A reverse Mulholland-type inequality in the whole plane

Open Access
Research
  • 166 Downloads

Abstract

We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite–Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.

Keywords

Mulholland-type inequality Parameter Weight coefficient Equivalent form Reverse 

MSC

26D15 47A07 

1 Introduction

Assuming that \(p > 1,\frac{1}{p} + \frac{1}{q} = 1,a_{m},b_{n} \ge 0,0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty\), and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty\), the Hardy–Hilbert inequality is provided as follows (see [1]):
$$ \sum_{n = 1}^{\infty} \sum _{m = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(1)
where \(\frac{\pi}{\sin (\pi /p)}\) is the best possible constant factor. By Theorem 343 in [1] (replacing \(\frac{a_{m}}{m}\) and \(\frac{b_{n}}{n}\) by \(a _{m}\) and \(b _{n}\), respectively), it yields the following Mulholland inequality with the same best value:
$$ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{a_{m}b_{n}}{\ln mn} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{b_{n}^{q}}{n} \Biggr)^{\frac{1}{q}}. $$
(2)

Inequalities (1) and (2) play an important role in analysis and its applications (see [1, 2]).

In 2007, Yang [3] published a Hilbert-type integral inequality in the whole plane. Various extensions of (1)–(2) and Yang’s work have been presented since then [4, 5, 6, 7, 8, 9, 10, 11, 12]. Recently, Yang and Chen [13] presented the following extension of (1) in the whole plane:
$$\begin{aligned} &\sum_{ \vert n \vert = 1}^{\infty} \sum _{ \vert m \vert = 1}^{\infty} \frac{a_{m}b_{n}}{( \vert m - \xi \vert + \vert n - \eta \vert )^{\lambda}} \\ &\quad < 2B(\lambda_{1},\lambda_{2}) \Biggl[ \sum _{ \vert m \vert = 1}^{\infty} \vert m - \xi \vert ^{p(1 - \lambda_{1}) - 1}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 1}^{\infty} \vert n - \eta \vert ^{q(1 - \lambda_{2}) - 1} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(3)
where the constant factor \(2B(\lambda_{1},\lambda_{2})\ (0 < \lambda_{1},\lambda_{2} \le 1,\lambda_{1} + \lambda_{2} = \lambda,\xi,\eta \in [0,\frac{1}{2}])\) is the best possible. In addition, Xin et al. [14] also carried out a similar result, and Zhong et al. [15] gave the reverse Mulholland’s inequality in the whole plane.

In this paper, we present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor, which is similar to the results of [13], via introducing multiparameters, applying weight coefficients, and using the Hermite–Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.

2 An example and two lemmas

We further assume that \(\lambda_{1},\lambda_{2} > 0,\lambda_{1} + \lambda_{2} = \lambda \le 1,\xi,\eta \in [0,\frac{1}{2}], \alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{2}]\), and
$$ k_{\gamma} (\lambda_{1}): = \frac{2\pi^{2}\csc^{2}\gamma}{ \lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\quad (\gamma = \alpha,\beta ). $$
(4)

Remark 1

Since \(\alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{ 2}],\xi,\eta \in [0,\frac{1}{2}]\), it follows that
$$\biggl(\frac{3}{2} \pm \eta \biggr) (1 \mp \cos \beta ) \ge 1 \quad\mbox{and}\quad \biggl(\frac{3}{2} \pm \xi \biggr) (1 \mp \cos \alpha ) \ge 1. $$

Example 1

We set \(g(u): = \frac{\ln u}{u - 1}\ (u > 0),g(1): = \lim_{u \to 1}g(u) = 1\). Then we have \(g(u) > 0,g'(u) < 0,g''(u) > 0\ (u > 0)\). By Tailor’s formula we find
$$g(u) = \frac{\ln [1 + (u - 1)]}{u - 1} = \sum_{k = 0}^{\infty} ( - 1)^{k}\frac{(u - 1)^{k}}{k + 1} = \sum_{k = 0}^{\infty} \frac{( - 1)^{k}k!}{k + 1} \frac{(u - 1)^{k}}{k!}\quad ( - 1 < u - 1 \le 1), $$
and then \(g^{(k)}(1) = \frac{( - 1)^{k}k!}{k + 1}\ (k = 0,1,2, \ldots )\). Hence, \(g^{(0)}(1) = g(1) = 1,g'(1) = - \frac{1}{2},g''(1) = \frac{2}{3}\). It is evident that \(g(u) > 0\). We obtain \(g'(u) = \frac{h(u)}{u(u - 1)^{2}},h(u): = u - 1 - u\ln u\). Since
$$h'(u) = - \ln u > 0\quad (0 < u < 1);\qquad h'(u) = - \ln u < 0\quad (u > 1), $$
it follows that \(h_{\max} = h(1) = 0\) and \(h(u) < 0\ (u \ne 1)\). Then we have \(g'(u) < 0\ (u \ne 1)\). Since \(g'(1) = - \frac{1}{2} < 0\), it follows that \(g'(u) < 0\ (u > 0)\). We find
$$g''(u) = \frac{J(u)}{u^{2}(u - 1)^{3}},\quad J(u): = - (u - 1)^{2} - 2u(u - 1) + 2u^{2}\ln u, $$
\(J'(u) = - 4(u - 1) + 4u\ln u\), and
$$ J''(u) = 4\ln u < 0\quad (0 < u < 1);\qquad J''(u) = 4\ln u > 0\quad (u > 1). $$
It follows that \(J'_{\min} = J'(1) = 0\), \(J'(u) > 0\ (u \ne 1)\), and \(J(u)\) is strictly increasing. Since \(J(1) = 0\), we have
$$J(u) < 0\quad (0 < u < 1);\qquad J(u) > 0\quad (u > 1), $$
and \(g''(u) > 0\ (u \ne 1)\). Since \(g''(1) = \frac{2}{3} > 0\), we find \(g''(u) > 0\ (u > 0)\).
For \(0 < \lambda \le 1,0 < \lambda_{2} < 1\), setting \(G(u): = g(u^{\lambda} )u^{\lambda_{2} - 1}\ (u > 0)\), we have \(G(u) > 0\),
$$\begin{aligned} &G'(u) = \lambda g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 2} + (\lambda_{2} - 1)g\bigl(u^{\lambda} \bigr)u^{\lambda_{2} - 2} < 0,\quad\mbox{and} \\ &G''(u) = \lambda^{2}g'' \bigl(u^{\lambda} \bigr)u^{2\lambda + \lambda_{2} - 3} + \lambda (\lambda + \lambda_{2} - 2)g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 3} \\ &\phantom{G''(u) =}{}+ \lambda (\lambda_{2} - 1)g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 3} + (\lambda_{2} - 1) (\lambda_{2} - 2)g\bigl(u^{\lambda} \bigr)u^{\lambda_{2} - 3} > 0. \end{aligned}$$
We set \(F(x,y): = \frac{\ln (x/y)}{x^{\lambda} - y^{\lambda}}\ (\frac{y}{x})^{\lambda_{2} - 1}(x,y > 0)\). Since \(F(x,y) = \frac{1}{x^{\lambda}} G(\frac{y}{x})\), we have
$$F(x,y) > 0,\qquad \frac{\partial}{\partial y}F(x,y) < 0,\qquad \frac{\partial^{2}}{\partial y^{2}}F(x,y) > 0. $$
Hence, for \(x,y > 1\), we have
$$\frac{1}{y}F(\ln x,\ln y) > 0,\qquad \frac{\partial}{\partial y}\biggl( \frac{1}{y}F(\ln x,\ln y)\biggr) < 0,\qquad \frac{\partial^{2}}{\partial y^{2}}\biggl( \frac{1}{y}F(\ln x,\ln y)\biggr) > 0. $$

Lemma 1

If\(f(u) > 0,f'(u) < 0,f''(u) > 0\ (u > \frac{3}{2})\)and\(\int_{\frac{3}{2}}^{\infty} f(u) \,du < \infty\), then we have the following Hermite–Hadamard inequality (see [16]):
$$\int_{k}^{k + 1} f(u) \,du < f(k) < \int_{k - \frac{1}{2}}^{k + \frac{1}{2}} f(u) \,du \quad\bigl(k \in \mathbf{N} \backslash \{ 1\} \bigr), $$
and then
$$ \int_{2}^{\infty} f(u) \,du < \sum _{k = 2}^{\infty} f(k) < \int_{\frac{3}{2}}^{\infty} f(u) \,du. $$
(5)
For\(\vert x \vert , \vert y \vert \ge \frac{3}{2}\), define
$$A_{\xi,\alpha} (x): = \vert x - \xi \vert + (x - \xi )\cos \alpha, $$
\(A_{\eta,\beta} (y) = \vert y - \eta \vert + (y - \eta )\cos \beta\), and
$$ k(x,y): = \frac{\ln (\ln A_{\xi,\alpha} (x)/\ln A_{\eta,\beta} (y))}{\ln^{\lambda} A_{\xi,\alpha} (x) - \ln^{\lambda} A_{\eta,\beta} (y)}. $$
(6)
We define two weight coefficients as follows:
$$\begin{aligned} &\omega (\lambda_{2},m): = \sum_{ \vert n \vert = 2}^{\infty} \frac{k(m,n)}{A_{\eta,\beta} (n)} \cdot \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}, \quad \vert m \vert \in \mathbf{N} \backslash \{ 1\}, \end{aligned}$$
(7)
$$\begin{aligned} &\varpi (\lambda_{1},n): = \sum_{ \vert m \vert = 2}^{\infty} \frac{k(m,n)}{A_{\xi,\alpha} (m)} \cdot \frac{\ln^{\lambda_{2}}A_{\eta,\beta} (n)}{\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)},\quad \vert n \vert \in \mathbf{N} \backslash \{ 1\}, \end{aligned}$$
(8)
where\(\sum_{ \vert j \vert = 2}^{\infty} \cdots = \sum_{j = - 2}^{ - \infty} \cdots+ \sum_{j = 2}^{\infty} \cdots\) (\(j = m,n\)).

Lemma 2

We have the inequalities
$$ k_{\beta} (\lambda_{1}) \bigl(1 - \theta ( \lambda_{2},m)\bigr) < \omega (\lambda_{2},m) < k_{\beta} (\lambda_{1}), \quad \vert m \vert \in \mathbf{N} \backslash \{ 1\}, $$
(9)
where
$$\begin{aligned} \theta (\lambda_{2},m): = {}&\biggl[\frac{\lambda}{\pi} \sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1). \end{aligned}$$
(10)

Proof

For \(\vert m \vert \in \mathbf{N}\backslash \{ 1\}\), let
$$\begin{aligned} &k^{(1)}(m,y): = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y - \eta )(\cos \beta - 1)]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y - \eta )(\cos \beta - 1)]},\quad y < - \frac{3}{2}, \\ &k^{(2)}(m,y): = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y - \eta )(\cos \beta + 1)]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y - \eta )(\cos \beta + 1)]},\quad y > \frac{3}{2}. \end{aligned}$$
Then the equality
$$k^{(1)}(m, - y) = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y + \eta )(1 - \cos \beta )]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y + \eta )(1 - \cos \beta )]},\quad y > \frac{3}{2}, $$
yields
$$\begin{aligned} \omega (\lambda_{2},m) ={}& \sum_{n = - 2}^{ - \infty} \frac{k^{(1)}(m,n)\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{(n - \eta )(\cos \beta - 1)\ln^{1 - \lambda_{2}}[(n - \eta )(\cos \beta - 1)]} \\ &{}+ \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{(n - \eta )(1 + \cos \beta )\ln^{1 - \lambda_{2}}[(n - \eta )(1 + \cos \beta )]} \\ ={}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \sum_{n = 2}^{\infty} \frac{k^{(1)}(m, - n)}{(n + \eta )\ln^{1 - \lambda_{2}}[(n + \eta )(1 - \cos \beta )]} \\ &{} + \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)}{(n - \eta )\ln^{1 - \lambda_{2}}[(n - \eta )(1 + \cos \beta )]}. \end{aligned}$$
(11)
Since \(0 < \lambda \le 1,0 < \lambda_{2} < 1\), by Example 1 we find that, for \(y > \frac{3}{2}\),
$$\begin{aligned} &\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} > 0, \\ &\frac{d}{dy}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} < 0, \\ &\frac{d^{2}}{dy^{2}}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} > 0\quad(i = 1,2), \end{aligned}$$
from which it follows that
$$\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]}\quad (i = 1,2) $$
are strictly decreasing and convex in (\(\frac{3}{2},\infty \)). Then (5) and (11) yield that
$$\begin{aligned} \omega (\lambda_{2},m) < {}&\frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta )\ln^{1 - \lambda_{2}}[(y + \eta )(1 - \cos \beta )]} \,dy \\ &{}+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta )\ln^{1 - \lambda_{2}}[(y - \eta )(1 + \cos \beta )]} \,dy. \end{aligned}$$
Setting \(u = \frac{\ln [(y + \eta )(1 - \cos \beta )]}{\ln A_{\xi,\alpha} (m)}\ (u = \frac{\ln [(y - \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)})\) in the first (second) integral, from Remark 1 we obtain
$$\begin{aligned} \omega (\lambda_{2},m) < {}& \biggl(\frac{1}{1 - \cos \beta} + \frac{1}{1 + \cos \beta} \biggr) \int_{0}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& \frac{2\csc^{2}\beta}{\lambda^{2}} \int_{0}^{\infty} \frac{\ln v}{v - 1} v^{(\lambda_{2}/\lambda ) - 1} \,dv = \frac{2\pi^{2}\csc^{2}\beta}{ \lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )} = k_{\beta} (\lambda_{1}), \end{aligned}$$
by simplifications. Similarly, (5) and (11) also yield that
$$\begin{aligned} \omega (\lambda_{2},m) >{}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \int_{2}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta )\ln^{1 - \lambda_{2}}[(y + \eta )(1 - \cos \beta )]} \,dy \\ &{}+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \int_{2}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta )\ln^{1 - \lambda_{2}}[(y - \eta )(1 + \cos \beta )]} \,dy \\ \ge{}& \biggl(\frac{1}{1 - \cos \beta} + \frac{1}{1 + \cos \beta} \biggr) \int_{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) - 2\csc^{2}\beta \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) \bigl(1 - \theta ( \lambda_{2},m)\bigr) > 0, \end{aligned}$$
where \(\theta (\lambda_{2},m)( < 1)\) is defined in (10). Since
$$\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to 0\quad \bigl(u \to 0^{ +} \bigr);\qquad \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to \frac{1}{\lambda}\quad (u \to 1), $$
there exists a positive constant C such that \(\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \le C\ (0 < u \le 1)\). Then for \(A_{\xi,\alpha} (m) \ge (2 + \eta )(1 + \cos \beta )\), we have
$$\begin{aligned} 0& < \theta (\lambda_{2},m) \le C\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} u^{\frac{\lambda_{2}}{2} - 1} \,du \\ &= \frac{2C}{\lambda_{2}}\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2}\biggl\{ \frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}\biggr\} ^{\frac{\lambda}{2}}. \end{aligned}$$
(12)

Hence, (9) and (10) are valid. □

Similarly, we have the following:

Lemma 3

For\(0 < \lambda \le 1,0 < \lambda_{1} < 1\), we have the inequalities
$$ k_{\alpha} (\lambda_{1}) \bigl(1 - \tilde{\theta} ( \lambda_{1},n)\bigr) < \varpi (\lambda_{1},n) < k_{\alpha} (\lambda_{1}),\quad \vert n \vert \in \mathbf{N} \backslash \{ 1\}, $$
(13)
where
$$\begin{aligned} \tilde{\theta} (\lambda_{1},n): = {}&\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \xi )(1 + \cos \alpha )]}{\ln A_{\eta,\beta} (n)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{1} - 1} \,du \\ = {}&O\biggl(\frac{1}{\ln^{\lambda_{1}/2}A_{\eta,\beta} (n)}\biggr) \in (0,1). \end{aligned}$$
(14)

Lemma 4

If\((\varsigma,\gamma ) = (\xi,\alpha )\) (or\((\eta,\beta )\)), \(\rho > 0\), then we have
$$ H_{\rho} (\varsigma,\gamma ): = \sum_{ \vert k \vert = 2}^{\infty} \frac{\ln^{ - 1 - \rho} A_{\varsigma,\gamma} (k)}{A_{\varsigma,\gamma} (k)} = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o(1) \bigr) \quad \bigl(\rho \to 0^{ +} \bigr). $$
(15)

Proof

By (5) we obtain
$$\begin{aligned} H_{\rho} (\varsigma,\gamma ) ={}& \sum_{k = - 2}^{ - \infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma - 1)]}{(k - \varsigma )(\cos \gamma - 1)} + \sum_{k = 2}^{\infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)} \\ = {}&\sum_{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma )(1 - \cos \gamma )]}{(k - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)}\biggr\} \\ < {}& \int_{\frac{3}{2}}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma )(1 - \cos \gamma )]}{(y - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma )(\cos \gamma + 1)]}{(y - \varsigma )(\cos \gamma + 1)}\biggr\} \,dy \\ ={}& \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(\frac{3}{2} + \varsigma )(1 - \cos \gamma )]}{1 - \cos \gamma} + \frac{\ln^{ - \rho} [(\frac{3}{2} - \varsigma )(1 + \cos \gamma )]}{1 + \cos \gamma} \biggr\} \\ ={}& \frac{1}{\rho} \biggl(\frac{1}{1 - \cos \gamma} + \frac{1}{1 + \cos \gamma} + o_{1}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o_{1}(1)\bigr) \quad\bigl(\rho \to 0^{ +} \bigr) \end{aligned}$$
and
$$\begin{aligned} H_{\rho} (\varsigma,\gamma ) ={}& \sum_{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma )(1 - \cos \gamma )]}{(k - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)}\biggr\} \\ >{}& \int_{2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma )(1 - \cos \gamma )]}{(y - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma )(\cos \gamma + 1)]}{(y - \varsigma )(\cos \gamma + 1)}\biggr\} \,dy \\ ={}& \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(2 + \varsigma )(1 - \cos \gamma )]}{1 - \cos \gamma} + \frac{\ln^{ - \rho} [(2 - \varsigma )(1 + \cos \gamma )]}{1 + \cos \gamma} \biggr\} \\ ={}& \frac{1}{\rho} \biggl(\frac{1}{1 - \cos \gamma} + \frac{1}{1 + \cos \gamma} + o_{2}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o_{2}(1)\bigr) \quad\bigl(\rho \to 0^{ +} \bigr). \end{aligned}$$

Therefore, (15) is valid. □

3 Main results and a few particular cases

Theorem 1

Suppose that\(0 < p < 1,\frac{1}{p} + \frac{1}{q} = 1\),
$$ k(\lambda_{1}): = k_{\beta}^{1/p}( \lambda_{1})k_{\alpha}^{1/q}(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}}. $$
(16)
If\(a_{m},b_{n} \ge 0\ ( \vert m \vert , \vert n \vert \in \mathbf{N}\backslash \{ 1\} )\), satisfy
$$0 < \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}} a_{m}^{p} < \infty,\qquad 0 < \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} < \infty, $$
then for
$$\begin{aligned} \theta (\lambda_{2},m) &= \biggl[\frac{\lambda}{\pi} \sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ &= O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1), \end{aligned}$$
we obtain the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} I: ={}& \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)} a_{m}b_{n} \\ &\quad> \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(17)
$$\begin{aligned} J_{1}: ={}& \Biggl\{ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ >{}& \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(18)
$$\begin{aligned} J_{2}: = {}&\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{q - 1}A_{\xi,\alpha} (m)} \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ >{}& \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(19)
Particularly, (i) for\(\alpha = \beta = \frac{\pi}{2},\xi,\eta \in [0,\frac{1}{2}]\), setting
$$\begin{aligned} \theta_{1}(\lambda_{2},m)&: = \biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln \vert m - \xi \vert }} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ &= O\biggl(\frac{1}{\ln^{\lambda_{2}/2} \vert m - \xi \vert }\biggr) \in (0,1), \end{aligned}$$
we have the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert } a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{1}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n - \eta \vert }{ \vert n - \eta \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(20)
$$\begin{aligned} &\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1} \vert n - \eta \vert }{ \vert n - \eta \vert } \Biggl( \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert }a_{m} \Biggr)^{p} \Biggr]^{\frac{1}{p}} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{1}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(21)
$$\begin{aligned} &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1} \vert m - \xi \vert }{(1 - \theta_{1}(\lambda_{2},m))^{q - 1} \vert m - \xi \vert } \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )a_{m}}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert }b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n - \eta \vert }{ \vert n - \eta \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(22)
(ii) For\(\xi = \eta = 0,\alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{ 2}]\), setting
$$\begin{aligned} \theta_{2}(\lambda_{2},m): ={}& \biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln 2(1 + \cos \beta )}{\ln ( \vert m \vert + m\cos \alpha )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1), \end{aligned}$$
we have the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )} a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{2}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos \alpha )}{( \vert m \vert + m\cos \alpha )^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}( \vert n \vert + n\cos \beta )}{( \vert n \vert + n\cos \beta )^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(23)
$$\begin{aligned} &\Biggl\{ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1}( \vert n \vert + n\cos \beta )}{ \vert n \vert + n\cos \beta} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad> \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{2}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos \alpha )}{( \vert m \vert + m\cos \alpha )^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(24)
$$\begin{aligned} &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1}( \vert m \vert + m\cos \alpha )}{(1 - \theta_{2}(\lambda_{2},m))^{q - 1}( \vert m \vert + m\cos \alpha )} \\ &\qquad{}\times \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )}b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ &\quad > \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}( \vert n \vert + n\cos \beta )}{( \vert n \vert + n\cos \beta )^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(25)

Proof

Applying the reverse Hölder inequality with weight (see [17]) and (8), we find
$$\begin{aligned} &\Biggl( \sum_{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p} \\ &\quad= \Biggl\{ \sum_{ \vert m \vert = 2}^{\infty} k(m,n) \biggl[ \frac{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)}{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}a_{m} \biggr] \biggl[ \frac{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)} \biggr] \Biggr\} ^{p} \\ &\quad\ge \sum_{ \vert m \vert = 2}^{\infty} k(m,n) \frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \\ &\qquad{}\times\Biggl[ \sum _{ \vert m \vert = 2}^{\infty} k(m,n)\frac{\ln^{\frac{(1 - \lambda_{2})q}{p}}A_{\eta,\beta} (n)}{A_{\xi,\alpha} (m)\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)} \Biggr]^{p - 1} \\ &\quad= \frac{(\varpi (\lambda_{1},n))^{p - 1}A_{\eta,\beta} (n)}{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}\sum_{ \vert m \vert = 2}^{\infty} k(m,n) \frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p}. \end{aligned}$$
Then since \(0 < p < 1\), by (13) this yields
$$\begin{aligned} J &> k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert = 2}^{\infty} \sum _{ \vert n \vert = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert = 2}^{\infty} \omega (\lambda_{2},m) \frac{n^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(26)

Combining (9) and (16), we obtain (18).

Using the reverse Hölders inequality again, we obtain
$$\begin{aligned} I &= \sum_{ \vert n \vert = 2}^{\infty} \Biggl[ \frac{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}\sum_{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr] \biggl[ \frac{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}b_{n} \biggr] \\ &\ge J_{1} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(27)

Then by (18) we obtain (17).

On the other-hand, assuming that (17) is valid, letting
$$b_{n}: = \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl( \sum _{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p - 1}, \quad \vert n \vert \in \mathbf{N}\backslash \{ 1\}, $$
we find
$$J_{1} = \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{p}}. $$
By (26) it follows that \(J_{1} > 0\). If \(J_{1} = \infty\), then (19) is trivially valid; if \(J_{1} < \infty\), then by (17) we have
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q}\\ &\quad = J_{1}^{p} = I \\ &\quad> k(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \\ &J_{1} = \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{p}} > k( \lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$

Thus (18) is valid, which is equivalent to (17).

We further prove that (19) is equivalent to (17). Using the reverse Hölders inequality, we have
$$\begin{aligned} I={}& \sum_{ \vert m \vert = 2}^{\infty} \biggl[ \bigl(1 - \theta (\lambda_{2},m)\bigr)^{\frac{1}{p}}\frac{\ln^{\frac{1}{q} - \lambda_{1}}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{\frac{ - 1}{q}}}a_{m} \biggr] \\ &{}\times \Biggl[ \frac{n^{\frac{ - 1}{q} + \lambda_{1}}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{\frac{1}{p}}(A_{\xi,\alpha} (m))^{\frac{1}{q}}}\sum_{ \vert n \vert = 2}^{\infty} k(m,n)b_{n} \Biggr] \\ \ge{}& \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}J_{2}, \end{aligned}$$
(28)
and then (19) is valid by (17).
On the other-hand, assuming that (17) is valid, we set
$$a_{m}: = \frac{\ln^{q\lambda_{1} - 1}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{q - 1}A_{\xi,\alpha} (m)} \Biggl( \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}b_{n} \Biggr)^{q - 1},\quad m \in \mathbf{N}\backslash \{ 1\}, $$
and find
$$J_{2} = \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{q}}. $$
If \(J_{2} = 0\), then (19) is impossible, so that \(J_{2} > 0\). If \(J_{2} = \infty\), then (19) is trivially valid; if \(J_{2} < \infty\), then by (17) we have
$$\begin{aligned} &\sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta ( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \\ &\quad= J_{2}^{q} = I \\ &\quad> k(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \\ &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta ( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{q}} \\ &\quad= J_{2} \\ &\quad > k(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
Thus (19) is valid, which is equivalent to (17).

Hence, inequalities (17), (18), and (19) are equivalent. □

Theorem 2

Under the assumptions in Theorem 1,
$$k(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} $$
is the best possible constant factor in (17), (18), and (19).

Proof

For \(0 < \varepsilon < \min \{ p\lambda_{1},p(1 - \lambda_{2})\}\), we set \(\tilde{\lambda}_{1} = \lambda_{1} - \frac{\varepsilon}{p}( \in (0,1)),\tilde{\lambda}_{2} = \lambda_{2} + \frac{\varepsilon}{p} ( \in (0,1))\), and
$$\begin{aligned} &\tilde{a}_{m}: = \frac{\ln^{\lambda_{1} - \frac{\varepsilon}{p} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} = \frac{\ln^{\tilde{\lambda}_{1} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)}\quad \bigl( \vert m \vert \in \mathbf{N}\backslash \{ 1\} \bigr), \\ &\tilde{b}_{n}: = \frac{\ln^{\lambda_{2} - \frac{\varepsilon}{q} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} = \frac{\ln^{\tilde{\lambda}_{2} - \varepsilon - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)}\quad \bigl( \vert n \vert \in \mathbf{N}\backslash \{ 1\} \bigr). \end{aligned}$$
By (15) and (13) we find
$$\begin{aligned} &\tilde{I}_{2}: = \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}} \tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &\phantom{\tilde{I}_{2}:}= \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} - \sum_{ \vert m \vert = 2}^{\infty} \frac{O(\ln^{ - 1 - (\frac{\lambda_{2}}{2} + \varepsilon )}A_{\xi,\alpha} (m))}{A_{\xi,\alpha} (m)} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggr]^{\frac{1}{q}} \\ &\phantom{\tilde{I}_{2}:}= \frac{1}{\varepsilon} \bigl(2\csc^{2}\alpha + o(1) - \varepsilon O(1) \bigr)^{\frac{1}{p}}\bigl(2\csc^{2}\beta + \tilde{o}(1) \bigr)^{\frac{1}{q}}\quad\bigl(\varepsilon \to 0^{ +} \bigr), \\ &\tilde{I} = \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} = \sum_{ \vert m \vert = 2}^{\infty} \sum_{ \vert n \vert = 2}^{\infty} k(m,n) \frac{\ln^{\tilde{\lambda}_{1} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} \frac{\ln^{\tilde{\lambda}_{2} - \varepsilon - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \\ &\phantom{\tilde{I} =}= \sum_{ \vert n \vert = 2}^{\infty} \varpi (\tilde{ \lambda}_{1},n)\frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} < k_{\alpha} (\tilde{ \lambda}_{1})\sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \\ &\phantom{\tilde{I} =}= \frac{1}{\varepsilon} k_{\alpha} (\tilde{\lambda}_{1}) \bigl(2\csc^{2}\beta + o(1)\bigr). \end{aligned}$$
If there exists a positive number \(k \ge k(\lambda_{1})\) such that (17) is still valid when replacing \(k(\lambda_{1})\) by k, then, in particular, we have
$$\varepsilon \tilde{I} = \varepsilon \sum_{ \vert m \vert = 2}^{\infty} \sum_{ \vert n \vert = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} > \varepsilon k\tilde{I}_{2}. $$
We obtain from the previous results that
$$\begin{aligned} &k_{\beta} \biggl(\lambda_{1} + \frac{\varepsilon}{ q}\biggr) \bigl(2\csc^{2}\alpha + o(1)\bigr) \\ &\quad > k\bigl(2\csc^{2}\alpha + o(1) - \varepsilon O(1) \bigr)^{\frac{1}{p}}\bigl(2\csc^{2}\beta + \tilde{o}(1) \bigr)^{\frac{1}{q}}, \end{aligned}$$
and then
$$\frac{4\pi^{2}}{\lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\csc^{2}\beta \csc^{2}\alpha \ge 2k \csc^{\frac{2}{p}}\alpha \csc^{\frac{2}{q}}\beta \quad \bigl(\varepsilon \to 0^{ +} \bigr), $$
namely, \(k(\lambda_{1}) = \frac{2\pi^{2}}{\lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha \ge k\). Hence, \(k = k(\lambda_{1})\) is the best possible constant factor of (17).

The constant factor \(k(\lambda_{1})\) in (18) and (19) is still the best possible. Otherwise, we would reach a contradiction by (27) and (28) that the constant factor in (17) is not the best possible. □

Remark 2

(i) For \(\xi = \eta = 0\) in (20), setting
$$\tilde{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln 2}{\ln \vert m \vert }} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2} \vert m \vert }\biggr) \in (0,1), $$
we have the following new inequality:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln \vert m \vert /\ln \vert n \vert )}{\ln^{\lambda} \vert m \vert - \ln^{\lambda} \vert n \vert } a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \tilde{\theta}_{1}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m \vert }{ \vert m \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n \vert }{ \vert n \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(29)
It follows that (20) is an extension of (29). In particular, for \(\lambda = 1,\lambda_{1} = \lambda_{2} = \frac{1}{2}\), setting
$$\tilde{\theta}_{1}(m): = \frac{1}{\pi^{2}} \int_{0}^{\frac{\ln 2}{\ln \vert m \vert }} \frac{\ln u}{u - 1} u^{\frac{ - 1}{2}} \,du = O\biggl(\frac{1}{\ln^{1/4} \vert m \vert }\biggr) \in (0,1), $$
we have the following simple reverse Mulholland-type inequality in the whole plane:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln \vert m \vert /\ln \vert n \vert )}{\ln ( \vert m \vert / \vert n \vert )} a_{m}b_{n} \\ &\quad> 2\pi^{2} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \tilde{\theta}_{1}(m)\bigr)\frac{\ln^{\frac{p}{2} - 1} \vert m \vert }{ \vert m \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{\frac{q}{2} - 1} \vert n \vert }{ \vert n \vert ^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
(30)
(ii) If \(a_{ - m} = a_{m},b_{ - n} = b_{n}\ (m,n \in \mathbf{N}\backslash \{ 1\} )\), for \(m \in \mathbf{N}\backslash \{ 1\}\), setting
$$\begin{aligned} &\stackrel{\frown}{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln (m - \xi )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2}(m - \xi )}\biggr) \in (0,1), \\ &\stackrel{\smile}{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln (m + \xi )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2}(m + \xi )}\biggr) \in (0,1), \end{aligned}$$
(20) reduces to
$$\begin{aligned} &\sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \biggl\{ \frac{\ln [\ln (m - \xi )/\ln (n - \eta )]}{\ln^{\lambda} (m - \xi ) - \ln^{\lambda} (n - \eta )} + \frac{\ln [\ln (m - \xi )/\ln (n + \eta )]}{\ln^{\lambda} (m - \xi ) - \ln^{\lambda} (n + \eta )} \\ &\qquad{} + \frac{\ln [\ln (m + \xi )/\ln (n - \eta )]}{\ln^{\lambda} (m + \xi ) - \ln^{\lambda} (n - \eta )} + \frac{\ln [\ln (m + \xi )/\ln (n + \eta )]}{\ln^{\lambda} (m + \xi ) - \ln^{\lambda} (n + \eta )} \biggr\} a_{m}b_{n} \\ &\quad> \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl\{ \sum_{m = 2}^{\infty} \biggl[ \bigl(1 - \stackrel{\frown}{\theta}_{1}( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} \\ &\qquad{}+ \bigl(1 - \stackrel{\smile}{ \theta}_{1}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}(m + \xi )}{(m + \xi )^{1 - p}} \biggr]a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl\{ \sum_{n = 2}^{\infty} \biggl[ \frac{\ln^{q(1 - \lambda_{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} + \frac{\ln^{q(1 - \lambda_{2}) - 1}(n + \eta )}{(n + \eta )^{1 - q}} \biggr]b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(31)
In particular, for \(\xi = \eta = 0,\lambda = 1,\lambda_{1} = \lambda_{2} = \frac{1}{2}\), setting
$$\stackrel{\frown}{\theta}_{1}(m): = \frac{1}{\pi^{2}} \int_{0}^{\frac{\ln 2}{\ln m}} \frac{\ln u}{u - 1} u^{ - \frac{1}{2}} \,du = O\biggl(\frac{1}{\ln^{1/4}m}\biggr) \in (0,1), $$
we have the following simple reverse Mulholland-type inequality:
$$\begin{aligned} &\sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\ln (\ln m/\ln n)}{\ln (m/n)} a_{m}b_{n} \\ &\quad > \pi^{2} \Biggl[ \sum_{m = 2}^{\infty} \bigl(1 - \stackrel{\frown}{\theta}_{1}(m)\bigr) \frac{\ln^{\frac{p}{2} - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{\ln^{\frac{q}{2} - 1}n}{n^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
(32)

4 Conclusions

In this paper, we obtain a new reverse Mulholland’s inequality in the whole plane with a best possible constant factor in Theorems 12. Equivalent forms and a few particular cases are considered. The method of real analysis is very important and is the key to prove the reverse equivalent inequalities with the best possible constant factor. The lemmas and theorems can provide an extensive account of this type inequalities.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos. 61370186, 61640222, and 11401113) and Science and Technology Planning Project Item of Guangzhou City (No. 201707010229).

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment, and drafted the manuscript. JL participated in the design of the study and performed the numerical analysis. Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATHGoogle Scholar
  2. 2.
    Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Boston (1991) CrossRefMATHGoogle Scholar
  3. 3.
    Yang, B.: A new Hilbert’s type integral inequality. Soochow J. Math. 33(4), 849–859 (2007) MathSciNetMATHGoogle Scholar
  4. 4.
    Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATHGoogle Scholar
  5. 5.
    Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATHGoogle Scholar
  6. 6.
    Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 902–990 (2015) MathSciNetMATHGoogle Scholar
  8. 8.
    Adiyasuren, V., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATHGoogle Scholar
  10. 10.
    Krnić, M., Vuković, P.: On a multidimensional version of the Hilbert type inequality. Anal. Math. 38(4), 291–303 (2012) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATHGoogle Scholar
  12. 12.
    He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATHGoogle Scholar
  14. 14.
    Xin, D., Yang, B., Chen, Q.: A discrete Hilbert-type inequality in the whole plane. J. Inequal. Appl. 2016, 133 (2016) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhong, Y., Yang, B., Chen, Q.: A more accurate Mulholland-type inequality in the whole plane. J. Inequal. Appl., 2017 315 (2017) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Yang, B.: A more accurate multidimensional Hardy–Hilbert’s inequality. J. Appl. Anal. Comput. 8(2), 559–573 (2018) Google Scholar
  17. 17.
    Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinese) Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsGuangdong University of EducationGuangzhouP.R. China

Personalised recommendations