mathcal{I}\) implies \(A\cup B\in\mathcal{I,}\) and (iii) \(A\in\mathcal {I}\), \(B\subset A\) implies \(B\in\mathcal{I}\).

If class \(\mathcal{I}\) satisfies (i), (ii), (iii), then \(\mathcal{I}\) is an ideal in X. If \(X\notin\mathcal{I}\), \(\mathcal{I}\) is a nontrivial ideal. If also \(\{x\}\in\mathcal{I}\) for each \(x\in X\), the nontrivial ideal \(\mathcal{I}\) in X is called admissible.

Let \(X\neq\emptyset\) and \(\mathcal{F}\) be a nonempty class subsets of X. If the following conditions are satisfied, \(\mathcal{F}\) is a filter in X:

(i) \(\emptyset\notin\mathcal{F}\), (ii) \(A,B\in\mathcal{F}\) implies \(A\cap B\in\mathcal{F}\), (iii) \(A\in\mathcal{F}\), \(A\subset B\) implies \(B\in\mathcal{F}\).

Let \(\mathcal{I}\) be a nontrivial ideal in \(X\neq\emptyset\). The class \(\mathcal{F}(\mathcal{I})=\{M\subset X:(\exists A\in\mathcal{I})(M=X\setminus A)\}\) is a filter associated with \(\mathcal{I}\) on X.

A nontrivial ideal \(\mathcal{I}_{2}\) of \(\mathbb{N}\times\mathbb{N}\) is called strongly admissible if \(\{i\}\times\mathbb{N}\) and \(\mathbb {N}\times \{i\}\) belong to \(\mathcal{I}_{2}\) for each \(i\in\mathbb{N}\). It is evident that a strongly admissible ideal is also admissible. Throughout the paper, we consider \(\mathcal{I}_{2}\) as a strongly admissible ideal in \(\mathbb {N}\times\mathbb{N}\).

Let \(( X, \Vert \cdot \Vert ) \) be a fuzzy normed space. A sequence \(x=(x_{n})_{n\in\mathbb{N}}\) in X is said to be \(\mathcal {I}\)-convergent to \(L\in X\) with respect to fuzzy norm on X if for each \(\varepsilon>0\), the set \(A ( \varepsilon ) = \{ n\in \mathbb{N}: \Vert x_{n}-{L} \Vert _{0}^{+}\geq\varepsilon \} \) belongs to \(\mathcal{I}\). In this case, we write \(x_{n}\overset {\mathrm{F}\mathcal{I}}{\longrightarrow}L\). The element L is called the \(\mathcal{I}\)-limit of x in X.

A sequence \(( x_{n} ) \) in X is said to be \(\mathcal {I}^{\ast}\)-convergent to L in X with respect to the fuzzy norm on X if there exists a set \(M\in F ( \mathcal{I} ) \), \(M=\{t_{1}< t_{2}<\cdots \}\subset\mathbb{N}\) such that \(\lim_{k\rightarrow\infty} \Vert x_{t_{k}}-L \Vert =0\).

Let \(( X, \Vert \cdot \Vert ) \) be a fuzzy normed space. A sequence \(x=(x_{mn})\) in X is said to be \(\mathcal{I}_{2}\)-convergent to \(L\in X\) with respect to fuzzy norm on X, if for each \(\varepsilon >0\), the set \(A ( \varepsilon ) = \{ ( m,n ) \in\mathbb {N}\times\mathbb{N}: \Vert x_{mn}-{L} \Vert _{0}^{+}\geq \varepsilon \} \) belongs to \(\mathcal{I}_{2}\). In this case, it is denoted \(x_{mn}\overset{\mathrm{F}\mathcal{I}_{2}}{\longrightarrow}L\). The element L is called the \(\mathcal{I}_{2}\)-limit of x in X.

The double sequence \(\theta_{2}=\{(r_{k},t_{l})\}\) is called a double lacunary sequence if there exist two increasing sequences of integers such that

$$ r_{0}=0,\qquad h_{k}=r_{k}-r_{k-1} \rightarrow\infty\quad \text{and}\quad t_{0}=0, \qquad \overline{h}_{l}=t_{l}-t_{l-1} \rightarrow \infty, \quad\text{as } k,l\rightarrow\infty. $$

We use following notations in the sequel:

$$ r_{kl}=r_{k}{t}_{l},\qquad h_{kl}=h_{k} \overline{h}_{l},\qquad J_{kl}= \bigl\{ (r,t):r_{k-1}< r \leq r_{k} \text{ and } t_{l-1}< t\leq t_{l}. \bigr\} $$

2 Lacunary \(\mathcal{I}_{2}\)-convergence

In this section, we introduce the concepts of \(\theta_{2}\)-convergence and lacunary \(\mathcal{I}_{2}\)-convergence in fuzzy normed spaces. Also, we examine the relation between \(\mathrm{F}\theta_{2}\)-convergence and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-convergence.

Throughout the paper, we let \(( X, \Vert \cdot \Vert ) \) be an FNS, \(\mathcal{I}_{2}\subset2^{\mathbb{N\times N}}\) be a strongly admissible ideal, \(\theta_{2}=\{(r_{k},t_{l})\}\) be a double lacunary sequence, and \(x=(x_{rt})\) be a double sequence.

Definition 2.1

A sequence \(x=(x_{rt})_{ (r,t ) \in\mathbb{N}\times \mathbb{N}}\) in X is said to be \(\theta_{2}\)-convergent to \(L_{1}\in X\) with respect to fuzzy norm on X if for each \(\varepsilon>0\), there exists \(n_{0}\in\mathbb{N}\) such that

$$ \frac{1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}}D \bigl( \Vert x_{rt}-L_{1} \Vert ,\tilde{0} \bigr) < \varepsilon $$

for all \(k,l\geq n_{0}\). In this case, we write \(x_{rt}\overset{\mathrm{F}\theta _{2}}{\longrightarrow}L_{1}\) or \(x_{rt}\rightarrow L_{1} ( \mathrm{F}\theta _{2} )\), or \(\mathrm{F}\theta_{2}\text{-}\lim_{r,t\rightarrow\infty}x_{rt}=L_{1}\). The element \(L_{1}\) is called the \(\mathrm{F}\theta_{2}\)-limit of x in X.

Theorem 2.1

If\(x= ( x_{rt} ) \)inXis\(\mathrm{F}\theta_{2}\)-convergent, then\(\mathrm{F}\theta_{2}\text{-}\lim x\)is unique.

Proof

Assume that \(\mathrm{F}\theta_{2}\text{-}\lim x=L_{1}\) and \(\mathrm{F}\theta_{2}\text{-}\lim x=L_{2}\). Then, for any \(\varepsilon>0\), there exists an \(n_{1}\in\mathbb{N}\) such that

$$ \frac{1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{2} $$

for all \(k,l\geq n_{1}\). Also, there exists an integer \(n_{2}\in\mathbb {N}\) such that

$$ \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{2} \Vert _{0}^{+}< \frac{\varepsilon}{2} $$

for all \(k,l\geq n_{2}\).

Now, consider \(n_{0}=\max\{n_{1},n_{2}\}\). For \(k,l\geq n_{0}\), if we get a \(( p,q ) \in\mathbb{N}\)\(\times \mathbb{N}\), then we have

$$ \Vert x_{pq}-L_{1} \Vert _{0}^{+}< \frac{1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{2} $$

and

$$ \Vert x_{pq}-L_{2} \Vert _{0}^{+}< \frac{1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{2} \Vert _{0}^{+}< \frac{\varepsilon}{2}. $$

Thus, we get

$$ \Vert L_{1}-L_{2} \Vert _{0}^{+} \leq \Vert x_{pq}-L_{1} \Vert _{0}^{+}+ \Vert x_{pq}-L_{2} \Vert _{0}^{+}< \varepsilon. $$

Since \(\varepsilon>0\) is arbitrary, we have \(\Vert L_{1}-{L}_{2} \Vert _{0}^{+}=0\) which implies that \(L_{1}=L_{2}\). □

Definition 2.2

A sequence \(x=(x_{rt})\) in X is said to be lacunary \(\mathcal {I}_{2}\)-convergent to \(L_{1}\in X\) with respect to fuzzy norm on X if for each \(\varepsilon>0\), the set

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum _{ ( r,t ) \in J_{kl}}D \bigl( \Vert x_{rt}-L_{1} \Vert ,\tilde{0} \bigr) \geq\varepsilon \biggr\} $$

belongs to \(\mathcal{I}_{2}\). In this case, we write \(x_{rt}\overset {\mathrm{F}\mathcal{I}_{{\theta}_{2}}}{\longrightarrow}L_{1}\) or \(x_{rt}\rightarrow L_{1} ( \mathrm{F}\mathcal {I}_{{\theta}_{2}} )\), or \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim_{r,t\rightarrow\infty}x_{rt}=L_{1}\). The element \(L_{1}\) is called the \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-limit of \(( x_{rt} ) \) in X.

Lemma 1

For every\(\varepsilon>0\), the following statements are equivalent:

  1. (a)

    \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim_{r,t\rightarrow\infty}x_{rt}=L_{1}\),

  2. (b)

    \(\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-{L}_{1} \Vert _{0}^{+}\geq\varepsilon \} \in\mathcal{I}_{2}\),

  3. (c)

    \(\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-{L}_{1} \Vert _{0}^{+}<\varepsilon \} \in\mathcal{F} ( \mathcal{I}_{2} )\),

  4. (d)

    \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim _{r,t\rightarrow\infty} \Vert x_{rt}-{L}_{1} \Vert _{0}^{+}=0\).

Theorem 2.2

If\(x= ( x_{rt} ) \)inXis lacunary\(\mathcal{I}_{2}\)-convergent with respect to fuzzy norm onX, then\(\mathrm{F}\mathcal {I}_{{\theta}_{2}}\text{-}\lim x\)is unique.

Proof

This theorem is an analogue of Theorem 2.1; the proof follows easily. □

Theorem 2.3

Let\(x= ( x_{rt} ) \)and\(y= ( y_{rt} ) \)be two double sequences inX. Then,

  1. (i)

    if\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x_{rt}=L_{1}\)and\(\mathrm{F}\mathcal {I}_{{\theta}_{2}}\text{-}\lim y_{rt}=L_{2}\), then\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim ( x_{rt}+y_{rt} ) =L_{1}+L_{2}\);

  2. (ii)

    if\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x_{rt}=L_{1}\), then\(\mathrm{F}\mathcal {I}_{{\theta}_{2}}\text{-}\lim cx_{rt}=cL_{1}\), for\(c\in\mathbb{R}- \{0 \}\).

Proof

(i) For any \(\varepsilon>0\), let we define the following sets:

$$B_{1}= \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-{L}_{1} \Vert _{0}^{+} \geq\frac{\varepsilon}{2} \biggr\} $$

and

$$B_{2}= \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert y_{rt}-{L}_{2} \Vert _{0}^{+} \geq\frac{\varepsilon}{2} \biggr\} . $$

Since \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x_{rt}=L_{1}\) and \(\mathrm{F}\mathcal {I}_{{\theta}_{2}}\text{-}\lim y_{rt}=L_{2}\), using Lemma 1, we have \(B_{1}\in \mathcal{I}_{2}\) and \(B_{2}\in\mathcal{I}_{2}\), for all \(\varepsilon>0\).

Now, let \(B_{3}=B_{1}\cup B_{2}\). Then, \(B_{3}\in\mathcal{I}_{2}\). This implies that its complement \(( B_{3} ) ^{c}\) is a nonempty set in \(\mathcal{F} ( \mathcal{I}_{2} ) \). We claim that

$$ ( B_{3} ) ^{c}\subset \biggl\{ ( k,l ) \in \mathbb{N\times N}:\frac{1}{h_{kl}}\sum _{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1}+y_{rt}-L_{2} \Vert _{0}^{+}< \varepsilon \biggr\} . $$

Let \(( k,l ) \in ( B_{3} ) ^{c}\), then we have

$$ \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{2}\quad\text{and}\quad\frac {1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert y_{rt}-L_{2} \Vert _{0}^{+}< \frac{\varepsilon}{2}. $$

Now, If we get a \(( p,q ) \in\mathbb{N\times N}\), then we have

$$\Vert x_{pq}-L_{1} \Vert _{0}^{+} < \frac{1}{h_{kl}}\sum _{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{2} $$

and

$$\Vert y_{pq}-L_{2} \Vert _{0}^{+} < \frac{1}{h_{kl}}\sum _{ ( r,t ) \in J_{kl}} \Vert y_{rt}-L_{2} \Vert _{0}^{+}< \frac{\varepsilon}{2}. $$

Then, we have

$$\Vert x_{rt}-L_{1}+y_{rt}-L_{2} \Vert _{0}^{+}\leq \Vert x_{rt}-L_{1} \Vert _{0}^{+}+ \Vert y_{rt}-L_{2} \Vert _{0}^{+}< \varepsilon. $$

Hence,

$$ ( B_{3} ) ^{c}\subset \biggl\{ ( k,l ) \in \mathbb{N\times N}:\frac{1}{h_{kl}}\sum _{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1}+y_{rt}-L_{2} \Vert _{0}^{+}< \varepsilon \biggr\} . $$

Since \(( B_{3} ) ^{c}\in\mathcal{F} ( \mathcal {I}_{2} )\), we have

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \bigl\Vert ( x_{rt}+y_{rt} ) - ( L_{1}+L_{2} ) \bigr\Vert _{0}^{+}\geq\varepsilon \biggr\} \in \mathcal{I}_{2}. $$

Therefore, \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim (x_{rt}+y_{rt} )=L_{1}+L_{2}\).

(ii) Let \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x_{rt}=L_{1}\). Then, for each \(\varepsilon>0\) and \(c\in\mathbb{R}\setminus \{0 \} \), we define the following set:

$$ C= \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{ \vert c \vert } \biggr\} . $$

So, \(C\in\mathcal{F} ( \mathcal{I}_{2} )\). Let \((k,l ) \in C\), then we have

$$\begin{aligned} \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \frac{\varepsilon}{ \vert c \vert } \Longrightarrow&\frac{ \vert c \vert }{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \vert c \vert \frac{\varepsilon}{ \vert c \vert } \\ \Longrightarrow&\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \vert c \vert \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \varepsilon \\ \Longrightarrow& \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert cx_{rt}-cL_{1} \Vert _{0}^{+}< \varepsilon. \end{aligned}$$

Therefore,

$$ C\subset \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert cx_{rt}-cL_{1} \Vert _{0}^{+}< \varepsilon \biggr\} $$

and

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert cx_{rt}-cL_{1} \Vert _{0}^{+}< \varepsilon \biggr\} \in\mathcal{F} ( \mathcal {I}_{2} ) . $$

Hence \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim cx_{rt}=cL_{1}\). □

Theorem 2.4

Let\(x= ( x_{rt} )\)be a double sequence inX. If\(\mathrm{F}\theta_{2}\text{-}\lim x=L_{1}\), then\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x=L_{1}\).

Proof

Let \(\mathrm{F}\theta_{2}\text{-}\lim x=L_{1}\). Then, for every \(\varepsilon>0\), there exists \(n_{0}\in\mathbb{N}\) such that

$$ \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \varepsilon $$

for all \(k,l\geq n_{0}\). Therefore, the set

$$\begin{aligned} K =& \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+} \geq\varepsilon \biggr\} \\ \subset& \bigl( \mathbb{N\times} \bigl\{ 1,2,\dots,(n_{0}-1) \bigr\} \bigr) \cup \bigl( \bigl\{ 1,2,\dots,(n_{0}-1) \bigr\} \mathbb{ \times N} \bigr) . \end{aligned}$$

So, we have \(K\in\mathcal{I}_{2}\). Hence, \(\mathrm{F}\mathcal{I}_{{\theta }_{2}}\text{-}\lim x=L_{1}\). □

Theorem 2.5

Let\(x= ( x_{rt} )\)be a double sequence inX. If\(\mathrm{F}\theta_{2}\text{-}\lim x=L_{1}\), then there exists a subsequence\(( x_{r_{i}t_{j}} ) \)such that\(x_{r_{i}t_{j}}\overset {\mathrm{FN}}{\rightarrow}L_{1}\).

Proof

Let \(\mathrm{F}\theta_{2}\text{-}\lim x=L_{1}\). Then, for every \(\varepsilon>0\), there exists \(n_{0}\in\mathbb{N}\) such that

$$ \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \varepsilon $$

for all \(k,l\geq n_{0}\). Clearly, for each \(k,l\geq n_{0}\), we can select a \(( r_{i},t_{j} ) \in J_{kl}\) such that

$$ \Vert x_{r_{i}t_{j}}-L_{1} \Vert _{0}^{+}< \frac {1}{h_{kl}}\sum _{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L_{1} \Vert _{0}^{+}< \varepsilon. $$

It follows that \(x_{r_{i}t_{j}}\overset{\mathrm{FN}}{\rightarrow}L_{1}\). □

3 Limit point and cluster point

In this section, we introduce the notions of \(\mathrm{F}\mathcal{I}_{{\theta }_{2}}\)-limit point and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster point for double sequences in a fuzzy normed space. Also, we examine the relations between \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-limit point and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster point of double sequences in a fuzzy normed space.

Definition 3.1

An element \(L\in X\) is said to be an \(\mathrm{F}\mathcal {I}_{{\theta}_{2}} \)-limit point of \(x= ( x_{rt} ) \) if there is a set \(M_{1}= \{ r_{1}< r_{2}<\cdots<r_{i}<\cdots \} \subset\mathbb{N}\) and \(M_{2}= \{ t_{1}< t_{2}<\cdots<t_{j}<\cdots \} \subset\mathbb{N}\) such that the set \(M^{\prime}= \{ ( k,l ) \in\mathbb{N\times N}: ( r_{i},t_{j} ) \in J_{kl} \} \notin\mathcal{I}_{2}\) and \(\mathrm{F}\theta _{2}\text{-}\lim x_{r_{i}t_{j}}=L\). We denote the set of all \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-limit points of x as \(\varLambda_{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \).

Definition 3.2

An element \(L\in X\) is said to be an \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster point of \(x= ( x_{rt} ) \) if for every \(\varepsilon>0\), we have

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L \Vert _{0}^{+}< \varepsilon \biggr\} \notin\mathcal{I}_{2}. $$

We denote the set of all \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster points of x as \(\varGamma _{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \).

Theorem 3.1

For each\(x= ( x_{rt} ) \)inX, we have\(\varLambda _{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \subset\varGamma_{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \).

Proof

Let \(L\in\varLambda_{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \), then there exist two sets \(M_{1},M_{2}\subset\mathbb{N}\) such that \(M^{\prime }\notin\mathcal{I}_{2}\), where \(M_{1}\), \(M_{2}\), and \(M^{\prime}\) are as in Definition 3.1, and also \(\mathrm{F}\theta_{2}\text{-}\lim x_{r_{i}t_{j}}=L\). Thus, for every \(\varepsilon>0\) there exists \(n_{0}\in\mathbb{N}\) such that

$$ \frac{1}{h_{kl}}\sum_{ ( r_{i},t_{j} ) \in J_{kl}} \Vert x_{r_{i}t_{j}}-L \Vert _{0}^{+}< \varepsilon $$

for all \(k,l\geq n_{0}\). Then we get

$$\begin{aligned}D&= \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L \Vert _{0}^{+}< \varepsilon \biggr\} \\ &\supseteq M^{\prime}\setminus \bigl\{ \{ r_{1},r_{2}, \dots ,r_{n_{0}} \} \times \{t_{1},t_{2}, \dots,t_{n_{0}} \} \bigr\} .\end{aligned} $$

Therefore, we have \(M^{\prime}\setminus \{ \{ r_{1},r_{2},\dots,r_{n_{0}} \} \times \{ t_{1},t_{2},\dots,t_{n_{0}} \} \} \notin\mathcal{I}_{2}\) and as such \(D\notin\mathcal{I}_{2}\). Consequently, \(L\in\varGamma _{F}^{\mathcal{I}_{{\theta}_{2}}} ( x ) \). □

Theorem 3.2

For every double sequence\(x= (x_{rt} )\), the following statements are equivalent:

  1. (i)

    Lis an\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-limit points ofx,

  2. (ii)

    there exist two double sequences\(y= ( y_{rt} ) \)and\(z= ( z_{rt} ) \)inXsuch that\(x=y+z\), \(\mathrm{F}\theta_{2}\text{-}\lim y=L\)and\(\{ ( k,l ) \in\mathbb{N\times N}: (r,t ) \in J_{kl}, z_{rt}\neq0 \} \in\mathcal{I}_{2}\).

Proof

Suppose that (i) holds. Then, there exist sets \(M_{1}\), \(M_{2}\), and \(M^{\prime } \) as in Definition 3.1 such that \(M^{\prime}\notin\)\(\mathcal{I}_{2}\) and \(\mathrm{F}\theta_{2}\text{-}\lim x_{r_{i}t_{j}}=L\). Define the sequences y and z as follows:

$$ y_{rt}=\left \{ \textstyle\begin{array}{l@{\quad}l} x_{rt} , & \text{if } ( r,t ) \in J_{kl}, ( k,l ) \in M^{\prime}, \\ L, & \text{otherwise}\end{array}\displaystyle \right . $$

and

$$ z_{rt}=\left \{ \textstyle\begin{array}{l@{\quad}l} 0 , & \text{if } ( r,t ) \in J_{kl}, ( k,l ) \in M^{\prime}, \\ x_{rt}-L , & \text{otherwise.}\end{array}\displaystyle \right . $$

It suffices to consider the case \(( r,t ) \in J_{kl}\) such that \(( k,l ) \in\mathbb{N\times N}\setminus M^{\prime}\). For each \(\varepsilon>0\), we have \(\Vert y_{rt}-L \Vert _{0}^{+} =0<\varepsilon\). Thus,

$$ \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert y_{rt}-L \Vert _{0}^{+}=0< \varepsilon. $$

Therefore, \(\mathrm{F}\theta_{2}\text{-}\lim y=L\). Now

$$\bigl\{ ( k,l ) \in\mathbb{N\times N}: ( r,t ) \in J_{kl}, z_{rt}\neq0 \bigr\} \subset \mathbb{N\times N} \setminus M^{\prime}. $$

But, \(\mathbb{N\times N}\setminus M^{\prime}\in\mathcal{I}_{2}\), and so

$$\bigl\{ ( k,l ) \in \mathbb{N\times N}: ( r,t ) \in J_{kl}, z_{rt}\neq0 \bigr\} \in \mathcal{I}_{2}. $$

Now, suppose that (ii) holds. Let \(M^{\prime}= \{ ( k,l ) \in \mathbb{N\times N}: ( r,t ) \in J_{kl}, z_{rt}=0 \} \). Then, clearly \(M^{\prime}\in F(\mathcal{I}_{2})\) and so it is an infinite set. Construct the sets \(M_{1}= \{ r_{1}< r_{2}<\cdots<r_{i}<\cdots \} \subset \mathbb{N}\) and \(M_{2}= \{ t_{1}< t_{2}<\cdots<t_{j}<\cdots \} \subset \mathbb{N}\) such that \(( r_{i},t_{j} ) \in J_{kl}\) and \(z_{r_{i}t_{j}}=0\). Since \(x_{r_{i}t_{j}}=y_{r_{i}t_{j}}\) and \(\mathrm{F}\theta _{2}\text{-}\lim y=L\), we obtain \(\mathrm{F}\theta_{2}\text{-}\lim x_{r_{i}t_{j}}=L\). This completes the proof. □

Theorem 3.3

If there is an\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-convergent sequence\(y= ( y_{rt} ) \)inXsuch that\(\{ ( r,t ) \in\mathbb{ N\times N}:y_{rt}\neq x_{rt} \} \in\mathcal{I}_{2}\), then\(x=(x_{rt})\)is also\(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-convergent.

Proof

Suppose that \(\{ ( r,t ) \in\mathbb{N\times N}:y_{rt}\neq x_{rt} \} \in\mathcal{I}_{2}\) and \(\mathrm{F}\mathcal{I}_{{\theta }_{2}}\text{-}\lim y=L\). Then, for every \(\varepsilon>0\), the set

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert y_{rt}-L \Vert _{0}^{+} \geq\varepsilon \biggr\} \in\mathcal{I}_{2}. $$

For every \(\varepsilon>0\), we get

$$\begin{aligned} & \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L \Vert _{0}^{+} \geq\varepsilon \biggr\} \\ & \quad\subseteq \bigl\{ ( r,t ) \in\mathbb{N\times N}:y_{rt}\neq x_{rt} \bigr\} \cup \biggl\{ ( k,l ) \in\mathbb{N\times N}: \frac{1}{h_{kl}}\sum_{ ( r,t ) \in J_{kl}} \Vert y_{rt}-L \Vert _{0}^{+} \geq\varepsilon \biggr\} . \end{aligned}$$

Therefore, we have

$$ \biggl\{ ( k,l ) \in\mathbb{N\times N}:\frac {1}{h_{kl}} \sum_{ ( r,t ) \in J_{kl}} \Vert x_{rt}-L \Vert _{0}^{+} \geq\varepsilon \biggr\} \in\mathcal{I}_{2}. $$

This completes the proof of the theorem. □

4 Conclusions

In this paper, we introduced the concepts of \(\mathrm{F}\theta_{2}\)-convergence and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-convergence. So, we saw that these limits are unique and if \(\mathrm{F}\theta_{2}\text{-}\lim x=L\), then \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\text{-}\lim x=L\). Later, we gave the definitions of \(\mathrm{F}\mathcal {I}_{{\theta}_{2}}\)-limit point and \(\mathrm{F}\mathcal{I}_{{\theta}_{2}}\)-cluster point, and we proved that every limit point was also a cluster point. In further studies, the lacunary ideal Cauchy sequence and lacunary Cauchy sequence of double sequences can be defined and examined in fuzzy normed spaces.