1 Introduction and preliminaries

Let ω, c, \(c_{0}\), \(l_{\infty }\) denote sequence space, convergent, null and bounded sequences respectively, with norm \(\|x\|_{\infty }= \sup_{k\in \mathbb{N}}|x_{k}|\). The idea of difference sequence spaces was defined by Kizmaz as follows:

$$\lambda (\Delta )=\bigl\{ x=(x_{n})\in \omega :(x_{n}-x_{n+1}) \in \lambda \bigr\} ,\quad \mbox{for }\lambda \in \{l_{\infty },c, c_{0}\}. $$

Recently, many authors have made a new approach to construct sequence spaces using matrix domain [2, 3, 8, 10]. Lately, Kara [9] has investigated difference sequence space.

$$l_{\infty }(\hat{F})= \biggl\{ x=(x_{n})\in \omega : \sup _{n\in \mathbb{N}} \biggl\vert \frac{f_{n}}{f_{n+1}}x_{n}- \frac{f_{n+1}}{f _{n}}x_{n-1} \biggr\vert < \infty \biggr\} , $$

which is derived from the Fibonacci difference matrix \(\hat{F}= \hat{(f_{nk})}\) as follows:

$$\hat{f_{nk}}= \textstyle\begin{cases} -\frac{f_{n+1}}{f_{n}} &k=n-1, \\ \frac{f_{n}}{f_{n+1}} &k=n, \\ 0 &0\leq k< n-1\mbox{ or } k> n, \end{cases} $$

where \((f_{n}), n\in \mathbb{N}\) is the sequence of Fibonacci numbers given by the linear recurrence relation as \(f_{0} = 1 =f_{1}\) and \(f_{n-1}+f_{n-2}= f_{n}\) for \(n\geq 2\). Quite recently, Khan et al. [13] defined the notion of I-convergent Fibonacci difference sequence spaces as \(c_{0}^{I}(\hat{F})\), \(c^{I}(\hat{F})\) and \(l_{\infty }^{I}(\hat{F})\). Fibonacci numbers have various applications in the fields of arts, science and architecture. For further details, refer to [4, 11].

Fuzzy logic was first introduced by Zadeh in 1965 [24] and it found its applications in various fields like control theory, artificial intelligence, robotics. Later on many authors [7, 16] investigated fuzzy topology to define fuzzy metric space. As a generalisation of fuzzy sets, Atanassov [1] defined the view of intuitionistic fuzzy sets. Intuitionistic fuzzy normed space [18] and 2-normed space [17] are the recent studies in fuzzy theory.

Kostyrko et al. [15] in 1999 generalised the idea of statistical convergence [6, 21] to ideal convergence. Further this idea was investigated by Salat, Tripathy and Ziman [19, 20], Tripathy and Hazarika [22, 23] and many others.

We recall certain definitions which will be useful in this paper.

Definition 1.1

([21])

A sequence \(x=(x_{n}) \in \omega \) is statistically convergent to \(\xi \in \mathbb{R}\) if for every \(\epsilon >0 \) the set \(\{n\in \mathbb{N}:|x_{n}-\xi |\geq \epsilon \}\) has asymptotic density zero. We write st-\(\lim x =\xi \). If \(\xi = 0\), then \(x=(x_{n})\) is called st–null.

Definition 1.2

A sequence \(x=(x_{n})\in \omega \) is called statistically Cauchy sequence if, for every \(\epsilon >0\), ∃ a number \(N=N(\epsilon )\) such that

$$\lim_{n} \frac{1}{n} \bigl\vert \bigl\{ j\leq n: \vert x_{j}-x_{N} \vert \geq \epsilon \bigr\} \bigr\vert =0. $$

Definition 1.3

([14])

An ideal means a family of sets \(I \subset P(X)\) satisfying the following conditions:

  1. (i)

    \(\phi \in I\),

  2. (ii)

    \(C\cup D\in I\) for all \(C, D \in I\),

  3. (iii)

    for each \(C \in I\) and \(D \subset C\), we have \(D\in I\).

An ideal is said to be non-trivial if \(I\neq 2^{X}\) and admissible if \(\{\{x\}:x\in X\}\subset I\).

Definition 1.4

([13])

A family of sets \(\mathcal{F}\subset P(X)\) is called filter if and only if it satisfies the following conditions:

  1. (i)

    \(\phi \notin \mathcal{F}\),

  2. (ii)

    \(C, D\in \mathcal{F} \Rightarrow C\cap D\in \mathcal{F}\),

  3. (iii)

    for each \(C\in \mathcal{F}\) with \(C\subset D\), we have \(D\in \mathcal{F}\).

Definition 1.5

([15])

A sequence \(x=(x_{n})\) is called I-convergent to \(\xi \in \mathbb{R}\) if, for every \(\epsilon >0\), the set \(\{n\in \mathbb{N}:|x_{n}-\xi |\geq \epsilon \}\in I\). We write I-\(\lim x=\xi \). If \(\xi =0\), then \(x=(x_{n})\) is said to be I-null.

Definition 1.6

([13])

A sequence \(x=(x_{n})\) is said to be I-Cauchy if for every \(\epsilon > 0\) ∃ a number \(N=N( \epsilon )\) such that the set \(\{n\in \mathbb{N}:|x_{n}-x_{N}|\geq \epsilon \}\in \mathcal{I}\).

Definition 1.7

([14])

A sequence \(x=(x_{k})\) is convergent to ξ with respect to the intuitionistic fuzzy norm \((\mu ,\nu )\) if for every \(\epsilon , t >0\) \(\exists N\in \mathbb{N}\) with \(\mu (x_{k}-\xi ,t)>1-\epsilon \) and \(\nu (x_{k}-\xi ,t)<\epsilon \) for all \(k\geq N\). We write \((\mu ,\nu )-\lim x = \xi \).

Definition 1.8

([5])

Consider intuitionistic fuzzy normed space (IFNS) \((X,\mu ,\nu ,\ast ,\diamond )\). A sequence \(x=(x_{k})\) is said to be Cauchy sequence with respect to norm \((\mu ,\nu )\) if, for each \(\epsilon >0\), \(t >0\), there exists \(N\in \mathbb{N}\) such that \(\mu (x_{k}-x_{l},t) > 1-\epsilon \) and \(\nu (x_{k}-x_{l})<\epsilon \) for all \(k,l\geq N\).

Definition 1.9

([12])

Let \((X,\mu ,\nu ,\ast , \diamond )\) be IFNS. A sequence \(x=(x_{k})\in \omega \) is called I-convergent to ξ with respect to the intuitionistic norm \((\mu ,\nu )\) if for every ϵ, \(t > 0\) if the set \(\{k\in \mathbb{N}: \mu (x _{k}-\xi ,t)\leq 1-\epsilon \mbox{ or }\nu (x_{k}-\xi ,t)\geq \epsilon \} \in I\). We write \(I^{(\mu ,\nu )}\mbox{-}\lim x=\xi \).

Definition 1.10

([13])

A sequence \(x=(x_{k})\in \omega \) is said to be Fibonacci I-convergent to \(\xi \in \mathbb{R}\) if, for every \(\epsilon >0\), the set \(\{k\in \mathbb{N}:|\hat{F}_{k}(x) -\xi | \geq \epsilon \}\in I\), where I is an admissible ideal.

Definition 1.11

([13])

Consider an admissible ideal I. Sequence \(x=(x_{k})\in \omega \) is Fibonacci I-Cauchy if, for every \(\epsilon > 0\), \(\exists N=N(\epsilon )\) such that \(\{k\in \mathbb{N}:|\hat{F}_{k}(x)-\hat{F}_{N}(x)|\geq \epsilon \}\in I\).

2 Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces

In the following section, we introduce a new type of sequence spaces whose transform is I-convergent with respect to the intuitionistic norm \((\mu ,\nu )\). Further we prove certain properties of these spaces such as hausdorfness, first countability. Throughout this paper, I is an admissible ideal. We define

$$\begin{aligned}& S_{0(\mu ,\nu )}^{I}(\hat{F})= \bigl\{ x=(x_{k})\in l_{\infty }:\bigl\{ k\in \mathbb{N}:\mu \bigl(\hat{F_{k}}(x),t \bigr)\leq 1-\epsilon \mbox{ or }\nu \bigl( \hat{F_{k}}(x),t\bigr)\geq \epsilon \bigr\} \in I\bigr\} , \\& S_{(\mu ,\nu )}^{I}(\hat{F})=\bigl\{ x=(x_{k})\in l_{\infty }:\bigl\{ k\in \mathbb{N}:\mu \bigl(\hat{F_{k}}(x)-l,t \bigr)\leq 1-\epsilon \mbox{ or }\nu \bigl( \hat{F_{k}}(x)-l,t\bigr) \geq \epsilon \bigr\} \in I\bigr\} . \end{aligned}$$

We introduce an open ball with centre x and radius r with respect to t as follows:

$$\begin{aligned} B_{x}(r,t) (\hat{F}) =&\{y=(y_{k})\in l_{\infty }:\\ &{} \bigl\{ k\in \mathbb{N}: \mu \bigl(\hat{F_{k}}(x)-\hat{F_{k}}(y),t \bigr)> 1-r\mbox{ and }\nu \bigl(\hat{F_{k}}(x)- \hat{F_{k}}(y),t \bigr)< r\bigr\} . \end{aligned}$$

Remark 2.1

  1. (i)

    For \(p_{1} ,p_{2}\in (0,1)\) such that \(p_{1} > p_{2}\), there exist \(p_{3} , p_{4}\in (0,1)\) with \(p_{1}* p_{3} \geq p_{2}\) and \(p_{1}\geq p_{4} \diamond p_{2}\).

  2. (ii)

    For \(p_{5}\in (0,1)\), there exist \(p_{6} ,p_{7}\in (0,1)\) such that \(p_{6}\ast p_{6} \geq p_{5}\) and \(p_{7}\diamond p_{7} \leq p_{5}\).

Theorem 2.1

The spaces \(S_{0(\mu ,\nu )}^{I}(\hat{F})\) and \(S_{(\mu , \nu )}^{I}(\hat{F})\) are vector spaces over \(\mathbb{R}\).

Proof

Let us show the result for \(S_{(\mu ,\nu )}^{I}(\hat{F})\) and the proof for another space will follow on the similar lines. Let \(x=(x_{k})\) and \(y=(y_{k})\in S_{(\mu ,\nu )}^{I}(\hat{F})\). Then by definition there exist \(\xi _{1}\) and \(\xi _{2}\), and for every ϵ, \(t > 0\), we have

$$\begin{aligned}& A=\biggl\{ k\in \mathbb{N}:\mu \biggl(\hat{F_{k}}(x)-\xi _{1}, \frac{t}{2 \vert \alpha \vert }\biggr) \leq 1-\epsilon \mbox{ or }\nu \biggl(\hat{F_{k}}(x)-\xi _{1},\frac{t}{2 \vert \alpha \vert } \biggr)\geq \epsilon \biggr\} \in , \\& B=\biggl\{ k\in \mathbb{N}:\mu \biggl(\hat{F_{k}}(y)-\xi _{2},\frac{t}{2 \vert \beta \vert }\biggr) \leq 1-\epsilon \mbox{ or }\nu \biggl(\hat{F_{k}}(y)-\xi _{2},\frac{t}{2 \vert \beta \vert } \biggr) \geq \epsilon \biggr\} \in I, \end{aligned}$$

where α and β are scalars.

$$\begin{aligned}& A^{c}=\biggl\{ k\in \mathbb{N}: \mu \biggl(\hat{F_{k}}(x)- \xi _{1},\frac{t}{2 \vert \alpha \vert }\biggr) > 1-\epsilon \mbox{ or }\nu \biggl(\hat{F_{k}}(x)-\xi _{1}, \frac{t}{2 \vert \alpha \vert } \biggr) < \epsilon \biggr\} \in \mathcal{F}(I), \\& B^{c}=\biggl\{ k\in \mathbb{N}: \mu \biggl(\hat{F_{k}}(y)- \xi _{2}, \frac{t}{2 \vert \beta \vert }\biggr) > 1-\epsilon \mbox{ or }\nu \biggl(\hat{F_{k}}(y)-\xi _{2},\frac{t}{2 \vert \beta \vert } \biggr) < \epsilon \biggr\} \in \mathcal{F}(I). \end{aligned}$$

Define \(E=A\cup B\) so that \(E\in I\). Thus \(E^{c}\in \mathcal{F}(I)\) and therefore is non-empty. We will show

$$\begin{aligned} E^{c} \subset& \bigl\{ k\in \mathbb{N}: \mu \bigl(\alpha \hat{F_{k}}(x)+ \beta \hat{F_{k}}(y)-(\alpha \xi _{1}+\beta \xi _{2}),t\bigr)> 1-\epsilon \mbox{ or}\\ &{}\nu \bigl(\alpha \hat{F_{k}}(x)+\beta \hat{F_{k}}(y)-( \alpha \xi _{1}+ \beta \xi _{2}), t\bigr) < \epsilon \bigr\} . \end{aligned}$$

Let \(n\in E^{c}\). Then

$$\begin{aligned}& \mu \biggl(\hat{F_{n}}(x)-\xi _{1}, \frac{t}{2 \vert \alpha \vert }\biggr) > 1-\epsilon \mbox{ or } \nu \biggl( \hat{F_{n}}(x)- \xi _{1}, \frac{t}{2 \vert \alpha \vert }\biggr)< \epsilon , \\& \mu \biggl(\hat{F_{n}}(y)-\xi _{2}, \frac{t}{2 \vert \beta \vert }\biggr)> 1-\epsilon \mbox{ or } \nu \biggl( \hat{F_{n}}(y)-\xi _{2},\frac{t}{2 \vert \beta \vert }\biggr)< \epsilon . \end{aligned}$$

Consider

$$\begin{aligned}& \mu \bigl(\alpha \hat{F_{n}}(x)+ \beta \hat{F_{n}}(x)-( \alpha \xi _{1}+ \beta \xi _{2}), t\bigr) \\& \quad \geq \mu \biggl(\alpha \hat{F_{n}}(x)-\alpha \xi _{1},\frac{t}{2}\biggr) \ast \mu \biggl(\beta \hat{F_{n}}(y)-\beta \xi _{2},\frac{t}{2} \biggr) \\& \quad = \mu \biggl(\hat{F_{n}}(x)-\xi _{1}, \frac{t}{2 \vert \alpha \vert }\biggr) \ast \mu \biggl( \hat{F_{n}}(y)-\xi _{2},\frac{t}{ \vert \beta \vert }\biggr) \\& \quad > (1-\epsilon ) \ast (1-\epsilon )=1-\epsilon \end{aligned}$$

and

$$\begin{aligned}& \nu \bigl(\alpha \hat{F_{n}}(y)+ \beta \hat{F_{n}}(y)-( \alpha \xi _{1}+ \beta \xi _{2})\bigr) \\& \quad \leq \nu \biggl(\alpha \hat{F_{n}}(x)-\alpha \xi _{1},\frac{t}{2}\biggr) \diamond \nu \biggl(\beta \hat{F_{n}}(y)-\beta \xi _{2},\frac{t}{2} \biggr) \\& \quad = \nu \biggl(\hat{F_{n}}(x)-\xi _{1}, \frac{t}{2 \vert \alpha \vert }\biggr) \diamond \nu \biggl( \hat{F_{n}}(y)-\xi _{2},\frac{t}{2 \vert \beta \vert }\biggr) \\& \quad < \epsilon \diamond \epsilon =\epsilon . \end{aligned}$$

Thus \(E^{c}\subset \{k\in \mathbb{N}: \mu (\alpha \hat{F_{k}}(x)+ \beta \hat{F_{k}}(y)-(\alpha \xi _{1}+ \beta \xi _{2}),t)>1-\epsilon \mbox{ or }\nu (\alpha \hat{F_{k}}(x)+\beta \hat{F_{k}}(y)-(\alpha \xi _{1} + \beta \xi _{2}),t)< \epsilon \}\). \(E^{c}\in \mathcal{F}(I)\), therefore by definition of filter, the set on the right-hand side of the above equation belongs to \(\mathcal{F}(I)\) so that its complement belongs to I. This implies \((\alpha x+ \beta y)\in S_{(\mu , \nu )}^{I}(\hat{F})\). Hence \(S_{(\mu ,\nu )}^{I}(\hat{F})\) is a vector space over \(\mathbb{R}\). □

Theorem 2.2

Every open ball \(B_{x}(r,t)(\hat{F})\) is an open set in \(S_{(\mu ,\nu )}^{I}(\hat{F})\).

Proof

We have defined open ball as follows:

$$\begin{aligned} B_{x}(r,t) (\hat{F}) =& \{y=(y_{k})\in l_{\infty }:\\ &{}\bigl\{ k\in \mathbb{N}: \mu \bigl(\hat{F_{k}}(x)- \hat{F_{k}}(y),t\bigr)> 1-r\mbox{ and }\nu \bigl(\hat{F_{k}}(x)- \hat{F_{k}}(y),t\bigr)< r\bigr\} . \end{aligned}$$

Let \(z=(z_{k})\in B_{x}(r,t)(\hat{F})\) so that \(\mu (\hat{F_{k}}(x)- \hat{F_{k}}(z),t)> 1-r\) and \(\nu (\hat{F_{k}}(x)-\hat{F_{k}}(z),t)< r\). Then there exists \(t_{0}\in (0,t)\) with \(\mu (\hat{F_{k}}(x)- \hat{F_{k}}(z),t_{0})>1-r \) and \(\nu (\hat{F_{k}}(x)-\hat{F_{k}}(z),t _{0})< r\). Put \(p_{0}= \mu (\hat{F_{k}}(x)-\hat{F_{k}}(z),t_{0})\), so we have \(p_{0} > 1-r\), there exists \(s\in (0,1)\) such that \(p_{0}> 1-s> 1-r\). Using Remark 2.1(i), given \(p_{0}> 1-s\), we can find \(p_{1}, p_{2}\in (0,1)\) with \(p_{0}\ast p_{1} > 1-s\) and \((1-p_{0}) \diamond (1-p_{2})< s\). Put \(p_{3} = \max (p_{1}, p_{2})\). We will prove \(B_{z}(1- p_{3}, t-t_{0})(\hat{F})\subset B_{x}(r,t)(\hat{F})\). Let \(w=(w_{k})\in B_{z}(1-p_{3}, t - t_{0})(\hat{F})\). Hence

$$\begin{aligned}& \mu \bigl(\hat{F_{k}}(x)-\hat{F_{k}}(w),t\bigr)\geq \mu \bigl(\hat{F_{k}}(x)- \hat{F_{k}}(z),t_{0} \bigr)\ast \mu \bigl(\hat{F_{k}}(z)-\hat{F_{k}}(w),t-t_{0} \bigr) \\& \quad > (p_{0}\ast p_{3})\geq (p_{0}\ast p_{1}) > 1- s > 1 - r, \end{aligned}$$

and

$$\begin{aligned}& \nu \bigl(\hat{F_{k}}(x)-\hat{F_{k}}(w),t\bigr)\leq \nu \bigl(\hat{F_{k}}(x)- \hat{F_{k}}(z),t_{0} \bigr)\diamond \nu \bigl(\hat{F_{k}}(z)-\hat{F_{k}}(w),t-t _{0}\bigr) \\& \quad < (1-p_{0}))\diamond (1 - p_{3})\leq (1 - p_{0})\diamond (1 - p_{2}) < r. \end{aligned}$$

Hence \(w\in B_{x}(r,t)(\hat{F})\) and therefore \(B_{z}(1-p_{3},t- t _{0})(\hat{F})\subset B_{x}(r,t)(\hat{F})\). □

Remark 2.2

Let \(S_{(\mu ,\nu )}^{I}(\hat{F}\) be IFNS. Define \(\tau _{(\mu ,\nu )} ^{I}(\hat{F})=\{A\subset S_{(\mu ,\nu )}^{I}(\hat{F})\mbox{: for given } x\in A\), we can find \(t>0\) and \(0 < r <1\) such that \(B_{x}(r,t)( \hat{F})\subset A\}\). Then \(\tau _{(\mu ,\nu )}^{I}(\hat{F})\) is a topology on \(S_{(\mu ,\nu )}^{I}(\hat{F})\).

Remark 2.3

Since \(\{B_{x}(\frac{1}{n},\frac{1}{n})(\hat{F}): n\in \mathbb{N}\}\) is a local base at x, the topology \(\tau _{(\mu ,\nu )}^{I}(\hat{F})\) is first countable.

Theorem 2.3

The spaces \(S_{(\mu ,\nu )}^{I}(\hat{F})\) and \(S_{0(\mu , \nu )}^{I}(\hat{F})\) are Hausdorff.

Proof

Let \(x,y\in S_{(\mu ,\nu )}^{I}(\hat{F})\) with x and y to be different. Then \(0< \mu (\hat{F_{k}}(x)-\hat{F}(y),t) <1\) and \(0<\nu (\hat{F}(x)-\hat{F}_{k}(y),t)< 1\). Put \(\mu (\hat{F_{k}}(x)- \hat{F}_{k}(y),t) = p_{1}\) and \(\nu (\hat{F}_{k}(x)-\hat{F}{k}(y),t) = p_{2}\) and \(r = \max (p_{1}, 1- p_{2})\). Using Remark (2.1(ii)) for \(p_{0}\in (r, 1)\), we can find \(p_{3}, p_{4}\in (0,1)\) such that \(p_{3} \ast p_{3} \geq p_{0}\) and \((1- p_{4})\diamond (1- p_{4}) \leq 1- p_{0}\). Put \(p_{5} = \max (p_{3}, p_{4})\). Clearly \(B_{x}(1- p _{5},\frac{t}{2})(\hat{F})\cap B_{y}(1- p_{5},\frac{t}{2})(\hat{F})= \phi \). Let on the contrary \(z\in B_{x}(1 - p_{5},\frac{t}{2})( \hat{F})\cap B_{y}(1 - p_{5},\frac{t}{2})(\hat{F})\). Then we have

$$\begin{aligned} p_{1} =& \mu \bigl(\hat{F_{k}}(x)-\hat{F_{k}}(y),t \bigr) \geq \mu \biggl(\hat{F_{k}}(x)- \hat{F_{k}}(z), \frac{t}{2}\biggr) \ast \mu \biggl(\hat{F_{k}}(z)- \hat{F_{k}}(y), \frac{t}{2}\biggr) \\ \geq& p_{5} \ast p_{5} \geq p_{3} \ast p_{3}> p_{0} > p_{1} \end{aligned}$$

and

$$\begin{aligned} p_{2} =& \nu \bigl(\hat{F_{k}}(x)- \hat{F_{y}},t\bigr) \leq \nu \biggl(\hat{F_{k}}(x)- \hat{F_{k}}(z),\frac{t}{2}\biggr) \diamond \nu \biggl( \hat{F_{k}}(z)-\hat{F_{k}}(y), \frac{t}{2} \biggr) \\ \leq& (1- p_{5})\diamond (1- p_{5}) \leq (1- p_{4})\diamond (1- p_{4}) \leq 1- p_{0} < p_{2}, \end{aligned}$$

which is a contradiction. Therefore \(S_{(\mu ,\nu )}^{I}(\hat{F})\) is a Hausdorff space. The proof for \(S_{0(\mu ,\nu )}^{I}(\hat{F})\) follows similarly. □

Theorem 2.4

Let \(S_{(\mu ,\nu )}^{I}(\hat{F})\) be IFNS and \(\tau _{(\mu , \nu )}^{I}(\hat{F})\) be a topology on \(S_{\mu ,\nu )}^{I}(\hat{F})\). A sequence \((x_{k})\in S_{(\mu ,\nu )}^{I}(\hat{F})\) converges to ξ iff \(\mu (\hat{F_{k}}(x)-\xi ,t) \rightarrow 1\) and \(\nu ( \hat{F_{k}}(x)-\xi ,t) \rightarrow 0\) as \(k\rightarrow \infty \).

Proof

Suppose \(x_{k}\rightarrow \xi \), then given \(0< r < 1\) there exists \(k_{0}\in \mathbb{N}\) such that \((x_{k})\in B_{x}(r,t)(\hat{F})\) for all \(k\geq k_{0}\) given \(t>0\). Hence, we have \(1-\mu (\hat{F_{k}}(x)- \xi ,t)< r\) and \(\nu (\hat{F_{k}}(x)-\xi,t)< r\). Therefore \(\mu (\hat{F_{k}}(x)-\xi,t)\rightarrow 1\) and \(\nu ( \hat{F_{k}}(x)-\xi ,t)\rightarrow 0\) as \(k \rightarrow \infty \).

Conversely, if \(\mu (\hat{F_{k}}(x)-\xi ,t)\rightarrow 1\) and \(\nu (\hat{F_{k}}(x)-\xi ,t)\rightarrow 0\) as \(k\rightarrow \infty \) holds for each \(t>0\). For \(0< r< 1\), there exists \(k_{0}\in \mathbb{N}\) such that \(1-\mu (\hat{F_{k}}(x)-\xi ,t)< r\) and \(\nu (\hat{F_{k}}(x)-\xi ,t)< r\) for all \(k\geq k_{0}\), which implies \(\mu (\hat{F_{k}}(x)-\xi ,t) > 1-r\) and \(\nu (\hat{F_{k}}(x)-\xi ,t) < r\). Thus \(x_{k}\in B_{x}(r,t)(\hat{F})\) for all \(k\geq k_{0}\) and hence \(x_{k}\rightarrow \xi \). □

3 Conclusion

In the present article, we have defined a new kind of sequence spaces \(S_{0(\mu ,\nu )}^{I}(\hat{F})\) and \(S_{(\mu ,\nu )}^{I}(\hat{F})\) using Fibonacci difference matrix . We studied certain elementary properties and topological properties like linearity, first countability, hausdorfness. These results will give new approach to deal with the problems in science and engineering. The present article is a useful tool to define ideal convergence of generalised Fibonacci difference sequence in intuitionistic fuzzy normed space given by

$$\begin{aligned}& c_{0}\bigl(\hat{F}(r,s)\bigr)= \biggl\{ x=(x_{k})\in \omega : \lim_{n\rightarrow \infty } \biggl(r\frac{f_{n}}{f_{n+1}}x_{n}+s \frac{f _{n+1}}{f_{n}}x_{n-1} \biggr)=0 \biggr\} , \\& c\bigl(\hat{F}(r,s)\bigr)= \biggl\{ x=(x_{k})\in \omega : \lim _{n\rightarrow \infty } \biggl(r\frac{f_{n}}{f_{n+1}}x_{n}+s \frac{f _{n+1}}{f_{n}}x_{n-1} \biggr)=l \biggr\} , \end{aligned}$$

where \(\hat{F}(r,s)=\{f_{nk}(r,s)\}\) is a double generalised matrix defined as follows:

$$f_{nk}(r,s)= \textstyle\begin{cases} s\frac{f_{n+1}}{f_{n}}, &k=n-1, \\ r\frac{f_{n}}{f_{n+1}}, &k=n, \\ 0, &0\leq k< n-1\mbox{ or }k> n \end{cases} $$

\(k,n\in \mathbb{N}\) and \(r,s\in \mathbb{R}\setminus \{0\}\). We can study the topological properties of these spaces which will provide a better method to deal with vagueness and inexactness occurring in various fields of science, engineering and economics. Moreover, this theory can be helpful in dealing with problems in population dynamics, quantum particle physics particularly in connections with string and \(\epsilon ^{\infty }\) theory of El-Naschie.