1 Introduction

We consider the Sobolev type embedding constant \(C_{p}(\Omega)\) from \(W^{1,q}(\Omega)\) (\(1\leq q\leq p\leq\infty\)) to \(L^{p}(\Omega)\). The constant \(C_{p}(\Omega)\) satisfies

$$\begin{aligned} \biggl( \int_{\Omega} \bigl\vert u(x) \bigr\vert ^{p}\,dx \biggr)^{\frac {1}{p}}\leq C_{p}(\Omega) \biggl( \int_{\Omega} \bigl\vert u(x) \bigr\vert ^{q}\,dx+ \int_{\Omega} \bigl\vert \nabla u(x) \bigr\vert ^{q} \,dx \biggr)^{\frac{1}{q}} \end{aligned}$$
(1)

for all \(u\in W^{1,q}(\Omega)\), where \(\Omega\subset\mathbb {R}^{N}\) (\(N\in\mathbb{N}\)) is a bounded domain and \(\vert x \vert =\sqrt{\sum_{j=1}^{N}x_{j}^{2}}\) for \(x=(x_{1},\ldots, x_{N})\in \mathbb{R}^{N}\). Here, \(L^{p}(\Omega)\) (\(1\leq p<\infty\)) is the functional space of the pth power Lebesgue integrable functions over Ω endowed with the norm \(\Vert f \Vert _{L^{p}(\Omega)}:=(\int_{\Omega } \vert f(x) \vert ^{p}\,dx)^{1/p}\) for \(f\in L^{p}(\Omega)\), and \(L^{\infty}(\Omega)\) is the functional space of Lebesgue measurable functions over Ω endowed with the norm \(\Vert f \Vert _{L^{\infty}(\Omega)}=\operatorname{ess\,sup}_{x\in\Omega } \vert f(x) \vert \) for \(f\in L^{\infty}(\Omega)\). Moreover, \(W^{k,p}(\Omega)\) is the kth order \(L^{p}\)-Sobolev space on Ω endowed with the norm \(\Vert f \Vert _{W^{1,p}(\Omega)}=(\int_{\Omega} \vert f(x) \vert ^{p}\,dx+\int_{\Omega} \vert \nabla f(x) \vert ^{p}\,dx)^{1/p}\) for \(f\in W^{1,p}(\Omega)\) if \(1\leq p<\infty\) and \(\Vert f \Vert _{W^{1,\infty}(\Omega)}=\operatorname{ess\,sup}_{x\in \Omega} \vert f(x) \vert +\operatorname{ess\,sup}_{x\in \Omega} \vert \nabla f(x) \vert \) for \(f\in W^{1,\infty }(\Omega)\) if \(p=\infty\).

Since inequality (1) has significance for studies on partial differential equations, many researchers studied this type of Sobolev inequality and an explicit value of \(C_{p}(\Omega)\) (see, e.g., [17]) following the pioneering work by Sobolev [1]. In particular, our interest is in the applicability of this constant to verified numerical computation methods for PDEs which originate from Nakao’s [8] and Plum’s work [9]. These methods have been further developed by many researchers (see, e.g., [810] and the references therein).

The existence of \(C_{p}(\Omega)\) for various domains Ω (e.g., domains with the cone condition, domains with the Lipschitz boundary, and the \((\varepsilon, \delta)\)-domains) has been proven by constructing suitable extension operators from \(W^{k,p}(\Omega)\) to \(W^{k,p}(\mathbb{R}^{N})\) (see, e.g., [37]).

Several formulas for computing explicit values of \(C_{p}(\Omega)\) have been proposed under suitable conditions. For example, the best constant in the classical Sobolev inequality on \(\mathbb{R}^{N}\) was independently shown by Aubin [11] and Talenti [12]. For the case in which \(N=1\) and \(p=\infty\), the best constant of \(C_{p}(\Omega)\) was proposed under some boundary conditions, e.g., the Dirichlet, the Neumann, and the periodic condition [1317]. For a square domain \(\Omega\subset\mathbb{R}^{2}\), a tight estimate of \(C_{p}(\Omega)\) was provided in [10]. Moreover, the best constant for the embedding \(W^{1,2}_{0}(\Omega )\hookrightarrow L^{p}(\Omega)\) (\(p=3,4,5,6,7\)) with a square domain \(\Omega\subset\mathbb{R}^{2}\) was very sharply estimated in [18], where \(W^{1,2}_{0}(\Omega)\) denotes the closure of \(C^{\infty}_{0}(\Omega )\) in \(W^{1,2}(\Omega)\). Furthermore, we have previously proposed a formula for computing an explicit value of \(C_{p}(\Omega)\) for (bounded and unbounded) Lipschitz domains \(\Omega\subset\mathbb{R}^{N}\) (\(N\geq2\)) by estimating the norm of Stein’s extension operator [19]. This formula can be applied to a domain Ω that can be divided into a finite number of Lipschitz domains \(\Omega_{i}\) (\(i=1,2,3,\ldots, n\)) such that

$$\begin{aligned} \overline{\Omega}=\bigcup_{1\leq i\leq n} \overline{\Omega_{i}} \end{aligned}$$
(2)

and

$$\begin{aligned} \Omega_{i}\cap\Omega_{j}=\phi\quad (i\neq j), \end{aligned}$$
(3)

where ϕ is the empty set and Ω̅ denotes the closure of Ω (see Theorem 6.1). Although this formula is applicable to such general domains, the values computed by this formula are very large; see Section 4 for concrete values.

In this paper, we report that the accuracy of the estimation of \(C_{p}(\Omega)\) is significantly improved by restricting each \(\Omega _{i}\) to bounded convex domain. Since any bounded convex domain is a Lipschitz domain (see, e.g., [20]), the present class of Ω is somewhat special compared with the class treated in [19]. Nevertheless, the formulas presented in this paper still have applicability to various domains. To obtain a sharper estimation of \(C_{p}(\Omega)\), we focus on the constants \(D_{p}(\Omega)\) such that

$$\begin{aligned} \biggl( \int_{\Omega} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}}\leq D_{p}(\Omega) \biggl( \int_{\Omega} \bigl\vert \nabla u(x) \bigr\vert ^{q} \,dx \biggr)^{\frac{1}{q}}\quad \mbox{for all } u\in W^{1,q}(\Omega). \end{aligned}$$
(4)

Here, \(\vert \Omega \vert \) is the measure of Ω and \(u_{\Omega}:\Omega\to\mathbb{R}\) is a constant function defined by \(\Omega\ni x\mapsto u_{\Omega}(x)= \vert \Omega \vert ^{-1}\int_{\Omega}u(y)\,dy\). Inequality (4) is called the Sobolev-Poincaré inequality, and \(D_{p}(\Omega)\) in (4) leads to the explicit value of \(C_{p}(\Omega)\) (see Theorem 2.1). Inequality (4) has also been studied by many researchers (see, e.g., [2124]). For example, for a John domain Ω, the existence of \(D_{p}(\Omega)\) was shown while assuming that \(1\leq q< N\), \(p=Nq/(N-q)\) [23]. It was also shown that, when \(p\neq Nq/(N-q)\), \(D_{p}(\Omega)\) exists if and only if \(W^{1,q}(\Omega)\) is continuously embedded into \(L^{p}(\Omega)\) [24]. Moreover, there are several formulas for obtaining an explicit value of \(D_{p}(\Omega)\) for one-dimensional domains Ω [2527]. In the higher-dimensional cases, however, little is known about explicit values of \(D_{p}(\Omega)\), except for some special cases (see, e.g., [28] and [29] for the cases in which \(p=q=1\) and \(p=q=2\), respectively).

We propose four theorems (Theorem 3.1 to 3.4) for obtaining explicit values of \(D_{p}(\Omega)\) on a bounded convex domain Ω. Each theorem can be used under the corresponding conditions listed in Table 1.

Table 1 The assumptions of p , q , and N imposed on Theorems 3.1 , 3.2 , 3.3 , and 3.4

Theorems 3.1 and 3.2 are derived from the best constant in the Hardy-Littlewood-Sobolev inequality on \(\mathbb{R}^{N}\). Theorems 3.3 and 3.4 are derived from the best constant in Young’s inequality on \(\mathbb{R}^{N}\). The values of \(D_{p}(\Omega)\) calculated by these theorems yield the explicit values of \(C_{p}(\Omega)\) combined with Theorem 2.1.

The remainder of this paper is organized as follows. In Section 2, we propose Theorem 2.1 in which a formula for deriving an explicit value of \(C_{p}(\Omega)\) from known \(D_{p}(\Omega)\) is provided. In Section 3, we prove the four formulas (Theorems 3.1 to 3.4) for obtaining the explicit values of \(D_{p}(\Omega)\). In Section 4, we present examples where explicit values of \(C_{p}(\Omega)\) are estimated for certain domains.

2 Estimation of embedding constant \(C_{p}(\Omega)\)

The following notation is used throughout this paper. For any bounded domain \(S\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)), we define \(d_{S}\):=\(\sup_{x,y\in S} \vert x-y \vert \). The closed ball centered around \(z\in\mathbb{R}^{N}\) with radius \(\rho >0\) is denoted by \(B(z,\rho):=\{x\in\mathbb{R}^{N}\mid \vert x-z \vert \leq\rho\}\). For \(m\geq1\), let \(m'\) be Hölder’s conjugate of m, that is, \(m'\) is defined by

$$\begin{aligned} \textstyle\begin{cases} m'=\infty,& \mbox{if } m=1,\\ m'=\frac{m}{m-1},&\mbox{if } 1< m< \infty,\\ m'=1,&\mbox{if } m=\infty. \end{cases}\displaystyle \end{aligned}$$

For two domains \(\Omega\subseteq\mathbb{R}^{N}\) and \(\Omega'\subseteq \mathbb{R}^{N}\) such that \(\Omega\subseteq\Omega'\), we define the operator \(E_{\Omega,\Omega'}:L^{p}(\Omega)\to L^{p}(\Omega')\) (\(1\leq p\leq\infty\)) by

$$\begin{aligned} (E_{\Omega,\Omega'}f ) (x)= \textstyle\begin{cases} f(x),&x\in\Omega,\\ 0,&x\in\Omega'\setminus\Omega \end{cases}\displaystyle \end{aligned}$$

for \(f\in L^{p}(\Omega)\). Note that \(E_{\Omega,\Omega'}f\in L^{p}(\Omega')\) satisfies

$$\Vert E_{\Omega,\Omega'}f \Vert _{L^{p}(\Omega')}= \Vert f \Vert _{L^{p}(\Omega)}. $$

In the following theorem, we provide a formula for obtaining an explicit value of \(C_{p}(\Omega)\) from known \(D_{p}(\Omega)\).

Theorem 2.1

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)) be a bounded domain, and let p and q satisfy \(1\leq q\leq p\leq\infty\). Suppose that there exists a finite number of bounded domains \(\Omega _{i}\) (\(i=1,2,3,\ldots, n\)) satisfying (2) and (3). Moreover, suppose that, for every \(\Omega_{i}\) (\(i=1,2,3,\ldots, n\)), there exist constants \(D_{p}(\Omega_{i})\) such that

$$\begin{aligned} \Vert u-u_{\Omega_{i}} \Vert _{L^{p}(\Omega_{i})}\leq D_{p}(\Omega_{i}) \Vert \nabla u \Vert _{L^{q}(\Omega_{i})}\quad \textit{for all } u\in W^{1,q}(\Omega_{i}). \end{aligned}$$
(5)

Then (1) holds valid for

$$\begin{aligned} C_{p}(\Omega)= \textstyle\begin{cases} \displaystyle\max \Bigl(1, \max_{1\leq i\leq n}D_{\infty}(\Omega_{i}) \Bigr) & (p=q=\infty),\\ \displaystyle2^{1-\frac{1}{q}}\max \Bigl(\max_{1\leq i\leq n} \vert \Omega _{i} \vert ^{\frac{1}{p}-\frac{1}{q}}, \max_{1\leq i\leq n}D_{p}(\Omega_{i}) \Bigr) & (\textit{otherwise}), \end{cases}\displaystyle \end{aligned}$$
(6)

where this formula is understood with \(1/\infty=0\) when \(p=\infty\) and/or \(q=\infty\).

Proof

Let \(u\in W^{1,q}(\Omega)\). Since every \(\Omega_{i}\) is bounded, Hölder’s inequality states that

$$\begin{aligned} \Vert u_{\Omega_{i}} \Vert _{L^{p}(\Omega_{i})}&= \biggl\vert \int_{\Omega_{i}} \vert \Omega_{i} \vert ^{-1}u(y)\,dy \biggr\vert \Vert 1 \Vert _{L^{p}(\Omega_{i})} \\ &\leq \vert \Omega_{i} \vert ^{-1+\frac{1}{q'}} \Vert u \Vert _{L^{q}(\Omega_{i})} \vert \Omega_{i} \vert ^{\frac{1}{p}} \\ &= \vert \Omega_{i} \vert ^{\frac{1}{p}-\frac{1}{q}} \Vert u \Vert _{L^{q}(\Omega_{i})}. \end{aligned}$$
(7)

We describe the following proof separately for the case of \(p=\infty\) and \(p<\infty\).

When \(p=\infty\), we have

$$\begin{aligned} \Vert u \Vert _{L^{\infty}(\Omega)}&=\max_{1\leq i\leq n} \Vert u \Vert _{L^{\infty}(\Omega_{i})} \\ &\leq\max_{1\leq i\leq n} \bigl( \Vert u_{\Omega_{i}} \Vert _{L^{\infty}(\Omega_{i})}+ \Vert u-u_{\Omega_{i}} \Vert _{L^{\infty}(\Omega_{i})} \bigr). \end{aligned}$$

From (5) and (7), it follows that

$$\begin{aligned} & \Vert u \Vert _{L^{\infty}(\Omega)} \\ &\quad \leq\max_{1\leq i\leq n} \bigl( \vert \Omega_{i} \vert ^{-\frac{1}{q}} \Vert u \Vert _{L^{q}(\Omega_{i})}+D_{\infty }(\Omega_{i}) \Vert \nabla u \Vert _{L^{q}(\Omega_{i})} \bigr) \\ &\quad \leq\max \Bigl\{ \max_{1\leq i\leq n} \vert \Omega_{i} \vert ^{-\frac{1}{q}}, \max_{1\leq i\leq n}D_{\infty}(\Omega _{i}) \Bigr\} \max_{1\leq i\leq n} \bigl( \Vert u \Vert _{L^{q}(\Omega_{i})}+ \Vert \nabla u \Vert _{L^{q}(\Omega _{i})} \bigr). \end{aligned}$$

This implies that Theorem 2.1 holds for the case of \(p=\infty\) and \(q=\infty\).

For \(q<\infty\), we have

$$\begin{aligned} & \Vert u \Vert _{L^{\infty}(\Omega)} \\ &\quad \leq\max \Bigl\{ \max_{1\leq i\leq n} \vert \Omega_{i} \vert ^{-\frac{1}{q}}, \max_{1\leq i\leq n}D_{\infty}(\Omega _{i}) \Bigr\} \biggl(\sum_{1\leq i\leq n} \bigl( \Vert u \Vert _{L^{q}(\Omega_{i})}+ \Vert \nabla u \Vert _{L^{q}(\Omega _{i})} \bigr)^{q} \biggr)^{\frac{1}{q}} \\ &\quad \leq2^{1-\frac{1}{q}}\max \Bigl\{ \max_{1\leq i\leq n} \vert \Omega_{i} \vert ^{-\frac{1}{q}}, \max_{1\leq i\leq n}D_{\infty }( \Omega_{i}) \Bigr\} \Vert u \Vert _{W^{1,q}(\Omega)}, \end{aligned}$$

where the last inequality follows from \((s+t)^{q}\leq2^{q-1}(s^{q}+t^{q})\) for \(s,t\geq0\).

When \(p<\infty\), we have

$$\begin{aligned} \Vert u \Vert _{L^{p}(\Omega)}&= \biggl(\sum _{1\leq i\leq n} \int_{\Omega_{i}} \bigl\vert u(y) \bigr\vert ^{p}\,dy \biggr)^{\frac {1}{p}} \\ &= \biggl(\sum_{1\leq i\leq n} \Vert u \Vert _{L^{p}(\Omega _{i})}^{p} \biggr)^{\frac{1}{p}} \\ &\leq \biggl(\sum_{1\leq i\leq n} \bigl( \Vert u_{\Omega _{i}} \Vert _{L^{p}(\Omega_{i})}+ \Vert u-u_{\Omega_{i}} \Vert _{L^{p}(\Omega_{i})} \bigr)^{p} \biggr)^{\frac{1}{p}}. \end{aligned}$$

From (5) and (7), it follows that

$$\begin{aligned} \Vert u \Vert _{L^{p}(\Omega)}&\leq \biggl(\sum _{1\leq i\leq n} \bigl( \vert \Omega_{i} \vert ^{\frac{1}{p}-\frac {1}{q}} \Vert u \Vert _{L^{q}(\Omega_{i})}+D_{p}(\Omega _{i}) \Vert \nabla u \Vert _{L^{q}(\Omega_{i})} \bigr)^{p} \biggr)^{\frac{1}{p}} \\ &\leq \biggl(\sum_{1\leq i\leq n} \bigl( \vert \Omega_{i} \vert ^{\frac{1}{p}-\frac{1}{q}} \Vert u \Vert _{L^{q}(\Omega_{i})}+D_{p}(\Omega_{i}) \Vert \nabla u \Vert _{L^{q}(\Omega_{i})} \bigr)^{q} \biggr)^{\frac{1}{q}} \\ &\leq2^{1-\frac{1}{q}} \biggl(\sum_{1\leq i\leq n} \bigl( \vert \Omega_{i} \vert ^{\frac{q}{p}-1} \Vert u \Vert _{L^{q}(\Omega_{i})}^{q}+D_{p}(\Omega_{i})^{q} \Vert \nabla u \Vert _{L^{q}(\Omega_{i})}^{q} \bigr) \biggr)^{\frac{1}{q}}. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \Vert u \Vert _{L^{p}(\Omega)}\leq2^{1-\frac{1}{q}}\max \Bigl\{ \max_{1\leq i\leq n} \vert \Omega_{i} \vert ^{\frac {1}{p}-\frac{1}{q}}, \max_{1\leq i\leq n}D_{i}( \Omega_{i}) \Bigr\} \Vert u \Vert _{W^{1,q}(\Omega)}. \end{aligned}$$

 □

3 Estimation of \(D_{p}(\Omega_{i})\)

Let Γ be the gamma function, that is, \(\Gamma(x)=\int _{0}^{\infty}t^{x-1}e^{-t}\,dt\) for \(x>0\). For \(f\in L^{r}(\mathbb{R}^{N})\) and \(g\in L^{s}(\mathbb{R}^{N})\) (\(1\leq r,s\leq\infty\)), let \(f*g: \mathbb{R}^{N}\to\mathbb{R}\) be the convolution of f and g defined by

$$\begin{aligned} (f*g) (x):= \int_{\mathbb{R}^{N}}f(x-y)g(y)\,dy \biggl(= \int_{\mathbb {R}^{N}}f(x)g(x-y)\,dy \biggr). \end{aligned}$$

In the following three lemmas, we recall some known results required to obtain explicit values of \(D_{p}(\Omega_{i})\) in (5) for bounded convex domains \(\Omega_{i}\).

Lemma 3.1

(see, e.g., [30, 31])

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)) be a bounded convex domain. For \(u\in W^{1,1}(\Omega)\) and any point \(x\in\Omega \), we have

$$\begin{aligned} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert \leq\frac{d_{\Omega }^{N}}{N \vert \Omega \vert } \int_{\Omega} \vert x-y \vert ^{1-N} \bigl\vert \nabla u(y) \bigr\vert \,dy. \end{aligned}$$

A proof of Lemma 3.1 is provided in Appendix 2 because Lemma 3.1 plays an especially important role in obtaining the explicit values of \(D_{p}(\Omega_{i})\).

Lemma 3.2

(Hardy-Littlewood-Sobolev’s inequality [32])

For \(\lambda>0\), we put \(h_{\lambda}(x):= \vert x \vert ^{-\lambda}\). If \(0<\lambda<N\),

$$\begin{aligned} \Vert h_{\lambda}*g \Vert _{L^{\frac{2N}{\lambda }}(\mathbb{R}^{N})}\leq C_{\lambda, N} \Vert g \Vert _{L^{\frac{2N}{2N-\lambda}}(\mathbb{R}^{N})}\quad \textit{for all } g\in L^{\frac{2N}{2N-\lambda}}\bigl(\mathbb{R}^{N}\bigr) \end{aligned}$$
(8)

holds valid for

$$\begin{aligned} C_{\lambda, N}=\pi^{\frac{\lambda}{2}}\frac{\Gamma(\frac {N}{2}-\frac{\lambda}{2})}{\Gamma(N-\frac{\lambda}{2})} \biggl( \frac{\Gamma(\frac{N}{2})}{\Gamma(N)} \biggr)^{-1+\frac{\lambda}{N}}, \end{aligned}$$
(9)

where this is the best constant in (8).

Moreover, if \(N<2\lambda<2N\),

$$\begin{aligned} \Vert h_{\lambda}*g \Vert _{L^{\frac{2N}{2\lambda -N}}(\mathbb{R}^{N})}\leq\tilde{C}_{\lambda, N} \Vert g \Vert _{L^{2}(\mathbb{R}^{N})}\quad \textit{for all } g\in L^{2}\bigl(\mathbb{R}^{N}\bigr) \end{aligned}$$
(10)

holds valid for

$$\begin{aligned} \tilde{C}_{\lambda, N}=\pi^{\frac{\lambda}{2}}\frac{\Gamma(\frac {N}{2}-\frac{\lambda}{2})}{\Gamma(\frac{\lambda}{2})} \sqrt{\frac {\Gamma(\lambda-\frac{N}{2})}{\Gamma(\frac{3N}{2}-\lambda)}} \biggl(\frac{\Gamma(\frac{N}{2})}{\Gamma(N)} \biggr)^{-1+\frac{\lambda}{N}}, \end{aligned}$$
(11)

where this is the best constant in (10).

Lemma 3.3

(Young’s inequality [33])

Suppose that \(1\leq t,r,s\leq\infty\) and \(1/t=1/r+1/s-1\geq0\). For \(f\in L^{r}(\mathbb{R}^{N})\) and \(g\in L^{s}(\mathbb{R}^{N})\), we have

$$\begin{aligned} \Vert f*g \Vert _{L^{t}(\mathbb{R}^{N})}\leq (A_{r}A_{s}A_{t'})^{N} \Vert f \Vert _{L^{r}(\mathbb {R}^{N})} \Vert g \Vert _{L^{s}(\mathbb{R}^{N})} \end{aligned}$$
(12)

with

$$\begin{aligned} A_{m}= \textstyle\begin{cases} \sqrt{m^{\frac{2}{m}-1}(m-1)^{1-\frac{1}{m}}}&(1< m< \infty),\\ 1&(m=1, \infty). \end{cases}\displaystyle \end{aligned}$$

The constant \((A_{r}A_{s}A_{t'})^{N}\) is the best constant in (12).

The following Theorems 3.1, 3.2, 3.3, and 3.4 provide estimations of \(D_{p}(\Omega)\) for a bounded convex domain Ω, where p, q, and N are imposed on the assumptions listed in Table 1.

Theorem 3.1

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)) be a bounded convex domain. Assume that \(p\in\mathbb{R}\) satisfies \(2< p\leq 2N/(N-1)\) if \(N\geq2\) and \(2< p<\infty\) if \(N=1\). For \(q\in\mathbb{R}\) such that \(q\geq p/(p-1)\), we have

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}\leq D_{p}(\Omega ) \Vert \nabla u \Vert _{L^{q}(\Omega)} \quad \textit{for all } u\in W^{1,q}(\Omega) \end{aligned}$$

with

$$\begin{aligned} D_{p}(\Omega)=\frac{d_{\Omega}^{1+\frac{2N}{p}}\pi^{\frac {N}{p}}}{N \vert \Omega \vert ^{\frac{1}{p}+\frac {1}{q}}}\frac{\Gamma(\frac{p-2}{2p}N)}{\Gamma(\frac {p-1}{p}N)} \biggl( \frac{\Gamma(N)}{\Gamma(\frac{N}{2})} \biggr)^{\frac{p-2}{p}}. \end{aligned}$$

Proof

Let \(u\in W^{1,q}(\Omega)\). Since \(p\leq2N/(N-1)\) and \(1-N+(2N/p)\geq 0\), it follows that \(\vert x-z \vert ^{1-N+\frac {2N}{p}}\leq d_{\Omega}^{1-N+\frac{2N}{p}}\) for \(x, z\in\Omega\). Lemma 3.1 implies that, for a fixed \(x\in\Omega\),

$$\begin{aligned} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert &\leq \frac{d_{\Omega }^{N}}{N \vert \Omega \vert } \int_{\Omega} \vert x-z \vert ^{1-N+\frac{2N}{p}} \vert x-z \vert ^{-\frac{2N}{p}} \bigl\vert \nabla u(z) \bigr\vert \,dz \\ &\leq\frac{d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert } \int_{\Omega} \vert x-z \vert ^{-\frac {2N}{p}} \bigl\vert \nabla u(z) \bigr\vert \,dz \\ &\leq\frac{d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert } \int_{\mathbb{R}^{N}} \vert x-z \vert ^{-\frac {2N}{p}} \bigl(E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz. \end{aligned} $$

Therefore,

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert } \biggl( \int_{\Omega} \biggl( \int_{\mathbb{R}^{N}} \vert x-z \vert ^{-\frac{2N}{p}} \bigl(E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz \biggr)^{p}\,dx \biggr)^{\frac{1}{p}} \\ &\leq\frac{d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert } \biggl( \int_{\mathbb{R}^{N}} \biggl( \int_{\mathbb{R}^{N}} \vert x-z \vert ^{-\frac{2N}{p}} \bigl(E_{\Omega,\mathbb {R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz \biggr)^{p}\,dx \biggr)^{\frac{1}{p}}. \end{aligned}$$

Since \(q\geq p/(p-1)\) and Ω is bounded, we have \(\vert \nabla u \vert \in L^{p/(p-1)}(\Omega)\). Therefore, Lemma 3.2 ensures

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert }C_{\frac{2N}{p}, N} \bigl\Vert E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert \bigr\Vert _{L^{\frac{p}{p-1}}(\mathbb{R}^{N})} \\ &=\frac{d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert }C_{\frac{2N}{p}, N} \Vert \nabla u \Vert _{L^{\frac {p}{p-1}}(\Omega)}, \end{aligned}$$

where \(C_{\frac{2N}{p}, N}\) is defined in (9) with \(\lambda=2N/p\). Since \(q\geq p/(p-1)\), Hölder’s inequality moreover implies

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{1+\frac{2N}{p}}}{N \vert \Omega \vert ^{\frac{1}{p}+\frac{1}{q}}}C_{\frac{2N}{p}, N} \Vert \nabla u \Vert _{L^{q}(\Omega)}. \end{aligned}$$

 □

Theorem 3.2

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\geq2\)) be a bounded convex domain. Assume that \(2< p\leq2N/(N-2)\) if \(N\geq3\) and \(2< p<\infty\) if \(N=2\). For all \(u\in W^{1,2}(\Omega)\), we have

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}\leq D_{p}(\Omega ) \Vert \nabla u \Vert _{L^{2}(\Omega)} \end{aligned}$$

with

$$\begin{aligned} D_{p}(\Omega)=\frac{d_{\Omega}^{1+\frac{p+2}{2p}N}\pi^{\frac {p+2}{4p}N}}{N \vert \Omega \vert }\frac{\Gamma(\frac {p-2}{4p}N)}{\Gamma(\frac{p+2}{4p}N)}\sqrt{ \frac{\Gamma(\frac {N}{p})}{\Gamma(\frac{p-1}{p}N)}} \biggl(\frac{\Gamma(N)}{\Gamma (\frac{N}{2})} \biggr)^{\frac{p-2}{2p}}. \end{aligned}$$

Proof

Let \(u\in W^{1,2}(\Omega)\). Since \(p\leq2N/(N-2)\), it follows that \(\vert x-z \vert ^{1-N+(p+2)N/(2p)}\leq d_{\Omega }^{1-N+(p+2)N/(2p)}\) for \(x, z\in\Omega\). Lemma 3.1 leads to

$$\begin{aligned} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert &\leq \frac{d_{\Omega }^{N}}{N \vert \Omega \vert } \int_{\Omega} \vert x-z \vert ^{1-N+\frac{p+2}{2p}N} \vert x-z \vert ^{-\frac{p+2}{2p}N} \bigl\vert \nabla u(z) \bigr\vert \,dz \\ &\leq\frac{d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert } \int_{\Omega} \vert x-z \vert ^{-\frac {p+2}{2p}N} \bigl\vert \nabla u(z) \bigr\vert \,dz \\ &\leq\frac{d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert } \int_{\mathbb{R}^{N}} \vert x-z \vert ^{-\frac {p+2}{2p}N} \bigl(E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz. \end{aligned} $$

Therefore,

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert } \biggl( \int_{\Omega} \biggl( \int_{\mathbb{R}^{N}} \vert x-z \vert ^{-\frac{p+2}{2p}N} \bigl(E_{\Omega,\mathbb {R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz \biggr)^{p}\,dx \biggr)^{\frac{1}{p}} \\ &\leq\frac{d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert } \biggl( \int_{\mathbb{R}^{N}} \biggl( \int_{\mathbb {R}^{N}} \vert x-z \vert ^{-\frac{p+2}{2p}N} \bigl(E_{\Omega ,\mathbb{R}^{N}} \vert \nabla u \vert \bigr) (z)\,dz \biggr)^{p}\,dx \biggr)^{\frac{1}{p}}. \end{aligned}$$

From (10), it follows that

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert }\tilde{C}_{\frac{p+2}{2p}N, N} \bigl\Vert E_{\Omega,\mathbb {R}^{N}} \vert \nabla u \vert \bigr\Vert _{L^{2}(\mathbb {R}^{N})} \\ &=\frac{d_{\Omega}^{1+\frac{p+2}{2p}N}}{N \vert \Omega \vert }\tilde{C}_{\frac{p+2}{2p}N, N} \Vert \nabla u \Vert _{L^{2}(\Omega)}, \end{aligned}$$

where \(\tilde{C}_{\frac{p+2}{2p}N, N}\) is defined in (11) with \(\lambda=(p+2)N/(2p)\). □

Theorem 3.3

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)) be a bounded convex domain. Suppose that \(1\leq q\leq p< qN/(N-q)\) if \(N>q\), and \(1\leq q\leq p<\infty\) if \(N=q\). Then we have

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}\leq D_{p}(\Omega ) \Vert \nabla u \Vert _{L^{q}(\Omega)}\quad \textit{for all } u\in W^{1,q}(\Omega) \end{aligned}$$
(13)

with

$$\begin{aligned} D_{p}(\Omega)=\frac{d_{\Omega}^{N}}{N \vert \Omega \vert }(A_{r}A_{q}A_{p'})^{N} \bigl\Vert \vert x \vert ^{1-N} \bigr\Vert _{L^{r}(V)}, \end{aligned}$$

where \(\Omega_{x}:=\{x-y\mid y\in\Omega\}\) for \(x\in\Omega\), \(V:=\bigcup_{x\in\Omega}\Omega_{x}\), and \(r=qp/((q-1)p+q)\).

Proof

First, we prove \(I:= \Vert \vert x \vert ^{1-N} \Vert _{L^{r}(V)}^{r}<\infty\). Let \(\rho=2d_{\Omega}\) so that \(V\subset B(0,\rho)\). We have

$$\begin{aligned} \frac{pq(1-N)}{(q-1)p+q}+N-1&=\frac{pq(1-N)+Np(q-1)+Nq}{(q-1)p+q}-1 \\ &=\frac{Nq-(N-q)p}{(q-1)p+q}-1>-1. \end{aligned}$$

Therefore,

$$\begin{aligned} I&= \int_{V} \vert x \vert ^{\frac{pq(1-N)}{(q-1)p+q}}\,dx \leq \int_{B(0,\rho)} \vert x \vert ^{\frac{pq(1-N)}{(q-1)p+q}}\,dx =J \int_{0}^{\rho}\rho^{\frac{pq(1-N)}{(q-1)p+q}+N-1}\,d\rho < \infty, \end{aligned}$$

where J is defined by

$$J= \textstyle\begin{cases} 2&(N=1),\\ 2\pi&(N=2),\\ 2\pi\int_{[0,\pi]^{N-2}}\prod_{i=1}^{N-2}(\sin\theta_{i})^{N-i-1} \,d\theta_{1}\cdots \,d\theta_{N-2}&(N\geq3). \end{cases} $$

Next, we show (13). For \(x\in\Omega\), it follows from Lemma 3.1 that

$$\begin{aligned} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert &\leq\frac{d_{\Omega }^{N}}{N \vert \Omega \vert } \int_{\Omega} \vert x-y \vert ^{1-N} \bigl\vert \nabla u(y) \bigr\vert \,dy \\ &=\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \int_{\Omega _{x}} \vert y \vert ^{1-N} \bigl\vert \nabla u(x-y) \bigr\vert \,dy \\ &\leq\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \int _{V} \vert y \vert ^{1-N} \bigl(E_{\Omega,V} \vert \nabla u \vert \bigr) (x-y)\,dy. \end{aligned}$$

Since \(E_{V,\mathbb{R}^{N}}E_{\Omega,V}=E_{\Omega,\mathbb{R}^{N}}\),

$$\begin{aligned} \bigl\vert u(x)-u_{\Omega}(x) \bigr\vert &\leq \frac{d_{\Omega }^{N}}{N \vert \Omega \vert } \int_{\mathbb{R}^{N}} (E_{V,\mathbb{R}^{N}}\psi ) (y) \bigl(E_{\Omega,\mathbb {R}^{N}} \vert \nabla u \vert \bigr) (x-y)\,dy, \end{aligned}$$
(14)

where \(\psi(y)= \vert y \vert ^{1-N}\) for \(y\in V\). We denote \(f(x)= (E_{V,\mathbb{R}^{N}}\psi )(x)\) and \(g(x)= (E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert )(x)\). Lemma 3.3 and (14) give

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{p}(\Omega)}&\leq\frac {d_{\Omega}^{N}}{N \vert \Omega \vert } \Vert f*g \Vert _{L^{p}(\Omega)} \\ &\leq\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \Vert f*g \Vert _{L^{p}(\mathbb{R}^{N})} \\ &\leq\frac{d_{\Omega}^{N}}{N \vert \Omega \vert }(A_{r}A_{q}A_{p'})^{N} \Vert f \Vert _{L^{r}(\mathbb {R}^{N})} \Vert g \Vert _{L^{q}(\mathbb{R}^{N})} \\ &=\frac{d_{\Omega}^{N}}{N \vert \Omega \vert }(A_{r}A_{q}A_{p'})^{N} I^{\frac{1}{r}} \Vert \nabla u \Vert _{L^{q}(\Omega)}. \end{aligned}$$

 □

Theorem 3.4

Let \(\Omega\subset\mathbb{R}^{N}\) (\(N\in\mathbb{N}\)) be a bounded convex domain, and let \(q>N\). Then we have

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{\infty}(\Omega)}\leq D_{\infty}(\Omega) \Vert \nabla u \Vert _{L^{q}(\Omega )}\quad \textit{for all } u\in W^{1,q}(\Omega) \end{aligned}$$
(15)

with

$$\begin{aligned} D_{\infty}(\Omega)=\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \bigl\Vert \vert x \vert ^{1-N} \bigr\Vert _{L^{q'}(V)}, \end{aligned}$$

where V is defined in Theorem  3.3.

Proof

First, we show \(I:= \Vert \vert x \vert ^{1-N} \Vert _{L^{q'}(V)}^{q'}<\infty\). Let \(\rho=2d_{\Omega}\) so that \(V\subset B(0,\rho)\). We have

$$\begin{aligned} q'(1-N)+N-1=\frac{q(1-N)+N(q-1)}{q-1}-1=\frac{q-N}{q-1}-1>-1. \end{aligned}$$

Therefore,

$$\begin{aligned} I= \int_{V} \vert x \vert ^{q'(1-N)}\,dx\leq \int_{B(0,\rho )} \vert x \vert ^{q'(1-N)}\,dx =J \int_{0}^{\rho}\rho^{q'(1-N)+N-1}\,d\rho < \infty, \end{aligned}$$

where J is defined in the proof of Theorem 3.3.

Next, we prove (15). Let \(r=\frac{q}{q-1}(\geq1)\), \(f(x)= (E_{V,\mathbb{R}^{N}}\psi )(x)\), and \(g(x)= (E_{\Omega,\mathbb{R}^{N}} \vert \nabla u \vert )(x)\), where ψ is denoted in the proof of Theorem 3.3. From Lemma 3.3 and (14), for \(u\in W^{1,q}(\Omega)\), it follows that

$$\begin{aligned} \Vert u-u_{\Omega} \Vert _{L^{\infty}(\Omega)}&\leq\frac {d_{\Omega}^{N}}{N \vert \Omega \vert } \Vert f*g \Vert _{L^{\infty}(\Omega)} \leq\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \Vert f*g \Vert _{L^{\infty}(\mathbb{R}^{N})} \\ &\leq\frac{d_{\Omega}^{N}}{N \vert \Omega \vert } \Vert f \Vert _{L^{q'}(\mathbb{R}^{N})} \Vert g \Vert _{L^{q}(\mathbb{R}^{N})} =\frac{d_{\Omega}^{N}}{N \vert \Omega \vert }I^{\frac {1}{q'}} \Vert \nabla u \Vert _{L^{q}(\Omega)}. \end{aligned}$$

 □

4 Explicit values of \(C_{p}(\Omega)\) for certain domains

In this section, we present numerical examples where explicit values of \(C_{p}(\Omega)\) on a square and a triangle domain are computed using Theorems 2.1, 3.1, 3.2, 3.3, and 3.4. All computations were performed on a computer with Intel Xeon E5-2687W @ 3.10 GHz, 512 GB RAM, CentOS 7, and MATLAB 2017a. All rounding errors were strictly estimated using the interval toolbox INTLAB version 10.1 [34]. Therefore, all values in the following tables are mathematically guaranteed to be upper bounds of the corresponding \(C_{p}(\Omega)\)’s.

First, we select domains \(\Omega_{i}\) (\(1\leq i\leq n\)) satisfying (2) and (3). For all domains \(\Omega_{i}\) (\(1\leq i\leq n\)), we then compute the values of \(D_{p}(\Omega_{i})\) using Theorems 3.1, 3.2, 3.3, and 3.4. Next, explicit values of \(C_{p}(\Omega)\) are computed through Theorem 2.1.

4.1 Estimation on a square domain

For the first example, we select the case in which \(\Omega=(0,1)^{2}\). For \(n=1,4,16, 64, \ldots\) , we define each \(\Omega_{i}\) (\(1\leq i\leq n\)) as a square with side length \(1/\sqrt{n}\); see Figure 1 for the cases in which \(n=4\) and \(n=16\). For this division of Ω, Theorem 2.1 states that

$$\begin{aligned} C_{p}(\Omega)=2^{1-\frac{1}{q}}\max \Bigl(n^{- (\frac {1}{p}-\frac{1}{q} )}, \max _{1\leq i\leq n}D_{p}(\Omega_{i}) \Bigr). \end{aligned}$$

In this case, V (in Theorems 3.3 and 3.4) becomes a square with side length \(2/\sqrt{n}\) (see Figure 2). Note that \(\Vert \vert x \vert ^{1-N} \Vert _{L^{r}(V)}=\int_{V} \vert x \vert ^{\beta}\,dx\), where \(\beta =qp(1-N)/((q-1)p+q)\) if \(p<\infty\) and \(\beta=q'(1-N)\) if \(p=\infty\).

Figure 1
figure 1

\(\pmb{\Omega_{i}}\) for the cases in which \(\pmb{n=4}\) (the left-hand side) and \(\pmb{n=16}\) (the right-hand side).

Figure 2
figure 2

The domain V in Theorems 3.3 and 3.4 .

Table 2 compares upper bounds for \(C_{p}(\Omega)\) computed by Theorems 3.1, 3.2, 3.3, [10, Lemma 2.3], and [19, Corollary D.1] with \(q=2\); the numbers of division n are shown in the corresponding parentheses. Moreover, these values are plotted in Figure 3, except for the values derived from [19, Corollary D.1].

Figure 3
figure 3

Computed values of \(\pmb{C_{p}(\Omega)}\) for \(\pmb{\Omega =(0,1)^{2}}\) and \(\pmb{3\leq p\leq80}\) .

Table 2 Computed values of \(\pmb{C_{p}(\Omega)}\) for \(\pmb{\Omega=(0,1)^{2}}\) and \(\pmb{q=2}\) . The numbers of division n are shown in the corresponding parentheses. Theorem 3.1 cannot be used for \(\pmb{p>4}\) when \(\pmb{N=2}\)

Theorems 3.1, 3.2, 3.3, and [10, Lemma 2.3] provide sharper estimates of \(C_{p}(\Omega)\) than [19, Corollary D.1] for all p’s. The estimates derived by Theorem 3.2 and Theorem 3.3 for \(32\leq p\leq80\) are sharper than the estimates obtained by [10, Lemma 2.3].

We also show the values of \(C_{\infty}(\Omega)\) computed by Theorem 3.4 for \(3\leq q\leq10\) in Table 3.

Table 3 Computed values of \(\pmb{C_{\infty}(\Omega)}\) for a square domain Ω and \(\pmb{3\leq q\leq10}\) . The numbers of division n are shown in the corresponding parentheses

4.2 Estimation on a triangle domain

For the second example, we select the case in which Ω is a regular triangle with the vertices \((0,0)\), \((1,0)\), and \((1/2,\sqrt {3}/2)\). For \(n=1,4,16,64,\ldots\) , we define each \(\Omega_{i}\) (\(1\leq i\leq n\)) as a regular triangle with side length \(1/\sqrt{n}\); see Figure 4 for the case in which \(n=4\) and \(n=16\). For this division of Ω, Theorem 2.1 states that

$$C_{p}(\Omega)=2^{1-\frac{1}{q}}\max \biggl( \biggl(\frac{4n}{\sqrt {3}} \biggr)^{- (\frac{1}{p}-\frac{1}{q} )}, \max_{1\leq i\leq n} D_{p}( \Omega_{i}) \biggr). $$

In this case, V is the regular hexagon displayed in Figure 5.

Figure 4
figure 4

\(\pmb{\Omega_{i}}\) when \(\pmb{n=4}\) (the left-hand side) and \(\pmb{n=16}\) (the right-hand side).

Figure 5
figure 5

The domain V in Theorems 3.3 and 3.4 .

Table 4 compares upper bounds of \(C_{p}(\Omega)\) computed by Theorems 3.1, 3.2, 3.3, and [19, Corollary D.1] with \(q=2\); the numbers of division n are shown in the corresponding parentheses. Moreover, these values are plotted in Figure 6. The estimate computed by Theorem 3.1 is sharpest when \(p=4\). However, for the other p satisfying \(3\leq p\leq80\), Theorem 3.3 provides the sharpest estimates.

Figure 6
figure 6

Computed values of \(\pmb{C_{p}(\Omega)}\) for a regular triangle domain Ω and \(\pmb{3\leq p\leq80}\) .

Table 4 Computed values of \(\pmb{C_{p}(\Omega)}\) for a regular triangle domain Ω and \(\pmb{q=2}\) . The numbers of division n are shown in the corresponding parentheses. Theorem 3.1 cannot be used for \(\pmb{p>4}\) when \(\pmb{N=2}\)

We also show the values of \(C_{\infty}(\Omega)\) computed by Theorem 3.4 for \(3\leq q\leq10\) in Table 5.

Table 5 Computed values of \(\pmb{C_{\infty}(\Omega)}\) for a regular triangle domain Ω and \(\pmb{3\leq q\leq10}\) . The numbers of division n are shown in the corresponding parentheses

Remark 4.1

The values of \(C_{p}(\Omega)\) derived from Theorem 3.1 to 3.4 (provided in Tables 1 to 5) can be directly used for any domain that is composed of unit squares and triangles with side length 1 (see Figure 7 for some examples).

Figure 7
figure 7

Some examples of domains Ω that are composed of unit squares and triangles with side length 1.

4.3 Estimation on a cube domain

For the third example, we select the case in which \(\Omega=(0,1)^{3}\). For \(n=1,8,64,512,\ldots\) , we define each \(\Omega_{i}\) (\(1\leq i\leq n\)) as a cube with side length \(1/\sqrt[3]{n}\). For this division of Ω, Theorem 2.1 states that

$$C_{p}(\Omega)=2^{1-\frac{1}{q}}\max \Bigl(n^{- (\frac {1}{p}-\frac{1}{q} )}, \max _{1\leq i\leq n} D_{p}(\Omega _{i}) \Bigr). $$

In this case, V is also a cube with the side length \(2/\sqrt[3]{n}\).

Table 6 compares upper bounds of \(C_{p}(\Omega)\) computed by Theorems 3.1, 3.2, 3.3, and [19, Corollary D.1] with \(q=2\); the numbers of division n are shown in the corresponding parentheses. The minimum value for each p is written in bold. We also show the values of \(C_{\infty}(\Omega)\) computed by Theorem 3.4 for \(4\leq q\leq10\) in Table 7.

Table 6 Computed values of \(\pmb{C_{p}(\Omega)}\) for a cube domain Ω and \(\pmb{q=2}\) . The numbers of division n are shown in the corresponding parentheses. Theorem 3.1 for \(\pmb{p>3}\) cannot be used when \(\pmb{N=3}\) . Theorem 3.2 can be used for \(\pmb{p=6}\) only when \(\pmb{N=3}\)
Table 7 Computed values of \(\pmb{C_{\infty}(\Omega)}\) for a cube domain Ω and \(\pmb{4\leq q\leq10}\) . The numbers of division n are shown in the corresponding parentheses

5 Conclusion

We proposed several theorems that provide explicit values of Sobolev type embedding constant \(C_{p}(\Omega)\) satisfying (1) for a domain Ω that can be divided into a finite number of bounded convex domains. These theorems give sharper estimates of \(C_{p}(\Omega)\) than the previous estimates derived by the method in [19]. This accuracy improvement leads to much applicability of the estimates of \(C_{p}(\Omega)\) to verified numerical computations for PDEs.