1 Introduction

The well-known Lazarević inequality [1, 2] states that

$$ \biggl(\frac{\sinh(x)}{x} \biggr)^{p}>\cosh(x) $$
(1.1)

for all \(x>0\) if and only if \(p\geq3\).

Inequality (1.1) was generalized by Zhu [3] as follows.

Let \(p\in(-\infty, 8/15]\cup(1, \infty)\). Then the inequality

$$ \biggl(\frac{\sinh(x)}{x} \biggr)^{q}>p+(1-p)\cosh(x) $$

holds for \(x>0\) if and only if \(q\geq3(1-p)\).

For \(p>0\), Yang [4] proved that the inequality

$$ \biggl(\frac{\sinh(x)}{x} \biggr)^{3p^{2}}>\cosh(px) $$
(1.2)

holds for all \(x>0\) if and only if \(p\geq\sqrt{5}/5\), and inequality (1.2) is reversed if and only if \(p\leq1/3\).

Neuman and Sándor [5] proved that the Cusa type inequality

$$ \frac{\sinh(x)}{x}< \frac{2+\cosh(x)}{3} $$
(1.3)

holds for all \(x>0\).

In [6], Zhu presented a more general result which contains Lazarević inequality (1.1) and Cusa type inequality (1.3) as follows.

Theorem A

The following statements are true:

  1. (i)

    If \(p\geq4/5\), then the double inequality

    $$ 1-\lambda+\lambda\cosh^{p}(x)< \biggl(\frac{\sinh(x)}{x} \biggr)^{p}< 1-\eta +\eta\cosh^{p}(x) $$

    holds for all \(x>0\) if and only if \(\lambda\leq0\) and \(\eta\geq1/3\).

  2. (ii)

    If \(p<0\), then the inequality

    $$ \biggl(\frac{\sinh(x)}{x} \biggr)^{p}< 1-\eta+\eta\cosh^{p}(x) $$

    holds for all \(x>0\) if and only if \(\eta\leq1/3\).

More inequalities for the hyperbolic sine and cosine functions can be found in the literature [719].

Let \(p, q\in\mathbb{R}\) and \(H_{p,q}(x)\) be defined on \((0, \infty)\) by

$$ H_{p, q}(x)=\frac{U_{p} (\frac{\sinh(x)}{x} )}{U_{q}(\cosh(x))}, $$
(1.4)

where the function \(U_{p}(t)\) is defined on \((1, \infty)\) by

$$ U_{p}(t)=\frac{t^{p}-1}{p} \quad (p\neq0),\qquad U_{0}(t)=\lim_{p\rightarrow 0}\frac{t^{p}-1}{p}=\log t. $$
(1.5)

The main purpose of this paper is to deal with the monotonicity of \(H_{p, q}(x)\) on \((0, \infty)\), generalize and improve the Lazarević and Cusa type inequalities, and present the new bounds for certain bivariate means.

2 Monotonicity

Lemma 2.1

Let \(p\in\mathbb{R}\) and \(U_{p}(t)\) be defined on \((1, \infty)\) by (1.5). Then the function \(p\mapsto U_{p}(t)\) is increasing on \(\mathbb{R}\) and \(U_{p}(t)>0\) for all \(t\in(1, \infty)\).

Proof

Let \(p\neq0\), then the monotonicity of the function \(p\mapsto U_{p}(t)\) follows easily from

$$ \frac{\partial U_{p}(t)}{\partial p}=\frac{t^{p}}{p^{2}} \bigl[ \bigl(t^{-p}-1 \bigr)-\log \bigl(t^{-p} \bigr) \bigr]>0. $$

It follows from the monotonicity of the function \(p\mapsto U_{p}(t)\) that

$$ U_{p}(t)>\lim_{p\rightarrow-\infty}U_{p}(t)=\lim _{p\rightarrow-\infty }\frac{t^{p}-1}{p}=0. $$

 □

Lemma 2.2

(See [11, 20])

Let \(f, g: [a, b]\mapsto\mathbb{R}\) be continuous on \([a,b]\) and differentiable on \((a,b)\), and \(g^{\prime}\neq0\) on \((a,b)\). If \(f^{\prime}/g^{\prime}\) is increasing (decreasing) on \((a,b)\), then the functions

$$ \frac{f(x)-f(a)}{g(x)-g(a)}, \qquad \frac{f(x)-f(b)}{g(x)-g(b)} $$

are also increasing (decreasing) on \((a,b)\).

Lemma 2.3

(See [21])

Let \(\{a_{n}\}_{n=0}^{\infty}\) and \(\{b_{n}\}_{n=0}^{\infty}\) be two real sequences with \(b_{n}>0\) for \(n=0, 1, 2, \ldots \) , and the power series \(A(t)=\sum_{n=0}^{\infty}a_{n}t^{n}\) and \(B(t)=\sum_{n=0}^{\infty}b_{n}t^{n}\) have the radius of convergence \(r>0\). If the non-constant sequence \(\{a_{n}/b_{n}\}_{n=0}^{\infty}\) is increasing (decreasing), then the function \(A(t)/B(t)\) is also increasing (decreasing) on \((0, r)\).

Let \(\operatorname{Sh}_{p}(x)\) and \(\operatorname{Ch}_{p}(x)\) be defined on \((0, \infty)\) by

$$ \operatorname{Sh}_{p}(x)=U_{p} \biggl( \frac{\sinh(x)}{x} \biggr) $$
(2.1)

and

$$ \operatorname{Ch}_{p}(x)=U_{p}\bigl(\cosh(x)\bigr), $$
(2.2)

respectively, where the function \(U_{p}\) is defined by (1.5). Then from (1.4) and (1.5) we clearly see that the function \(H_{p,q}(x)\) can be rewritten as

$$ H_{p,q}(x)=\frac{\operatorname{Sh}_{p}(x)}{\operatorname{Ch}_{p}(x)}=\frac {\operatorname{Sh}_{p}(x)-\operatorname{Sh}_{p}(0^{+})}{\operatorname{Ch}_{p}(x)-\operatorname{Ch}_{p}(0^{+})}=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{q}{p}\frac{ (\frac{\sinh(x)}{x} )^{p}-1}{\cosh ^{q}(x)-1}, & pq\neq0, \\ \frac{1}{p}\frac{ (\frac{\sinh(x)}{x} )^{p}-1}{\log(\cosh (x))}, & p\neq0, q=0, \\ q\frac{\log\frac{\sinh(x)}{x}}{\cosh^{q}(x)-1}, & p=0, q\neq0, \\ \frac{\log\frac{\sinh(x)}{x}}{\log(\cosh(x))}, & p=q=0. \end{array}\displaystyle \right . $$
(2.3)

Let \(pq\neq0\). Then it follows from (1.5), (2.1), and (2.2) that

$$\begin{aligned}& \frac{\operatorname{Sh}^{\prime}_{p}(x)}{\operatorname{Ch}^{\prime}_{q}(x)}=\frac{\cosh ^{1-q}(x)}{x^{2}\sinh(x)} \biggl(\frac{\sinh(x)}{x} \biggr)^{p-1}\bigl[x\cosh (x)-\sinh(x)\bigr]=:f_{1}(x), \end{aligned}$$
(2.4)
$$\begin{aligned}& f^{\prime}_{1}(x)=\frac{f_{2}(x)}{x^{2}\sinh^{3}(x)\cosh^{q}(x)} \biggl(\frac{\sinh(x)}{x} \biggr)^{p}, \end{aligned}$$
(2.5)

where

$$ f_{2}(x)=pA(x)-qB(x)+C(x) $$
(2.6)

with

$$\begin{aligned}& A(x)=\bigl[x\cosh(x)-\sinh(x)\bigr]^{2}\cosh(x)>0, \end{aligned}$$
(2.7)
$$\begin{aligned}& B(x)=x\bigl[x\cosh(x)-\sinh(x)\bigr]\sinh^{2}(x)>0, \end{aligned}$$
(2.8)
$$\begin{aligned}& C(x)=-2x^{2}\cosh(x)+x\sinh(x)+\cosh(x)\sinh^{2}(x)>0, \end{aligned}$$
(2.9)

where \(C(x)>0\) due to

$$ C(x)=x^{2}\cosh(x) \biggl[\frac{\sinh^{2}(x)}{x^{2}}+\frac{\tanh (x)}{x}-2 \biggr]>0 $$

by the Wilker type inequality given in [15].

It is not difficult to verify that (2.4)-(2.6) are also true for \(pq=0\).

Let

$$\begin{aligned}& a_{n}= \bigl(4n^{2}-14n+9 \bigr)9^{n-1}+12n^{2}-10n-1, \end{aligned}$$
(2.10)
$$\begin{aligned}& b_{n}=4n(n-2)9^{n-1}-4n(n-2), \end{aligned}$$
(2.11)
$$\begin{aligned}& c_{n}=9^{n}-32n^{2}+24n-1. \end{aligned}$$
(2.12)

Then making use of (2.7)-(2.9) together with the power series formulas \(\sinh(x)=\sum_{n=0}^{\infty}x^{2n+1}/(2n+1)!\) and \(\cosh(x)=\sum_{n=0}^{\infty}x^{2n}/(2n)!\) we have

$$\begin{aligned}& A(x)=\bigl[x\cosh(x)-\sinh(x)\bigr]^{2}\cosh(x) \\& \hphantom{A(x)}=\frac{1}{4}x^{2}\cosh(3x)+\frac{3}{4}x^{2} \cosh(x)-\frac{1}{2}x\sinh (3x) \\& \hphantom{A(x)={}}{}-\frac{1}{2}x\sinh(x)+ \frac{1}{4}\cosh(3x)-\frac{1}{4}\cosh(x) \\& \hphantom{A(x)}=\sum_{n=3}^{\infty} \frac{ (4n^{2}-14n+9 )9^{n-1}+12n^{2}-10n-1}{4(2n)!}x^{2n}=\sum_{n=3}^{\infty} \frac {a_{n}}{4(2n)!}x^{2n}, \end{aligned}$$
(2.13)
$$\begin{aligned}& B(x)=x\bigl[x\cosh(x)-\sinh(x)\bigr]\sinh^{2}(x) \\& \hphantom{B(x)}=\frac{1}{4}x^{2}\cosh(3x)-\frac{1}{4}x^{2} \cosh(x)-\frac{1}{4}x\sinh (3x)+\frac{3}{4}x\sinh(x) \\& \hphantom{B(x)}=\sum_{n=3}^{\infty} \frac{4n(n-2)9^{n-1}-4n(n-2)}{4(2n)!}x^{2n}=\sum_{n=3}^{\infty} \frac{b_{n}}{4(2n)!}x^{2n}, \end{aligned}$$
(2.14)
$$\begin{aligned}& C(x)=-2x^{2}\cosh(x)+x\sinh(x)+\cosh(x)\sinh^{2}(x) \\& \hphantom{C(x)}=-2x^{2}\cosh(x)+x\sinh(x)+\frac{1}{4}\cosh(3x)- \frac{1}{4}\cosh(x) \\& \hphantom{C(x)}=\sum_{n=3}^{\infty} \frac{9^{n}-32n^{2}+24n-1}{4(2n)!}x^{2n}=\sum_{n=3}^{\infty} \frac{c_{n}}{4(2n)!}x^{2n}. \end{aligned}$$
(2.15)

In order to investigate the monotonicity of the function \(H_{p,q}\), we need Lemma 2.4.

Lemma 2.4

Let \(A(x)\), \(B(x)\), and \(C(x)\) be, respectively, defined by (2.7), (2.8), and (2.9), \(f_{3}\) be defined on \((0, \infty)\) by

$$\begin{aligned}& f_{3}(x)=\frac{pA(x)-qB(x)}{C(x)}+1, \end{aligned}$$
(2.16)
$$\begin{aligned}& I_{1}= \{q=0, p>0 \}\cup \biggl\{ q>0, \frac{p}{q}\geq \frac {23}{17} \biggr\} \cup \biggl\{ q< 0, \frac{p}{q}\leq1 \biggr\} , \end{aligned}$$
(2.17)

and

$$ I_{2}= \{q=0, p< 0 \}\cup \biggl\{ q>0, \frac{p}{q} \leq1 \biggr\} \cup \biggl\{ q< 0, \frac{p}{q}\geq\frac{23}{17} \biggr\} . $$
(2.18)

Then the following statements are true:

  1. (i)

    \(f_{3}\) is increasing from \((0, \infty)\) onto \(((5p-15q)/8+1, \infty )\) if \((p, q)\in I_{1}\);

  2. (ii)

    \(f_{3}\) is decreasing from \((0, \infty)\) onto \((-\infty, (5p-15q)/8+1 )\) if \((p, q)\in I_{2}\).

Proof

Let \(a_{n}\), \(b_{n}\), and \(c_{n}\) be, respectively, defined by (2.10), (2.11), and (2.12). Then it follows from (2.13)-(2.16) that

$$\begin{aligned}& f_{3}(x)-1=\frac{\sum_{n=3}^{\infty}\frac {pa_{n}-qb_{n}}{4(2n)!}x^{2n}}{\sum_{n=3}^{\infty}\frac{c_{n}}{4(2n)!}x^{2n}}, \end{aligned}$$
(2.19)
$$\begin{aligned}& \frac{\frac{pa_{n}-qb_{n}}{4(2n)!}}{\frac{c_{n}}{4(2n)!}}=\frac {pa_{n}-qb_{n}}{c_{n}}, \end{aligned}$$
(2.20)
$$\begin{aligned}& \frac{pa_{n+1}-qb_{n+1}}{c_{n+1}}-\frac{pa_{n}-qb_{n}}{c_{n}} \\& \quad =\frac{p ( a_{n+1}c_{n}-a_{n}c_{n+1} ) -q ( b_{n+1}c_{n}-b_{n}c_{n+1} ) }{c_{n}c_{n+1}} \\& \quad =\frac{pv_{n}-qu_{n}}{c_{n}c_{n+1}}=\left \{ \textstyle\begin{array}{l@{\quad}l} p\frac{v_{n}}{c_{n}c_{n+1}}, & q=0, \\ \frac{v_{n}}{c_{n}c_{n+1}}q (\frac{p}{q}-\frac{u_{n}}{v_{n}} ), & q\neq0, \end{array}\displaystyle \right . \end{aligned}$$
(2.21)

where

$$\begin{aligned}& u_{n}=b_{n+1}c_{n}-b_{n}c_{n+1} \\& \hphantom{u_{n}}=2\times9^{n-1} \bigl[(36n-18)9^{n}- \bigl( 512n^{4}-384n^{3}-560n^{2}+792n-36 \bigr) \bigr] \\& \hphantom{\hphantom{u_{n}}={}}{}+4 \bigl(42n+40n^{2}-1 \bigr), \end{aligned}$$
(2.22)
$$\begin{aligned}& v_{n}=a_{n+1}c_{n}-a_{n}c_{n+1} \\& \hphantom{v_{n}}=2\times9^{n-1} \bigl[(36n-45)9^{n}- \bigl(512n^{4}-1\text{,}152n^{3}+1\text{,}072n^{2} \bigr) \bigr] \\& \hphantom{v_{n}={}}{}+2\times \bigl[2(28n+5)9^{n}- \bigl(16n^{2}+60n+5 \bigr) \bigr]. \end{aligned}$$
(2.23)

We claim that

$$ c_{n}>0 $$
(2.24)

and

$$ v_{n}>0 $$
(2.25)

for \(n\geq3\).

Indeed, making use of the binomial expansion we have

$$\begin{aligned}& c_{n}=9^{n}-32n^{2}+24n-1=(1+8)^{n}-32n^{2}+24n-1 \\& \hphantom{c_{n}}>1+8n+\frac{n(n-1)}{2}8^{2}-32n^{2}+24n-1=0, \\& (36n-45)9^{n}- \bigl(512n^{4}-1\text{,}152n^{3}+1 \text{,}072n^{2} \bigr) \\& \quad >(36n-45) \biggl(1+8n+\frac{n(n-1)}{2}8^{2}+ \frac {n(n-1)(n-2)}{6}8^{3} \biggr) \\& \qquad {}- \bigl(512n^{4}-1 \text{,}152n^{3}+1\text{,}072n^{2} \bigr) \\& \quad =2\text{,}560(n-3)^{4}+19\text{,}968(n-3)^{3}+55 \text{,}760(n-3)^{2}+65\text{,}340(n-3)+25\text{,}991>0, \\& 2(28n+5)9^{n}- \bigl(16n^{2}+60n+5 \bigr) \\& \quad >2(28n+5) (1+8n)- \bigl(16n^{2}+60n+5 \bigr) \\& \quad =432n^{2}+76n+5>0 \end{aligned}$$

for \(n\geq3\).

We divide the proof into two cases.

Case 1. \(q=0\). Then (2.19)-(2.21), (2.24), (2.25), and Lemma 2.3 lead to the conclusion that \(f_{3}(x)\) is increasing on \((0, \infty )\) if \(p>0\) and decreasing on \((0, \infty)\) if \(p<0\). Therefore, we have \(5p/8+1<\lim_{x\rightarrow0^{+}}f_{3}(x)<f_{3}(x)<\lim_{x\rightarrow\infty}f_{3}(x)=\infty\) for \(p>0\), \(f_{3}(x)=1\) for \(p=0\), and \(-\infty<\lim_{x\rightarrow\infty}f_{3}(x)<f_{3}(x)<\lim_{x\rightarrow0^{+}}f_{3}(x)=5p/8+1\) for \(p<0\).

Case 2. \(q\neq0\). We first prove that \(u_{n}/v_{n}\) is decreasing for \(n\geq3\). From (2.25) we know that it suffices to show that \(u_{n}v_{n+1}-u_{n+1}v_{n}>0\) for \(n\geq3\). It follows from (2.22) and (2.23) that

$$\begin{aligned}& {u_{n}v_{n+1}-u_{n+1}v_{n}} \\& \quad =\frac{16c_{n+1}}{3}\bigl[9^{3n+2}- \bigl(1\text{,}024n^{4}-2 \text{,}560n^{3}+2\text{,}752n^{2}+243 \bigr)9^{2n} \\& \qquad {}+ \bigl(1\text{,}024n^{4}+2\text{,}560n^{3}+2 \text{,}752n^{2}+243 \bigr)9^{n}-81\bigr]. \end{aligned}$$
(2.26)

Note that

$$\begin{aligned}& 9^{n+2}- \bigl(1\text{,}024n^{4}-2 \text{,}560n^{3}+2\text{,}752n^{2}+243 \bigr) \\& \quad >1+8(n+2)+\frac{(n+2)(n+1)}{2}8^{2}+\frac{(n+2)(n+1)n}{6}8^{3} \\& \qquad {}+ \frac {(n+2)(n+1)n(n-1)}{24}8^{4}+\frac{(n+2)(n+1)n(n-1)(n-2)}{120}8^{5} \\& \qquad {}- \bigl(1\text{,}024n^{4}-2 \text{,}560n^{3}+2\text{,}752n^{2}+243 \bigr) \\& \quad =2\text{,}048(n-3)^{5}+24\text{,}320(n-3)^{4}+119 \text{,}680(n-3)^{3} \\& \qquad {}+297\text{,}040(n-3)^{2}+355 \text{,}692(n-3)+151\text{,}605>0 \end{aligned}$$
(2.27)

for \(n\geq3\).

Therefore, \(u_{n}v_{n+1}-u_{n+1}v_{n}>0\) for \(n\geq3\) follows from (2.24), (2.26), and (2.27).

From (2.21), (2.24), (2.25), and the monotonicity of \(u_{n}/v_{n}\) we clearly see that

$$\begin{aligned}& 1=\lim_{n\rightarrow\infty}\frac{u_{n}}{v_{n}}< \frac{u_{n}}{v_{n}}\leq \frac{u_{3}}{v_{3}}=\frac{23}{17}, \\& \frac{pa_{n+1}-qb_{n+1}}{c_{n+1}}-\frac{pa_{n}-qb_{n}}{c_{n}}=\left \{ \textstyle\begin{array}{l@{\quad}l} >0, & q>0,\frac{p}{q}\geq\frac{23}{17}, \\ < 0, & q< 0,\frac{p}{q}\geq\frac{23}{17}, \\ < 0, & q>0,\frac{p}{q}\leq1, \\ >0, & q< 0,\frac{p}{q}\leq1. \end{array}\displaystyle \right . \end{aligned}$$
(2.28)

Therefore, the desired results follows easily from (2.19), (2.20), (2.28), and Lemma 2.3 together with the facts that

$$\begin{aligned}& \lim_{x\rightarrow0^{+}}f_{3}(x)=\frac{5p-15q}{8}+1, \\& \lim_{x\rightarrow\infty}f_{3}(x)=\left \{ \textstyle\begin{array}{l@{\quad}l} \infty, & q>0,\frac{p}{q}\geq\frac{23}{17} \text{ or } q< 0,\frac {p}{q}\leq1, \\ -\infty, & q< 0,\frac{p}{q}\geq\frac{23}{17} \text{ or } q>0,\frac {p}{q}\leq1. \end{array}\displaystyle \right . \end{aligned}$$

 □

From Lemma 2.4, we get the monotonicity of \(H_{p,q}\) as follows.

Proposition 2.1

Let \(I_{1}\) and \(I_{2}\) be defined, respectively, by (2.17) and (2.18), and \(H_{p,q}(x)\) be defined on \((0, \infty)\) by (2.3). Then the following statements are true:

  1. (i)

    \(H_{p,q}(x)\) is increasing on \((0, \infty)\) if \((p,q)\in I_{1}\cup (0, 0)\cap\{(5p-15q)/8+1\geq0\}\);

  2. (ii)

    \(H_{p,q}(x)\) is decreasing on \((0, \infty)\) if \((p,q)\in I_{2}\cap\{(5p-15q)/8+1\leq0\}\).

Proof

Let \(f_{2}(x)\) and \(f_{3}(x)\) be defined by (2.6) and (2.16), respectively.

(i) If \((p,q)\in I_{1}\cup(0, 0)\cap\{(5p-15q)/8+1\geq0\}\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) follows easily from (2.4)-(2.6), (2.9), (2.16), Lemma 2.2, and Lemma 2.4(i).

(ii) If \((p,q)\in I_{2}\cap\{(5p-15q)/8+1\leq0\}\), then \(H_{p,q}(x)\) is decreasing on \((0, \infty)\) follows easily from (2.4)-(2.6), (2.9), (2.16), Lemma 2.2, and Lemma 2.4(ii). □

It is easily to verify that \((p,q)\in I_{1}\cup(0, 0)\cap\{ (5p-15q)/8+1\geq0\}\) is equivalent to

$$ p\geq \left \{ \textstyle\begin{array}{l@{\quad}l} 3q-8/5, & q\in[34/35,\infty), \\ 23q/17, & q\in[0,34/35), \\ q,& q\in(-\infty,0) \end{array}\displaystyle \right . $$

or

$$ q\leq \left \{ \textstyle\begin{array}{l@{\quad}l} p/3+8/15, & p\in[46/35,\infty), \\ 17p/23, & p\in[0,46/35), \\ p, & p\in(-\infty,0), \end{array}\displaystyle \right . $$

and \((p,q)\in I_{2}\cap\{(5p-15q)/8+1\leq0\}\) is equivalent to

$$ p\leq \left \{ \textstyle\begin{array}{l@{\quad}l} q, & q\in[4/5,\infty), \\ 3q-8/5, & q\in(-\infty,4/5) \end{array}\displaystyle \right . $$

or

$$ q\geq \left \{ \textstyle\begin{array}{l@{\quad}l} p, & p\in[4/5,\infty), \\ p/3+8/15,& p\in(-\infty,4/5). \end{array}\displaystyle \right . $$

Therefore, Proposition 2.1 can be restated as Propositions 2.2 and 2.3.

Proposition 2.2

Let \(H_{p,q}(x)\) be defined on \((0, \infty)\) by (2.3). Then the following statements are true:

  1. (i)

    If \(q\in[34/35, \infty)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(p\geq3q-8/5\) and decreasing for \(p\leq q\).

  2. (ii)

    If \(q\in[4/5, 34/35)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(p\geq23q/17\) and decreasing for \(p\leq q\).

  3. (iii)

    If \(q\in(0, 4/5)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(p\geq23q/17\) and decreasing for \(p\leq3q-8/5\).

  4. (iv)

    If \(q\in(-\infty, 0]\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(p\geq q\) and decreasing for \(p\leq3q-8/5\).

Proposition 2.3

Let \(H_{p,q}(x)\) be defined on \((0, \infty)\) by (2.3). Then the following statements are true:

  1. (i)

    If \(p\in[46/35, \infty)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(q\leq p/3+8/15\) and decreasing for \(q\geq p\).

  2. (ii)

    If \(p\in[4/5, 46/35)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(q\leq17p/23\) and decreasing for \(q\geq p\).

  3. (iii)

    If \(p\in(0, 4/5)\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(q\leq17p/23\) and decreasing for \(q\geq p/3+8/15\).

  4. (iv)

    If \(p\in(-\infty, 0]\), then \(H_{p,q}(x)\) is increasing on \((0, \infty)\) for \(q\leq p\) and decreasing for \(q\geq p/3+8/15\).

Let \(p=kq\), then Proposition 2.1 leads to the following corollary.

Corollary 2.1

Let \(H_{p,q}(x)\) be defined on \((0, \infty)\) by (2.3). Then the following statements are true:

  1. (i)

    If \(k\in(3, \infty)\), then \(H_{kq, q}(x)\) is increasing on \((0, \infty)\) for \(q\geq0\) and decreasing for \(q\leq8/[5(3-k)]\).

  2. (ii)

    If \(k=3\), then \(H_{kq, q}(x)\) is increasing on \((0, \infty)\) for all \(q\in\mathbb{R}\).

  3. (iii)

    If \(k\in[23/17, 3)\), then \(H_{kq, q}(x)\) is increasing on \((0, \infty)\) for \(0\leq q \leq8/[5(3-k)]\).

  4. (iv)

    If \(k\in(1, 23/17)\), then \(H_{kq, q}(x)\) is increasing on \((0, \infty)\) for \(q=0\).

  5. (v)

    If \(k\in(-\infty, 1]\), then \(H_{kq, q}(x)\) is increasing on \((0, \infty)\) for \(q\leq0\) and decreasing for \(q \geq8/[5(3-k)]\).

Let \(I_{1}\) and \(I_{2}\) be defined by (2.17) and (2.18), respectively. If \((5p-15q)/8+1=0\), then we clearly see that

$$\begin{aligned}& I_{1}\cup\{0, 0\}\cap \biggl\{ \frac{5p-15q}{8}+1=0 \biggr\} = \biggl\{ q\geq \frac{34}{35}, p=3q-\frac{8}{5} \biggr\} = \biggl\{ p\geq \frac{46}{35}, q=\frac{5p+8}{15} \biggr\} , \\& I_{2}\cap \biggl\{ \frac{5p-15q}{8}+1=0 \biggr\} = \biggl\{ q\leq \frac{4}{5}, p=3q-\frac{8}{5} \biggr\} = \biggl\{ p\leq \frac{4}{5}, q=\frac {5p+8}{15} \biggr\} , \end{aligned}$$

and Proposition 2.1 leads to the following corollary.

Corollary 2.2

Let \(H_{p,q}(x)\) be defined on \((0, \infty)\) by (2.3). Then \(H_{3q-8/5, q}(x)\) is increasing on \((0, \infty)\) if \(q\geq34/35\) and decreasing if \(q\leq4/5\). In other words, \(H_{p, (5p+8)/15}(x)\) is increasing on \((0, \infty)\) if \(p\geq46/35\) and decreasing if \(p\leq4/5\).

3 Main results

In this section, we present several Lazarević and Cusa type inequalities involving the hyperbolic sine and cosine functions with two parameters.

Let \(\operatorname{Sh}_{p}(x)\), \(\operatorname{Ch}_{p}(x)\), \(H_{p, q}(x)\), \(I_{1}\), and \(I_{2}\) be, respectively, defined by (2.1), (2.2), (2.3), (2.17), and (2.18). Then it is not difficult to verify that

$$\begin{aligned}& I_{1}\cup\{0, 0\}\cap \biggl\{ \frac{5p-15q}{8}+1\geq0 \biggr\} \\& \quad = \biggl\{ 0\leq q\leq\min \biggl(\frac{17p}{23}, \frac{5p+8}{15} \biggr) \biggr\} \cup \biggl\{ q\leq\min \biggl(0, p, \frac{5p+8}{15} \biggr) \biggr\} , \\& I_{2}\cap \biggl\{ \frac{5p-15q}{8}+1\leq0 \biggr\} \\& \quad = \biggl\{ \max \biggl(\frac{17p}{23}, \frac{5p+8}{15} \biggr)\leq q< 0 \biggr\} \cup \biggl\{ q\geq\max \biggl(0, p, \frac{5p+8}{15} \biggr) \biggr\} , \\& H_{p, q}\bigl(0^{+}\bigr)=\frac{1}{3}. \end{aligned}$$

From Proposition 2.1, we get Theorem 3.1 immediately.

Theorem 3.1

  1. (i)

    If \(0\leq q\leq\min\{17p/23, (5p+8)/15\}\) or \(q\leq\min\{0, p, (5p+8)/15\}\), then the inequalities

    $$\begin{aligned}& \frac{ (\frac{\sinh(x)}{x} )^{p}-1}{p}>\frac{1}{3}\frac{\cosh ^{q}(x)-1}{q}\quad (pq \neq0), \end{aligned}$$
    (3.1)
    $$\begin{aligned}& \log \biggl(\frac{\sinh(x)}{x} \biggr)>\frac{1}{3}\frac{\cosh^{q}(x)-1}{q} \quad (p=0, q\neq0), \end{aligned}$$
    (3.2)
    $$\begin{aligned}& \frac{ (\frac{\sinh(x)}{x} )^{p}-1}{p}>\frac{1}{3}\log\bigl[\cosh (x)\bigr]\quad (p\neq0, q= 0), \end{aligned}$$
    (3.3)
    $$\begin{aligned}& \log \biggl(\frac{\sinh(x)}{x} \biggr)>\frac{1}{3}\log\bigl[\cosh(x)\bigr] \quad (p=q=0), \end{aligned}$$
    (3.4)

    hold for \(x\in(0, \infty)\) with the best possible constant \(1/3\).

  2. (ii)

    If \(\max\{17p/23, (5p+8)/15\}\leq q<0\) or \(q\geq\max\{0, p, (5p+8)/15\}\), then all the inequalities (3.1)-(3.3) are reversed.

For clarity of expression, in the following we directly write \(\operatorname{Sh}_{p}(x)\), \(\operatorname{Ch}_{p}(x)\), and \(H_{p,q}(x)\), and so on. For their general formulas, if \(pq=0\), then we regard them as limit at \(p=0\) or \(q=0\), unless otherwise specified.

Lemma 3.1 will be used to establish sharp inequalities for hyperbolic functions.

Lemma 3.1

Let \(\operatorname{Sh}_{p}\) and \(\operatorname{Ch}_{q}\) be, respectively, defined on \((0, \infty)\) by (2.1) and (2.2), and \(D_{p,q}\) be defined on \((0, \infty)\) by

$$ D_{p, q}(x)=\operatorname{Sh}_{p}(x)- \frac{1}{3}\operatorname{Ch}_{q}(x)=\frac{ (\frac{\sinh (x)}{x} )^{p}-1}{p}- \frac{\cosh^{q}(x)-1}{3q}. $$
(3.5)

Then we have

$$\begin{aligned}& \lim_{x\rightarrow0^{+}}\frac{D_{p, q}(x)}{x^{4}}=\frac{1}{72} \biggl(p-3q+ \frac{8}{5} \biggr), \end{aligned}$$
(3.6)
$$\begin{aligned}& \lim_{x\rightarrow0^{+}}\frac{D_{3q-8/5, q}(x)}{x^{6}}=\frac {1}{270} \biggl(q- \frac{34}{35} \biggr), \end{aligned}$$
(3.7)
$$\begin{aligned}& \lim_{x\rightarrow\infty} \bigl[e^{-qx}D_{p,q}(x) \bigr]= \left \{ \textstyle\begin{array}{l@{\quad}l} \infty, & p>q\geq0, \\ \infty, & p\geq q=0, \\ -\frac{2^{-q}}{3q}, & q\geq p>0, \\ -\frac{2^{-q}}{3q}, & q>p=0, \end{array}\displaystyle \right . \end{aligned}$$
(3.8)
$$\begin{aligned}& \lim_{x\rightarrow\infty}D_{p,q}(x) =\left \{ \textstyle\begin{array}{l@{\quad}l} \infty, & p\geq0,q< 0, \\ -\infty, & p< 0,q\geq0, \\ \frac{1}{3q}-\frac{1}{p}, & p< 0, q< 0. \end{array}\displaystyle \right . \end{aligned}$$
(3.9)

Proof

Let \(x\rightarrow0^{+}\), then making use of power series formulas and (3.5) we get

$$ D_{p, q}(x)=\frac{5p-15q+8}{360}x^{4}+ \frac {35p^{2}-42p-315q^{2}+630q-320}{45\text{,}360}x^{6}+o\bigl(x^{6}\bigr). $$
(3.10)

Therefore, (3.6) and (3.7) follows easily from (3.10).

We divide the proof of (3.8) into four cases.

Case 1. \(p>0\), \(q>0\). Then (3.5) leads to

$$\begin{aligned}& \lim_{x\rightarrow\infty} \bigl[e^{-qx}D_{p,q}(x) \bigr] \\& \quad =\lim_{x\rightarrow\infty} \biggl[\frac{1}{p}\frac {e^{(p-q)x}}{x^{p}} \biggl(\frac{1-e^{-2x}}{2} \biggr)^{p}- \frac{1}{3q} \biggl( \frac{1+e^{-2x}}{2} \biggr)^{q}- \biggl(\frac{1}{p}- \frac {1}{3q} \biggr)e^{-qx} \biggr] \\& \quad =\left \{ \textstyle\begin{array}{l@{\quad}l} \infty, & p>q>0, \\ -\frac{2^{-q}}{3q},& q\geq p>0. \end{array}\displaystyle \right . \end{aligned}$$

Case 2. \(p=0\), \(q>0\). Then it follows from (3.5) that

$$\begin{aligned}& \lim_{x\rightarrow\infty} \bigl[e^{-qx}D_{0,q}(x) \bigr] \\& \quad =\lim_{x\rightarrow\infty} \biggl[xe^{-qx}+e^{-qx} \log \biggl(\frac {1-e^{-2x}}{2} \biggr)-e^{-qx}\log x-\frac{1}{3q} \biggl(\frac {1+e^{-2x}}{2} \biggr)^{q}+\frac{e^{-qx}}{3q} \biggr] \\& \quad =-\frac{2^{-q}}{3q}. \end{aligned}$$

Case 3. \(p=0\), \(q=0\). Then (3.5) leads to

$$ \lim_{x\rightarrow\infty}D_{0,0}(x)=\lim_{x\rightarrow\infty} \biggl[x \biggl(\frac{2}{3}-\frac{\log x}{x} \biggr)+\log \biggl( \frac {1-e^{-2x}}{2} \biggr)-\frac{1+e^{-2x}}{6} \biggr]=\infty. $$

Case 4. \(p>0\), \(q=0\). Then it follows from Lemma 2.1 and (3.5) that

$$ D_{p, 0}(x)>D_{0, 0}(x) $$
(3.11)

for \(x\in(0, \infty)\).

Therefore,

$$ \lim_{x\rightarrow\infty}D_{p, 0}(x)=\infty $$

follows from Case 3 and (3.11).

Equation (3.9) follows easily from (3.5) and the fact that

$$ \lim_{x\rightarrow\infty}U_{p}(x)=\left \{ \textstyle\begin{array}{l@{\quad}l} \infty, & p\geq0, \\ -\frac{1}{p}, & p< 0. \end{array}\displaystyle \right . $$

 □

Making use of Proposition 2.2 and Lemma 3.1 we get Theorems 3.2 and 3.3.

Theorem 3.2

The following statements are true:

  1. (i)

    If \(q\in[34/35, \infty)\), then the double inequality

    $$ \frac{ (\frac{\sinh(x)}{x} )^{p_{2}}-1}{p_{2}}< \frac{\cosh ^{q}(x)-1}{3q}< \frac{ (\frac{\sinh(x)}{x} )^{p_{1}}-1}{p_{1}} $$
    (3.12)

    holds for \(x\in(0, \infty)\) if and only if \(p_{1}\geq3q-8/5\) and \(p_{2}\leq q\).

  2. (ii)

    If \(q\in[4/5, 34/25)\), then the second inequality of (3.12) holds for \(x\in(0, \infty)\) if \(p_{1}\geq23q/17\), and the first inequality of (3.12) holds for \(x\in(0, \infty)\) if and only if \(p_{2}\leq q\).

  3. (iii)

    If \(q\in(0, 4/5)\), then the second inequality of (3.12) holds for \(x\in(0, \infty)\) if \(p_{1}\geq23q/17\), and the first inequality of (3.12) holds for \(x\in(0, \infty)\) if and only if \(p_{2}\leq3q-8/5\).

  4. (iv)

    If \(q\in(-\infty, 0]\), then the second inequality of (3.12) holds for \(x\in(0, \infty)\) if \(p_{1}\geq q\), and the first inequality of (3.12) holds for \(x\in(0, \infty)\) if and only and \(p_{2}\leq3q-8/5\).

Proof

All the sufficiencies in (i)-(iv) follow from Proposition 2.2 and \(H_{p, q}(0^{+})=1/3\). Next, we prove the necessities in (i)-(iv).

(i) If \(q\in[34/35, \infty)\) and the second inequality of (3.12) holds for all \(x\in(0, \infty)\), then (3.5) and (3.6) lead to the conclusion that \(p_{1}\geq3q-8/5\). If \(q\in[34/35, \infty)\) and the first inequality of (3.12) holds for all \(x\in(0, \infty)\), then we claim that \(p_{2}\leq q\), otherwise, \(p_{2}>q\in[34/35, \infty)\) and the first inequality (3.12) imply that \(D_{p_{2}, q}(x)<0\) for all \(x\in(0, \infty)\), which contradicts with (3.8).

(ii) If \(q\in[4/5, 34/25)\) and the first inequality of (3.12) holds for \(x\in(0, \infty)\), then the proof of \(p_{2}\leq q\) is similar to part two of (i).

(iii) If \(q\in(0, 4/5)\) and the first inequality of (3.12) holds for \(x\in(0, \infty)\), then the proof of \(p_{2}\leq3q-8/5\) is similar to part one of (i).

(iv) If \(q\in(-\infty, 0]\) and the first inequality of (3.12) holds for \(x\in(0, \infty)\), then (3.5) and (3.6) lead to the conclusion that \(p_{2}\leq3q-8/5\). □

Theorem 3.3

The following statements are true:

  1. (i)

    If \(p\in[46/35, \infty)\), then the double inequality

    $$ \frac{\cosh^{q_{1}}(x)-1}{3q_{1}}< \frac{ (\frac{\sinh(x)}{x} )^{p}-1}{p} < \frac{\cosh^{q_{2}}(x)-1}{3q_{2}} $$
    (3.13)

    holds for all \(x\in(0, \infty)\) if and only if \(q_{1}\leq(5p+8)/15\) and \(q_{2}\geq p\).

  2. (ii)

    If \(p\in[4/5, 46/35)\), then the first inequality of (3.13) holds for all \(x\in(0, \infty)\) if \(q_{1}\leq17p/23\), and the second inequality of (3.13) holds for all \(x\in(0, \infty)\) if and only if \(q_{2}\geq p\).

  3. (iii)

    If \(p\in(0, 4/5)\), then the first inequality of (3.13) holds for all \(x\in(0, \infty)\) if \(q_{1}\leq17p/23\), and the second inequality of (3.13) holds for all \(x\in(0, \infty)\) if and only if \(q_{2}\geq(5p+8)/15\).

  4. (iv)

    If \(p\in(-\infty, 0]\), then the first inequality of (3.13) holds for all \(x\in(0, \infty)\) if \(q_{1}\leq p\), and the second inequality of (3.13) holds for all \(x\in(0, \infty)\) if and only if \(q_{2}\geq(5p+8)/15\).

Remark 3.1

Let \(q=1\). Then Theorem 3.2(i) leads to the conclusion that the inequality

$$ \biggl(\frac{\sinh(x)}{x} \biggr)^{3(1-p)}>p+(1-p)\cosh(x) $$
(3.14)

holds for all \(x\in(0, \infty)\) if and only if \(p\leq8/15\), and inequality (3.14) is reversed if and only if \(p\geq2/3\).

Remark 3.2

Let \(t\in(1, \infty)\), and \(\Omega_{p, q}\) and \(M(t; p, q)\) be, respectively, defined by

$$ \Omega_{p, q}=\bigl\{ (p, q): p\geq0\bigr\} \cup\bigl\{ (p, q): 3q\leq p< 0\bigr\} $$
(3.15)

and

$$ M(t;p,q)=\left \{ \textstyle\begin{array}{l@{\quad}l} (1-\frac{p}{3q}+\frac{p}{3q}t^{q} )^{1/p}, & pq\neq0, (p, q)\in\Omega_{p,q}, \\ e^{ (t^{q}-1 )/(3q)}, & p=0, q\neq0, \\ (\frac{p}{3}\log t+1 )^{1/p}, & p>0,q=0, \\ t^{1/3},& p=q=0. \end{array}\displaystyle \right . $$
(3.16)

Then we clearly see that \(H_{p,q}(x)<(>)\,H_{p,q}(0^{+})=1/3\) for all \(x\in(0, \infty)\) is equivalent to \(\sinh(x)/x> (<)\,M(\cosh(x); p, q)\). Moreover, it is not difficult to verify that \(M(t; p, q)\) is decreasing with respect to p and increasing with respect to q if \((p, q)\in \Omega_{p, q}\).

Remark 3.3

From Remark 3.2 we know that Theorems 3.2 and 3.3 are also true if \((p, q)\in\Omega_{p,q}\) and replacing (3.12) and (3.13), respectively, with

$$ \biggl(1-\frac{p_{1}}{3q}+\frac{p_{1}}{3q}\cosh^{q}(x) \biggr)^{1/p_{1}}< \frac{\sinh(x)}{x} < \biggl(1-\frac{p_{2}}{3q}+ \frac{p_{2}}{3q}\cosh^{q}(x) \biggr)^{1/p_{2}} $$

and

$$ \biggl(1-\frac{p}{3q_{1}}+\frac{p}{3q_{1}}\cosh^{q_{1}}(x) \biggr)^{1/p}< \frac{\sinh(x)}{x} < \biggl(1-\frac{p}{3q_{2}}+ \frac{p}{3q_{2}}\cosh^{q_{2}}(x) \biggr)^{1/p}. $$

Let \(q=1\), then Theorem 3.2 leads to Corollary 3.1.

Corollary 3.1

The double inequality

$$ \biggl(1-\frac{p_{1}}{3}+\frac{p_{1}}{3}\cosh(x) \biggr)^{1/p_{1}}< \frac {\sinh(x)}{x} < \biggl(1-\frac{p_{2}}{3}+\frac{p_{2}}{3}\cosh(x) \biggr)^{1/p_{2}} $$

holds for all \(x\in(0, \infty)\) if and only if \(p_{1}\geq7/5\) and \(0\leq p_{2}\leq1\).

Remark 3.4

Letting \(p_{1}=7/5, 3/2, 2, 3\) and making use of the monotonicity of \(M(\cosh(x); p, q)\) with respect to p, then Corollary 3.1 leads to the inequalities

$$\begin{aligned} \cosh^{1/3}(x) < & \biggl(\frac{1}{3}+\frac{2}{3}\cosh(x) \biggr)^{1/2}< \biggl(\frac{1}{2}+\frac{1}{2}\cosh(x) \biggr)^{2/3} \\ < & \biggl(\frac{8}{15}+\frac{7}{15}\cosh(x) \biggr)^{5/7}< \frac{\sinh (x)}{x}< \frac{2}{3}+\frac{1}{3}\cosh(x) \end{aligned}$$

for \(x\in(0, \infty)\), which is better than the inequalities given in (3.23) of [7].

Let \(p=0, 1\), then Theorem 3.3 leads to Corollary 3.2.

Corollary 3.2

Let \(x\in(0, \infty)\). Then the double inequality

$$ e^{(\cosh^{q_{1}}(x)-1)/(3q_{1})}< \frac{\sinh(x)}{x}< e^{(\cosh ^{q_{2}}(x)-1)/(3q_{2})} $$

holds if and only if \(q_{1}\leq0\) and \(q_{2}\geq8/5\), and the double inequality

$$ 1-\frac{1}{3q_{1}}+\frac{1}{3q_{1}}\cosh^{q_{1}}(x)< \frac{\sinh (x)}{x}< 1-\frac{1}{3q_{2}}+\frac{1}{3q_{2}}\cosh^{q_{2}}(x) $$
(3.17)

holds if and only if \(q_{1}\leq17/23\) and \(q_{2}\geq1\).

Remark 3.5

Letting \(q_{1}=17/23, 2/3, 1/2, 1/3, 1/6, 0\) and making use of the monotonicity of \(M(\cosh(x); p, q)\) with respect to q, then inequality (3.17) leads to

$$\begin{aligned} \frac{1}{3}\log\bigl[\cosh(x)\bigr]+1 < &2\cosh^{1/6}(x)-1< \cosh^{1/3}(x)< \frac {1}{3}+\frac{2}{3}\cosh^{1/2}(x) \\ < &\frac{1}{2}+\frac{1}{2}\cosh^{2/3}(x)< \frac{28}{51}+\frac{23}{51}\cosh ^{17/23}(x) \\ < &\frac{\sinh(x)}{x}< \frac{2}{3}+\frac{1}{3}\cosh(x) \end{aligned}$$

for \(x\in(0, \infty)\).

Let \(p=kq\), then (3.15) and (3.16) become

$$\begin{aligned}& \Omega_{kq, q}=\bigl\{ (k,q): k, q\geq0\bigr\} \cup\bigl\{ (k,q): k, q< 0 \bigr\} \cup\bigl\{ (k,q): 0< k\leq3, q\leq0\bigr\} , \\& M(t;kq,q) =\left \{ \textstyle\begin{array}{l@{\quad}l} (1-\frac{k}{3}+\frac{k}{3}t^{q} )^{1/(kqt)}, & kq\neq0, (k,q)\in\Omega_{kq,q}, \\ e^{\frac{t^{q}-1}{3q}}, & q\neq0, k=0, \\ t^{1/3},& q=0. \end{array}\displaystyle \right . \end{aligned}$$

Remark 3.6

It is not difficult to verify that \(M(t; kq, q)\) is decreasing (increasing) with respect to q if \(k>(<)\,3\), and \(M(t; kq, q)\) is decreasing (increasing) with respect to k if \(q>(<)\, 0\).

Theorem 3.4

Let \(x\in(0, \infty)\) and \(k\in[0, 3)\). Then the following statements are true:

  1. (i)

    If \(k\in[23/17, 3)\), then the inequality

    $$ \frac{\sinh(x)}{x}> \biggl(1-\frac{k}{3}+\frac{k}{3} \cosh^{q}(x) \biggr)^{1/(kq)} $$
    (3.18)

    holds if and only if \(q\leq8/[5(3-k)]\).

  2. (ii)

    If \(k\in(0, 1]\), then the double inequality

    $$ \biggl(1-\frac{k}{3}+\frac{k}{3} \cosh^{q_{1}}(x) \biggr)^{1/(kq_{1})}< \frac{\sinh(x)}{x} < \biggl(1- \frac{k}{3}+\frac{k}{3}\cosh^{q_{2}}(x) \biggr)^{1/(kq_{2})} $$
    (3.19)

    holds if and only if \(q_{1}\leq0\) and \(q_{2}\geq8/[5(3-k)]\).

Proof

(i) If \(k\in[23/17, 3)\), then it follows from Corollary 2.1(iii) that \(H_{kq, q}(x)>H_{kq, q}(0^{+})=1/3\) and (3.18) holds for \(0\leq q\leq8/[5(3-k)]\). For \(q<0\), we have \(M^{k}(\cosh(x); kq, q)< M^{k}(\cosh(x); 0, 0)\) due to \(M^{k}(\cosh(x); kq, q)\) is a weighted qth power mean of \(\cosh(x)\) and 1, so (3.18) still holds.

If (3.18) holds, then \(D_{kq, q}(x)>0\) and (3.6) leads to

$$ \lim_{x\rightarrow0^{+}}\frac{D_{kq, q}(x)}{x^{4}}=\frac{1}{72} \biggl(kq-3q+ \frac{8}{5} \biggr)\geq0 $$

and \(q\leq8/[5(3-k)]\).

(ii) If \(k\in(0, 1]\), then it follows from Corollary 2.1(v) that \(H_{kq_{1}, q_{1}}(x)>H_{kq_{1}, q_{1}}(0^{+})=1/3\), \(H_{kq_{2}, q_{2}}(x)< H_{kq_{2}, q_{2}}(0^{+})=1/3\), and (3.19) holds for \(q_{1}\leq0\) and \(q\geq8/[5(3-k)]\).

If the second inequality of (3.19) holds, then \(D_{kq_{2}, q_{2}}(x)<0\) and (3.6) leads to \(q_{2}\geq8/[5(3-k)]\).

Next, we prove that the condition \(q_{1}\leq0\) is necessary such that the first inequality of (3.19) holds for all \(x\in(0, \infty)\). Indeed, the first inequality of (3.19) leads to \(D_{kq_{1}, q_{1}}(x)<0\) for all \(x\in(0, \infty)\). If \(q_{1}>0\) and \(k\in(0, 1]\), then \(0< kq_{1}\leq q_{1}\) and (3.8) leads to

$$ \lim_{x\rightarrow\infty} \bigl[e^{-q_{1}x}D_{kq_{1}, q_{1}}(x) \bigr]=- \frac{2^{-q_{1}}}{3q_{1}}< 0, $$

which implies that there exists large enough \(X>0\) such that \(D_{kq_{1}, q_{1}}(x)<0\) for \(x\in(X, \infty)\). □

Let \(k=1, 3/2, 2\), then Theorem 3.4 leads to Corollary 3.3.

Corollary 3.3

The inequalities

$$\begin{aligned}& \biggl(\frac{2}{3}+\frac{1}{3}\cosh^{p_{1}}(x) \biggr)^{1/p_{1}}< \frac {\sinh(x)}{x}< \biggl(\frac{2}{3}+ \frac{1}{3}\cosh^{p_{2}}(x) \biggr)^{1/p_{2}}, \end{aligned}$$
(3.20)
$$\begin{aligned}& \frac{\sinh(x)}{x}> \biggl(\frac{1}{2}+\frac{1}{2} \cosh^{p}(x) \biggr)^{2/(3p)}, \end{aligned}$$
(3.21)

and

$$ \frac{\sinh(x)}{x}> \biggl(\frac{1}{3}+\frac{2}{3} \cosh^{q}(x) \biggr)^{1/(2q)} $$
(3.22)

hold for all \(x\in(0, \infty)\) if and only if \(p_{1}\leq0\), \(p_{2}\geq4/5\), \(p\leq16/15\), and \(q\leq8/5\).

Let \(p=3q-8/5\), then (3.15) and (3.16) become

$$\begin{aligned}& \Omega_{3q-8/5, q}= \biggl\{ q: q\geq\frac{8}{15} \biggr\} , \\& M \biggl(t;3q-\frac{8}{5},q \biggr)=\left \{ \textstyle\begin{array}{l@{\quad}l} (\frac{8}{15q}+ (1-\frac{8}{15q} )t^{q} )^{5/(15q-8)}, & q>\frac{8}{15}, \\ e^{5 (t^{8/15}-1 )/8},& q=\frac{8}{15}. \end{array}\displaystyle \right . \end{aligned}$$

It is easy to prove that \(M(t; 3q-8/5, q)\) is decreasing with respect to q on the interval \([8/15, \infty)\) and

$$ \lim_{q\rightarrow\infty}M \biggl(t;3q-\frac{8}{5},q \biggr)=t^{1/3}. $$

Theorem 3.5

Let \(q>8/15\). Then the inequality

$$ \frac{\sinh(x)}{x}> \biggl[\frac{8}{15q}+ \biggl(1- \frac{8}{15q} \biggr)\cosh ^{q}(x) \biggr]^{5/(15q-8)} $$
(3.23)

holds for all \(x\in(0, \infty)\) if and only if \(q\geq34/35\), and inequality (3.23) is reversed if and only if \(q\leq4/5\).

Proof

The sufficiency can be derived from Corollary 2.2. If inequality (3.23) holds, then \(D_{3q-8/5, q}(x)>0\) and (3.7) leads to the conclusion that \(q\geq34/35\).

Next, we prove that \(q\leq4/5\) if the reversed inequality (3.23) holds.

If there exists \(q>4/5\) such that the reversed inequality (3.23) holds, then \(D_{3q-8/5, q}(x)<0\), \(3q-8/5>q>4/5\), and (3.8) leads to

$$ \lim_{x\rightarrow\infty} \bigl[e^{-qx}D_{3q-8/5, q}(x) \bigr]=\infty, $$
(3.24)

which contradicts with \(D_{3q-8/5, q}(x)<0\). □

Let \(q=34/35, 1, 16/15, 6/5, 8/5, 2, \infty\mbox{ and }4/5, 7/10, 2/3, 3/5, 8/15^{+}\). Then Theorem 3.5 leads to Corollary 3.4.

Corollary 3.4

The inequalities

$$\begin{aligned} \cosh^{1/3}(x) < & \biggl(\frac{11}{15}\cosh^{2}(x)+ \frac{4}{15} \biggr)^{5/22}< \biggl(\frac{2}{3} \cosh^{8/5}(x)+\frac{1}{3} \biggr)^{5/16} \\ < & \biggl(\frac{5}{9}\cosh^{6/5}(x)+\frac{4}{9} \biggr)^{1/2}< \biggl(\frac {1}{2}\cosh^{16/15}(x)+ \frac{1}{2} \biggr)^{5/8} < \biggl(\frac{7}{15}\cosh(x)+ \frac{8}{15} \biggr)^{5/7} \\ < & \biggl(\frac{23}{51}\cosh^{34/35}(x)+\frac{28}{51} \biggr)^{35/46}< \frac {\sinh(x)}{x}< \biggl(\frac{1}{3} \cosh^{4/5}(x)+\frac{2}{3} \biggr)^{5/4} \\ < & \biggl(\frac{5}{21}\cosh^{7/10}(x)+\frac{16}{21} \biggr)^{2}< \biggl(\frac {1}{5}\cosh^{2/3}(x)+ \frac{4}{5} \biggr)^{5/2} < e^{5(\cosh^{8/15}(x)-1)/8} \end{aligned}$$

hold for all \(x\in(0, \infty)\).

4 Applications

Let \(a, b>0\). Then the geometric mean \(G(a,b)\), arithmetic mean \(A(a,b)\), quadratic mean \(Q(a,b)\), logarithmic mean \(L(a,b)\), Neuman-Sándor mean \(M(a,b)\) [22] and second Yang mean \(V(a,b)\) [23] are defined by

$$ G(a,b)=\sqrt{ab}, \qquad A(a,b)=\frac{a+b}{2}, \qquad Q(a,b)=\sqrt{ \frac {a^{2}+b^{2}}{2}}, $$

and

$$\begin{aligned}& L(a,b)=\frac{b-a}{\log b-\log a} \quad (a\neq b), \qquad L(a,a)=a, \\& M(a,b)=\frac{b-a}{2\sinh^{-1} (\frac{b-a}{b+a} )}\quad (a\neq b), \qquad M(a,a)=a, \\& V(a,b)=\frac{b-a}{\sqrt{2}\sinh^{-1} (\frac{b-a}{\sqrt{2ab}} )}=V(a,b)\quad (a\neq b), \qquad V(a,a)=a, \end{aligned}$$

respectively.

The Schwab-Borchardt mean \(\operatorname{SB}(a,b)\) [22, 24, 25] of \(a\geq0\) and \(b>0\) is given by

$$ \operatorname{SB}(a,b)=\left \{ \textstyle\begin{array}{l@{\quad}l} \frac{\sqrt{b^{2}-a^{2}}}{\arccos(a/b)}, & a< b, \\ a, & a=b, \\ \frac{\sqrt{a^{2}-b^{2}}}{\cosh^{-1}(a/b)}, & a>b, \end{array}\displaystyle \right . $$

where \(\cosh^{-1}(x)=\log(x+\sqrt{x^{2}-1})\) is the inverse hyperbolic cosine function.

Let \(p, q\in\mathbb{R}\) and the function \(t\rightarrow \operatorname{Sh}(p, q, t)\) be defined on \((0, \infty)\) by

$$ \operatorname{Sh}(p, q, t) =\left \{ \textstyle\begin{array}{l@{\quad}l} (\frac{q}{p}\frac{\sinh(pt)}{\sinh(qt)} )^{1/ (p-q)},& pq(p-q)\neq0, \\ (\frac{\sinh(pt)}{pt} )^{1/p}, & p\neq0, q=0, \\ (\frac{\sinh(qt)}{qt} )^{1/q}, & p=0, q\neq0, \\ e^{t\coth(pt)-1/p}, & p=q, pq\neq0, \\ 1, & p=q=0. \end{array}\displaystyle \right . $$

Recently, Yang [23] proved that \(\operatorname{Sh}_{p, q}(b, a)\), defined by

$$ \operatorname{Sh}_{p, q}(b, a) =\left \{ \textstyle\begin{array}{l@{\quad}l} a\times \operatorname{Sh} [p, q,\cosh^{-1}(b/a) ], & a< b, \\ a, & a=b, \end{array}\displaystyle \right . $$

is a mean of a and b for all \(b\geq a>0\) if \((p ,q)\in\{(p,q): p>0, q>0, p+q\leq3, L(p, q)\leq1/\log2\} \cup\{(p,q): p<0, 0\leq p+q\leq3\}\cup\{(p,q): q<0, 0\leq p+q\leq3\}\).

In particular, \(\operatorname{Sh}_{1, 0}(b,a)=a\sinh[\cosh^{-1}(b/a)]/\cosh ^{-1}(b/a)=\operatorname{SB}(b,a)\) for all \(b\geq a>0\). Let \(t=\cosh^{-1}(b/a)\), then Theorems 3.2-3.5 lead to Theorems 4.1-4.4.

Theorem 4.1

Let \(b\geq a>0\) and \((p,q)\in\{(p,q): p\geq0\}\cup\{(p,q): 3q\leq p<0\}\). Then the following statements are true:

  1. (i)

    If \(q\in[34/35, \infty)\), then the double inequality

    $$\begin{aligned}& \biggl[ \biggl(1-\frac{p_{1}}{3q} \biggr)a^{q}+ \frac{p_{1}}{3q}b^{q} \biggr]^{1/p_{1}}a^{1-q/p_{1}} \\& \quad < \operatorname{SB}(b,a) < \biggl[ \biggl(1-\frac{p_{2}}{3q} \biggr)a^{q}+ \frac{p_{2}}{3q}b^{q} \biggr]^{1/p_{2}}a^{1-q/p_{2}} \end{aligned}$$
    (4.1)

    holds if and only if \(p_{1}\geq3q-8/5\) and \(p_{2}\leq q\).

  2. (ii)

    If \(q\in[4/5, 34/35)\), then the first inequality of (4.1) holds for \(p_{1}\geq23q/17\), and the second inequality of (4.1) holds if and only if \(p_{2}\leq q\).

  3. (iii)

    If \(q\in(0, 4/5)\), then the first inequality of (4.1) holds for \(p_{1}\geq23q/17\), and the second inequality of (4.1) holds if and only if \(p_{2}\leq3q-8/5\).

  4. (iv)

    If \(q\in(-\infty, 0]\), then the first inequality of (4.1) holds for \(p_{1}\geq q\), and the second inequality of (4.1) holds if and only if \(p_{2}\leq3q-8/5\).

Theorem 4.2

Let \(b\geq a>0\) and \((p,q)\in\{(p,q): p\geq0\}\cup\{(p,q): 3q\leq p<0\}\). Then the following statements are true:

  1. (i)

    If \(p\in[46/35, \infty)\), then the double inequality

    $$\begin{aligned}& \biggl[ \biggl(1-\frac{p}{3q_{1}} \biggr)a^{q_{1}}+ \frac {p}{3q_{1}}b^{q_{1}} \biggr]^{1/p}a^{1-q_{1}/p} \\& \quad < \operatorname{SB}(b,a) < \biggl[ \biggl(1-\frac{p}{3q_{2}} \biggr)a^{q_{2}}+ \frac {p}{3q_{2}}b^{q_{1}} \biggr]^{1/p}a^{1-q_{2}/p} \end{aligned}$$
    (4.2)

    holds if and only if \(q_{1}\leq(5p+8)/15\) and \(q_{2}\geq p\).

  2. (ii)

    If \(p\in[4/5, 46/35)\), then the first inequality of (4.2) holds for \(q_{1}\leq17p/23\), and the second inequality of (4.2) holds if and only if \(q_{2}\geq p\).

  3. (iii)

    If \(p\in(0, 4/5)\), then the first inequality of (4.2) holds for \(q_{1}\leq17p/23\), and the second inequality of (4.2) holds if and only if \(q_{2}\geq(5p+8)/15\).

  4. (iv)

    If \(p\in(-\infty, 0]\), then the first inequality of (4.2) holds for \(q_{1}\leq p\), and the second inequality of (4.2) holds if and only if \(q_{2}\geq(5p+8)/15\).

Theorem 4.3

Let \(b\geq a>0\) and \(k\in[0, 3)\). Then the following statements are true:

  1. (i)

    If \(k\in[23/17, 3)\), then the inequality

    $$ \operatorname{SB}(b,a)> \biggl[ \biggl(1-\frac{k}{3} \biggr)a^{q}+\frac{k}{3}b^{q} \biggr]^{1/(kq)}a^{1-1/k} $$

    holds if and only if \(q\leq8/[5(3-k)]\).

  2. (ii)

    If \(k\in[0, 1]\), then the double inequality

    $$\begin{aligned}& \biggl[ \biggl(1-\frac{k}{3} \biggr)a^{q_{1}}+ \frac{k}{3}b^{q_{1}} \biggr]^{1/(kq_{1})}a^{1-1/k} \\& \quad < \operatorname{SB}(b,a) < \biggl[ \biggl(1-\frac{k}{3} \biggr)a^{q_{2}}+ \frac{k}{3}b^{q_{2}} \biggr]^{1/(kq_{2})}a^{1-1/k} \end{aligned}$$

    holds if and only if \(q_{1}\leq0\) and \(q_{2}\geq8/[5(3-k)]\).

Theorem 4.4

Let \(b\geq a>0\) and \(p, q>8/15\). Then the double inequality

$$\begin{aligned}& \biggl[\frac{8}{15p}a^{p}+ \biggl(1-\frac{8}{15p} \biggr)b^{p} \biggr]^{5/(15p-8)}a^{-p/(15p-8)} \\& \quad < \operatorname{SB}(b,a) < \biggl[\frac{8}{15q}a^{q}+ \biggl(1-\frac{8}{15q} \biggr)b^{q} \biggr]^{5/(15q-8)}a^{-q/(15q-8)} \end{aligned}$$

holds if and only if \(p\geq34/35\) and \(q\leq4/5\).

Remark 4.1

Let \(a, b>0\) with \(a\neq b\). Then we clearly see that

$$\begin{aligned}& \operatorname{Sh}_{1, 0}\bigl[A(a,b), G(a,b)\bigr]=\operatorname{SB} \bigl[A(a,b), G(a,b)\bigr]=\frac{b-a}{\log b-\log a}=L(a,b), \\& \operatorname{Sh}_{1, 0}\bigl[Q(a,b), A(a,b)\bigr]=\operatorname{SB} \bigl[Q(a,b), A(a,b)\bigr]=\frac{b-a}{2\sinh^{-1} (\frac{b-a}{b+a} )}=M(a,b), \\& \operatorname{Sh}_{1, 0}\bigl[Q(a,b), G(a,b)\bigr]=\operatorname{SB} \bigl[Q(a,b), G(a,b)\bigr]=\frac{b-a}{\sqrt{2}\sinh ^{-1} (\frac{b-a}{\sqrt{2ab}} )}=V(a,b), \end{aligned}$$

and Theorems 4.1-4.4 still hold true if we replace \((b, a, \operatorname{SB}(a,b))\) with \((A(a,b), G(a,b), L(a,b))\), \((Q(a,b), A(a,b), M(a,b))\) and \((Q(a,b), G(a,b), V(a,b))\).