1 Introduction

In 1940, Ulam [1] asked the following question concerning the stability of group homomorphisms: Under what condition is there an additive mapping near an approximately additive mapping between a group and a metric group?

In the next year, Hyers [2] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [3] extended the theorem of Hyers by considering the unbounded Cauchy difference. Gǎvruta [4] proved the Hyers-Ulam-Rassias stability with the generalized control function. This stability result is called the Hyers-Ulam-Rassias stability of functional equations. Rassias [5] first introduced the quartic functional equation

$$f(x+2y)+f(x-2y)+6f(x)=4\bigl[f(x+y)+f(x-y)+6f(y)\bigr] $$

and solved the Ulam stability problem of the function. Later Sahoo and Chung [6], and Lee et al. [7] remodified Rassias’ equation and obtained its general solution.

Pinsker [8] characterized orthogonally additive functionals on an inner product space. The orthogonal Cauchy functional equation

$$f(x + y) = f(x) + f(y),\quad x \perp y $$

in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder and Strawther [9]. Ger and Sikorska discussed the orthogonal stability of the orthogonal Cauchy functional equation in [10].

Park [11] proved the Hyers-Ulam-Rassias stability of the orthogonality quartic functional equation

$$f(x+2y)+f(x-2y)+6f(x)=4\bigl[f(x+y)+f(x-y)+6f(y)\bigr],\quad x \perp y $$

where ⊥ is the orthogonality in the sense of Rätz.

Let us recall the orthogonality in the sense of Rätz [12].

Definition 1.1

([9])

Suppose X is a real vector space with \(\dim X \geq2\) and ⊥ is a binary relation on X with the following properties:

(O1):

totality of ⊥ for zero: \(x \perp0\), \(0 \perp x\) for all \(x \in X\);

(O2):

independence: if \(x,y \in X-\{0\}\), then x, y are linearly independent;

(O3):

homogeneity: if \(x,y \in X\), \(x \perp y\), then \(\alpha x \perp \beta y\) for all \(\alpha,\beta\in\mathbb{R}\);

(O4):

the Thalesian property: if P is a 2-dimensional subspace of \(X,x \in P\) and \(\lambda\in\mathbb{R}_{+}\), which is the set of nonnegative real numbers, then there exists \(y_{0} \in P\) such that \(x \perp y_{0}\) and \(x+y_{0} \perp\lambda x-y_{0}\).

The pair \((X,\perp)\) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality space having a normed structure.

Arunkumar et al. [13] proved that a mapping \(f:X \rightarrow Y\) satisfies the functional equation

$$\begin{aligned} &f(2x+y+z)+f(2x+y-z)+f(2x-y+z)+f(-2x+y+z)+f(2y)+f(2z) \\ &\quad =8\bigl[f(x+y)+f(x-y)+f(x+z)+f(x-z)\bigr]+2\bigl[f(y+z)+f(y-z)\bigr]+32f(x) \end{aligned}$$
(1.1)

if and only if the mapping \(f:X \rightarrow Y\) is quartic. Moreover, they proved the Hyers-Ulam-Rassias stability of the quartic functional equation (1.1) in orthogonality normed spaces.

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms of a vector space from various points of view (see [1520]).

Bag and Samanta [21], following Cheng and Mordeson [22], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek [23].

A number of mathematicians have extensively investigated the stability problems of several functional equations, and they obtained many interesting results concerning the problem (for instance [2438]).

In this article, we extend general fuzzy normed spaces to fuzzy β-normed spaces and prove the Hyers-Ulam-Rassias stability of the orthogonally quartic functional equation (1.1) in this kind of spaces by two different methods: the fixed point and direct methods.

Now we introduce the concept of a fuzzy β-normed vector space and associated concept of a fuzzy β-norm, followed by some examples to show the validity of the notion.

Definition 1.2

Let X be a real vector space. A function \(N_{\beta} : X \times\mathbb{R} \rightarrow[0,1]\) is called a fuzzy β-norm on X with \(0 < \beta\leq1\) if for all \(x,y \in X \) and \(s,t \in\mathbb{R} \),

  1. (N1)

    \(N_{\beta}(x,t)=0 \) for \(t \leq0 \);

  2. (N2)

    \(x=0\) if and only if \(N_{\beta}(x,t)=1\) for all \(t>0\);

  3. (N3)

    \(N_{\beta}(cx,t)=N_{\beta} ( x,\frac{t}{\vert c\vert ^{\beta}} )\) if \(c \neq0\);

  4. (N4)

    \(N_{\beta}(x+y,s+t)\geq \min \{N_{\beta}(x,s),N_{\beta}(y,t)\}\);

  5. (N5)

    \(N_{\beta}(x,\cdot)\) is a non-decreasing function of \(\mathbb {R}\) and \(\lim_{t\rightarrow\infty}N_{\beta}(x,t)=1\);

  6. (N6)

    for \(x \neq0\), \(N_{\beta}(x,\cdot)\) is continuous on \(\mathbb {R}\).

The pair \((X,N_{\beta})\) is called a fuzzy β-normed vector space.

We remark that when \(\beta=1\), \((X,N_{\beta})\) is fuzzy normed space \((X,N)\).

Example 1.3

Let \((X,\Vert \cdot \Vert _{\beta})\) (\(0<\beta\leq1\)) be a β-normed linear space and \(\alpha,\gamma>0\). Then

$$N_{\beta}(x,t)= \textstyle\begin{cases} \frac{\alpha t}{\alpha t+ \gamma \Vert x\Vert _{\beta} },& t>0,x\in X;\\ 0,& t\leq0,x \in X, \end{cases} $$

is a fuzzy β-norm on X.

Proof

(N1), (N2), and (N6) are obviously true.

Notice that for any \(t \in\mathbb{R}\), \(t>0\), and \(c \neq0\)

$$N_{\beta}(cx, t)=\frac{\alpha t}{\alpha t + \gamma \Vert cx\Vert _{\beta}} =\frac{\alpha t}{\alpha t + \gamma \vert c\vert ^{\beta} \Vert x\Vert _{\beta}} =\frac{\alpha\cdot\frac{t}{\vert c\vert ^{\beta}}}{\alpha\cdot \frac{t}{\vert c\vert ^{\beta}} + \gamma \Vert x\Vert _{\beta}} =N_{\beta}\biggl(x, \frac{t}{\vert c\vert ^{\beta}}\biggr), $$

which implies that (N3) holds.

To prove (N4), let \(s > 0\), \(t > 0\), we assume that \(N_{\beta}(x, s)\geq N_{\beta}(y, t)\), thus

$$\begin{aligned} N_{\beta}(x, s) - N_{\beta}(y, t) =&\frac{\alpha s}{\alpha s + \gamma \Vert x\Vert _{\beta}}- \frac{\alpha t}{\alpha t + \gamma \Vert y\Vert _{\beta}} \\ =&\frac{\alpha s(\alpha t + \gamma \Vert y\Vert _{\beta}) - \alpha t(\alpha s + \gamma \Vert x\Vert _{\beta})}{(\alpha s + \gamma \Vert x\Vert _{\beta})(\alpha t + \gamma \Vert y\Vert _{\beta})} \\ =&\frac{\alpha\gamma s \Vert y\Vert _{\beta} - \alpha\gamma t \Vert x\Vert _{\beta }}{(\alpha s + \gamma \Vert x\Vert _{\beta})(\alpha t + \gamma \Vert y\Vert _{\beta})} \\ \geq& 0, \end{aligned}$$

we can get

$$\alpha\gamma\bigl(s \Vert y\Vert _{\beta} - t \Vert x\Vert _{\beta}\bigr) \geq0. $$

We have by the above inequality

$$\begin{aligned} N_{\beta}(x+y,s+t) - N_{\beta}(y, t) =& \frac{\alpha(s + t)}{\alpha(s + t) + \gamma \Vert x + y\Vert _{\beta}} - \frac{\alpha t}{\alpha t + \gamma \Vert y\Vert _{\beta}} \\ \geq&\frac{\alpha(s + t)}{\alpha(s + t) + \gamma \Vert x \Vert _{\beta} + \gamma \Vert y\Vert _{\beta}} - \frac{\alpha t}{\alpha t + \gamma \Vert y\Vert _{\beta }} \\ =&\frac{\alpha(s + t)(\alpha t + \gamma \Vert y\Vert _{\beta})}{[ \alpha(s + t) + \gamma \Vert x \Vert _{\beta} + \gamma \Vert y\Vert _{\beta}](\alpha t + \gamma \Vert y\Vert _{\beta})} \\ &{}-\frac{\alpha t [\alpha(s + t) + \gamma \Vert x \Vert _{\beta} + \gamma \Vert y\Vert _{\beta}] }{[ \alpha(s + t) + \gamma \Vert x \Vert _{\beta} + \gamma \Vert y\Vert _{\beta }](\alpha t + \gamma \Vert y\Vert _{\beta})} \\ =&\frac{\alpha\gamma(s \Vert y\Vert _{\beta} - t \Vert x\Vert _{\beta})}{[ \alpha(s + t) + \gamma \Vert x \Vert _{\beta} + \gamma \Vert y\Vert _{\beta}](\alpha t + \gamma \Vert y\Vert _{\beta})} \\ \geq& 0. \end{aligned}$$

So,

$$N_{\beta}(x+y,s+t) \geq N_{\beta}(y, t). $$

Similarly, from \(N_{\beta}(y, t)\geq N_{\beta}(x, s)\), we can obtain

$$N_{\beta}(x+y,s+t) \geq N_{\beta}(x, s). $$

Therefore, \(N_{\beta}(x+y,s+t)\geq \min \{N_{\beta}(x,s),N_{\beta}(y,t)\}\) and (N4) hold.

For any \(t_{1},t_{2} \in\mathbb{R}\), and \(t_{1} \geq t_{2}\),

$$\begin{aligned} N_{\beta}(x,t_{1}) - N_{\beta}(x,t_{2}) =& \frac{\alpha t_{1}}{\alpha t_{1} + \gamma \Vert x\Vert _{\beta}} - \frac{\alpha t_{2}}{\alpha t_{2} + \gamma \Vert x\Vert _{\beta}} \\ =& \frac{\alpha t_{1}(\alpha t_{2} + \gamma \Vert x\Vert _{\beta}) - \alpha t_{2}(\alpha t_{1} + \gamma \Vert x\Vert _{\beta})}{(\alpha t_{1} + \gamma \Vert x\Vert _{\beta})(\alpha t_{2} + \gamma \Vert x\Vert _{\beta})} \\ =&\frac{(t_{1}-t_{2})\alpha\gamma \Vert x\Vert _{\beta}}{(\alpha t_{1} + \gamma \Vert x\Vert _{\beta})(\alpha t_{2} + \gamma \Vert x\Vert _{\beta})} \geq0. \end{aligned}$$

So \(N_{\beta}(x,\cdot)\) is a non-decreasing function of \(\mathbb{R}\), which proves (N5). □

Definition 1.4

Let \((X,N_{\beta})\) be a fuzzy β-normed vector space. A sequence \(\{x_{n}\}\) in X is said to be convergent or converge if there exists an \(x \in X\) such that \(\lim_{n\rightarrow\infty}N_{\beta}(x_{n}-x,t)=1 \) for all \(t>0\). In this case, x is called the limit of the sequence \(\{x_{n}\}\) in X and we denote \(N_{\beta}\)-\(\lim_{n\rightarrow\infty}x_{n}=x\).

Definition 1.5

Let \((X,N_{\beta})\) be a fuzzy β-normed vector space. A sequence \(\{x_{n}\}\) in X is called Cauchy if for each \(\varepsilon> 0\) and each \(t>0\) there exists an \(n_{0}\in\mathbb {N}\) such that for all \(n \geq n_{0}\) and all \(p>0\), we have \(N_{\beta }(x_{n+p}-x_{n},t)>1-\varepsilon\).

It is well known that every convergent sequence in a fuzzy β-normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy β-norm is said to be complete and the fuzzy β-normed vector space is called a complete fuzzy β-normed space.

Example 1.6

Let \(N : X \times\mathbb{R}\rightarrow[0,1]\) be a fuzzy β-norm on \(\mathbb{R}\) defined by

$$N_{\beta}(x,t)= \textstyle\begin{cases} \frac{ t}{ t+ \vert x\vert ^{\beta} },& t>0;\\ 0,& t\leq0. \end{cases} $$

Then \((\mathbb{R},N_{\beta})\) is a complete fuzzy β-normed space.

Proof

Let \(\{x_{n}\}\) be a Cauchy sequence in \(\mathbb{R}\), \(\delta> 0\), and \(\varepsilon= \frac{\delta^{\beta}}{1 + \delta^{\beta }} \). Then there exist some \(m \in\mathbb{N}\) such that for all \(n \geq m\) and all \(p > 0\),

$$\frac{1}{1 + \vert x_{n+p}-x_{n}\vert ^{\beta}} \geq1 - \varepsilon. $$

So \(\vert x_{n+p}-x_{n}\vert ^{\beta} < \delta\) for all \(n \geq m\) and all \(p > 0\). Therefore \(\{x_{n}\}\) is a Cauchy sequence in \((\mathbb{R}, \vert \cdot \vert ^{\beta})\). Let \(x_{n} \rightarrow x_{0} \in \mathbb{R} \) as \(n \rightarrow\infty\). Then \(\lim_{n\rightarrow\infty }N_{\beta}(x_{n}-x_{0}, t) = 1\) for all \(t > 0\). The rest of the proof is similar to the proof of Example 1.3. □

Definition 1.7

Let X be a set. A function \(d: X \times X \rightarrow[0,\infty]\) is called a generalized metric on X if and only if d satisfies

  1. (M1)

    \(d(x,y)=0\) if and only if \(x=y\);

  2. (M2)

    \(d(x,y)=d(y,x)\) for all \(x,y \in X\);

  3. (M3)

    \(d(x,z)\leq d(x,y)+d(y,z)\) for all \(x,y,z \in X\).

Theorem 1.8

([7])

Let \((X,d)\) be a generalized complete metric space and \(J: X \rightarrow X\) be a strictly contractive mapping with Lipschitz constant \(L <1\). Then, for all \(x \in X\), either

$$d\bigl(J^{n}x,J^{n+1}x\bigr)=\infty $$

for all nonnegative integers n or there exists a positive integer \(n_{0}\) such that

  1. (i)

    \(d(J^{n}x,J^{n+1}x)< \infty\) for all \(n \geq n_{0}\);

  2. (ii)

    the sequence \(\{J^{n}x\}\) converges to a fixed point \(x^{\ast}\) of J;

  3. (iii)

    \(x^{\ast}\) is the unique fixed point of J in the set \(X^{\ast }=\{y \in X | d(J^{n_{0}}x,y)< \infty\}\);

  4. (iv)

    \(d(y,x^{\ast})\leq\frac{1}{1-L} d(Jy,y)\) for all \(y \in X^{\ast}\).

Definition 1.9

An even mapping \(f: X \rightarrow Y\) is called an orthogonally quartic mapping if

$$\begin{aligned} & f(2x+y+z)+f(2x+y-z)+f(2x-y+z)+f(-2x+y+z)+f(2y)+f(2z)\\ &\quad =8\bigl[f(x+y)+f(x-y)+f(x+z)+f(x-z)\bigr] +2\bigl[f(y+z)+f(y-z)\bigr]+32f(x) \end{aligned}$$

for all \(x,y,z\in X\) with \(x \perp y\), \(y \perp z \) and \(z \perp x \) in the sense of Rätz.

2 Fuzzy stability of the orthogonally quartic functional equation: fixed point method

In this section, using the fixed point method, we prove the Hyers-Ulam-Rassias stability of the quartic functional equation in complete fuzzy β-normed spaces.

Definition 2.1

Let \((X, \perp)\) be a real orthogonality vector space and \((Y, N_{\beta})\) be a complete fuzzy β-normed space, where \(0< \beta\leq1\). Define a difference operator \(Df:X^{3} \rightarrow Y \) by

$$\begin{aligned} Df(x,y,z)={}&f(2x+y+z)+f(2x+y-z)+f(2x-y+z)+f(-2x+y+z)+f(2y) \\ &{}+f(2z)-8\bigl[f(x+y)+f(x-y)+f(x+z)+f(x-z)\bigr]\\ &{}-2\bigl[f(y+z) +f(y-z) \bigr]-32f(x) \end{aligned}$$

for all \(x,y,z\in X\) with \(x \perp y\), \(y \perp z \), and \(z \perp x \) in the sense of Rätz.

Theorem 2.2

Let \((X, \perp)\) be a real orthogonality vector space, \((Y, N_{\beta})\) be a complete fuzzy β-normed space with \(0< \beta\leq1\), and \(\varphi:X^{3} \rightarrow[0,\infty)\) be a function and there exists a constant L, \(0< L<1\), such that

$$ \varphi(2x,2y,2z) \leq16^{\beta} L \varphi(x,y,z) $$
(2.1)

for all \(x,y,z \in X \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Assume that a mapping \(f : X \rightarrow Y \) is an even mapping satisfying \(f(0)=0 \) and the inequality

$$ N_{\beta}\bigl( Df (x,y,z), t \bigr)\geq \frac{t}{t+\varphi(x,y,z)} $$
(2.2)

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Then there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$ N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq\frac{16^{\beta}(1-L)t}{16^{\beta }(1-L)t+\varphi(0,x,0)} $$
(2.3)

for all \(x \in X\), \(t > 0 \).

Proof

From (2.1), we get

$$ \varphi\bigl(2^{n}x,2^{n}y,2^{n}z\bigr) \leq16^{n \beta} L^{n} \varphi (x,y,z) $$
(2.4)

for all \(x,y,z \in X \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Replacing \((x,y,z)\) by \((0,x,0)\) in (2.2), we get

$$ N_{\beta}\bigl( f(2x)-16f(x), t \bigr)\geq \frac{t}{t+\varphi(0,x,0)} $$
(2.5)

for all \(x \in X \) and all \(t > 0 \). From (N3), we get

$$ N_{\beta} \biggl( \frac{1}{16}f(2x)-f(x),\frac{1}{16^{\beta}} t \biggr)\geq \frac{t}{t+\varphi(0,x,0)} $$
(2.6)

for all \(x \in X \) and all \(t > 0 \).

If we define

$$E=\bigl\{ h:X \rightarrow Y \big| h(0)=0\bigr\} $$

and introduce a generalized metric on E as follows:

$$d(g,h)= \inf \biggl\{ \mu\in[0,\infty] \Big| N_{\beta}\bigl(g(x)-h(x),\mu t \bigr)\geq \frac{t}{t+\varphi(0,x,0)}, x \in X, t>0 \biggr\} , $$

then \((E,d)\) is complete (see[18]).

We define an operator \(J: E \rightarrow E\) by

$$(Jh) (x)= \frac{1}{16} h(2x) $$

for all \(x \in X \).

First, we assert that J is strictly contractive on E. Given \(g,h\in E\), let \(d(g,h)=\alpha\). Then

$$N_{\beta}\bigl(g(x)-h(x),\alpha t\bigr)\geq\frac{t}{t+\varphi(0,x,0)} $$

for all \(x \in X \) and all \(t > 0 \). Hence

$$\begin{aligned} N_{\beta}\bigl((Jg) (x)-(Jh) (x),\alpha L t\bigr) =&N_{\beta} \biggl(\frac {1}{16}g(2x)-\frac{1}{16}h(2x),\alpha L t \biggr) \\ =&N_{\beta}\bigl(g(2x)-h(2x),16^{\beta} \alpha L t\bigr) \\ \geq&\frac{16^{\beta}L t}{16^{\beta}L t+\varphi(0,2x,0)} \\ \geq& \frac{t}{t+\varphi(0,x,0)} \end{aligned}$$

for all \(x \in X \) and all \(t > 0 \), so, \(d(Jg,Jh)\leq\alpha L\). Then we conclude that \(d(Jg,Jh)\leq Ld(g,h)\) for all \(g,h\in E\).

Next, we assert that \(d(Jf, f) < \infty\). From (2.6), we get

$$N_{\beta} \biggl( (Jf) (x)-f(x),\frac{1}{16^{\beta}} t \biggr)\geq \frac {t}{t+\varphi(0,x,0)} $$

for all \(x \in X \) and all \(t > 0 \), i.e.,

$$ d(Jf,f)\leq\frac{1}{16^{\beta}}< \infty. $$
(a)

Now, it follows from Theorem 1.9(ii) that there exists a function \(Q: X \rightarrow Y\) with \(Q(0)=0\), which is a fixed point of J (i.e., \(J(2x)=16J(x)\)), such that \(J^{n}f \rightarrow Q\), namely,

$$ Q(x)=\lim_{n\rightarrow\infty} \frac{f(2^{n}x)}{16^{n}} $$
(b)

for all \(x \in X \).

Since the integer \(n_{0}\) of Theorem 1.8(i) is 0 and \(f\in E^{\ast}\) (see Theorem 1.8(iii) for the definition of \(X^{\ast}\)), by (iv) of Theorem 1.8 and (a), we get

$$ d(f,Q)\leq\frac{1}{1-L}d(Jf,f)\leq \frac{1}{16^{\beta}} \frac{1}{1-L} $$
(c)

for all \(x \in X \). So,

$$N_{\beta} \biggl(f(x)-Q(x), \frac{1}{16^{\beta}} \frac{1}{1-L} t \biggr)\geq\frac{t}{t+\varphi(0,x,0)}, $$

then the inequality (2.3) is true for all \(x \in X \), \(t > 0 \).

From (2.1) and (2.2) we have

$$N_{\beta} \biggl(\frac{1}{16^{n}}Df\bigl(2^{n}x,2^{n}y,2^{n}z \bigr),\frac{t}{16^{n \beta}} \biggr)\geq\frac{t}{t+\varphi(2^{n}x,2^{n}y,2^{n}z)} $$

for all \(x,y,z \in X \), \(t > 0 \) with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and \(n \in\mathbb{N}\), since \(2^{n}x \perp2^{n}y\), \(2^{n}y \perp2^{n}z\), and \(2^{n}z \perp2^{n} x \). So, from (2.4), we get

$$N_{\beta} \biggl(\frac{1}{16^{n}}Df\bigl(2^{n}x,2^{n}y,2^{n}z \bigr),t \biggr)\geq \frac{16^{n \beta}t}{16^{n \beta}t+16^{n \beta} L^{n} \varphi(x,y,z)}, $$

then

$$\begin{aligned} &N_{\beta} \biggl(\frac{1}{16^{n}}f\bigl(2^{n}(2x+y+z)\bigr)+ \frac {1}{16^{n}}f\bigl(2^{n}(2x+y-z)\bigr)+\frac{1}{16^{n}}f \bigl(2^{n}(2x -y+z)\bigr)\\ &\qquad {}+\frac{1}{16^{n}}f\bigl(2^{n}(-2x+y+z)\bigr)+ \frac {1}{16^{n}}f\bigl(2^{n}(2y)\bigr)+\frac{1}{16^{n}}f \bigl(2^{n}(2z)\bigr) \\ &\qquad {}-8\biggl[\frac{1}{16^{n}}f\bigl(2^{n}(x+y)\bigr)+ \frac{1}{16^{n}}f\bigl(2^{n}(x-y)\bigr)+\frac {1}{16^{n}}f \bigl(2^{n}(x+z)\bigr) +\frac{1}{16^{n}}f\bigl(2^{n}(x-z)\bigr)\biggr]\\ &\qquad {}-2\biggl[ \frac{1}{16^{n}}f\bigl(2^{n}(y+z)\bigr)+\frac {1}{16^{n}}f \bigl(2^{n}(y-z)\bigr)\biggr] -32\times\frac{1}{16^{n}}f\bigl(2^{n}(x)\bigr), t \biggr)\\ &\quad \geq \frac{t}{t+L^{n} \varphi(x,y,z)} \end{aligned}$$

for all \(x,y,z \in X \), \(t > 0 \) with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and \(n \in\mathbb{N}\). Since

$$\lim_{n\rightarrow\infty}\frac{t}{t+L^{n} \varphi(x,y,z)}=1 $$

for all \(x,y,z \in X \), \(t > 0 \) with \(x \perp y\), \(y \perp z \), and \(z \perp x \), we obtain

$$\begin{aligned} &Q(2x+y+z)+Q(2x+y-z)+Q(2x-y+z)+Q(-2x+y+z)+Q(2y)+Q(2z) \\ &\quad =8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)] +2[Q(y+z)+Q(y-z)]+32Q(x) \end{aligned}$$

for all \(x,y,z\in X\), \(t > 0 \) with \(x \perp y\), \(y \perp z \), and \(z \perp x \).

Assume that the inequality (2.3) is also satisfied with another quartic function \(Q^{'}: X \rightarrow Y \) besides Q. \(Q^{'} \) satisfies \(Q^{'} (x)=(1/16) Q^{'}(2x)=(JQ^{'}) (x) \) for all \(x \in X \), and \(Q^{'} \) is a fixed point of J. From (3.3) and the definition of d, we can get

$$d\bigl(f,Q^{'}\bigr) \leq\frac{1}{16^{\beta}} \frac{1}{1-L} < \infty, $$

then

$$d\bigl(J f,Q^{'}\bigr) \leq d(Jf,f) + d\bigl(f,Q^{'}\bigr) \leq\frac{1}{16^{\beta}} + \frac{1}{16^{\beta}} \frac{1}{1-L} < \infty. $$

So, \(Q^{'} \in E^{\ast} = \{ y \in E | d(Jf,y) < \infty\}\). (In view of (a), the integer \(n_{0}\) of Theorem 1.8(i) is 0.) Thus, Theorem 1.8(ii) implies that \(Q=Q^{'}\). This proves the uniqueness of Q. The proof is complete. □

Corollary 2.3

Let \(\theta\geq0\), p be a real positive number with \(p<4\), and \((X, \perp)\) be a real orthogonality vector space with β-norm \(\Vert \cdot \Vert _{\beta}\) with \(0< \beta\leq1\). Assume that \(f : X \rightarrow Y \) is an even mapping satisfying \(f(0)=0 \) and the inequality

$$ N_{\beta}\bigl( Df (x,y,z), t \bigr)\geq \frac{t}{t+\theta(\Vert x\Vert ^{p}_{\beta}+\Vert y\Vert ^{p}_{\beta}+\Vert z\Vert ^{p}_{\beta})} $$
(2.7)

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Then there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq\frac{(16^{\beta}-2^{p \beta})t}{(16^{\beta }-2^{p \beta})t+\theta \Vert x\Vert ^{p}_{\beta}} $$

for all \(x \in X\), \(t > 0 \).

Proof

From Theorem 2.2 by taking \(\varphi(x,y,z)=\theta(\Vert x\Vert ^{p}_{\beta}+\Vert y\Vert ^{p}_{\beta}+\Vert z\Vert ^{p}_{\beta})\) for all \(x,y,z \in X\), \(t > 0\), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), and choosing \(L= (\frac{2^{p}}{16} )^{\beta}\) we can get the desired result. □

Theorem 2.4

Let \((X, \perp)\) be a real orthogonality vector space and \((Y, N_{\beta})\) be a complete fuzzy β-normed space with \(0< \beta\leq1\). Assume that \(\varphi:X^{3} \rightarrow[0,\infty)\) is a function and there exists a constant L, \(0< L<1\), such that

$$ \varphi \biggl(\frac{x}{2},\frac{y}{2},\frac{z}{2} \biggr) \leq\frac {L}{16^{\beta}} \varphi(x,y,z) $$
(2.8)

for all \(x,y,z \in X \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). If a mapping \(f : X \rightarrow Y \) is an even mapping satisfying \(f(0)=0\) and (2.2) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$ N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq\frac{16^{\beta}(L^{-1}-1)t}{16^{\beta }(L^{-1}-1)t+\varphi(0,x,0)} $$
(2.9)

for all \(x \in X\), \(t > 0 \).

Corollary 2.5

Let \(\theta\geq0\) and p be a real positive number with \(p>4\) and \((X, \perp)\) be a real orthogonality vector space with β-norm \(\Vert \cdot \Vert _{\beta}\) with \(0< \beta\leq1\). If \(f : X \rightarrow Y \) is an even mapping satisfying \(f(0)=0\) and (2.7) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq\frac{(2^{p \beta}-16^{\beta})t}{(2^{p \beta}-16^{\beta})t+\theta \Vert x\Vert ^{p}_{\beta}} $$

for all \(x \in X\), \(t > 0 \).

3 Fuzzy stability of the orthogonally quartic functional equation: direct method

In this section, we assume that \((X, \perp)\) is a real orthogonality vector space, \((Y, N_{\beta})\) is a complete fuzzy β-normed space with \(0< \beta\leq1\) and \((Z, N^{'}_{\beta})\) is a fuzzy β-normed space.

Theorem 3.1

Assume that a mapping \(f : X \rightarrow Y \) is an even mapping satisfying the inequality

$$ N_{\beta}\bigl( Df (x,y,z), t \bigr)\geq N^{'}_{\beta} \bigl( \varphi(x,y,z), t \bigr) $$
(3.1)

and \(f(0)=0 \) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), and \(\varphi: X^{3} \rightarrow Z \) is a mapping such that

$$ N^{'}_{\beta} \biggl(\varphi \biggl(\frac{x}{2}, \frac{y}{2}, \frac {z}{2} \biggr), t \biggr) \geq N^{'}_{\beta} \biggl(\varphi (x, y, z ),\frac{t}{\alpha ^{\beta}} \biggr) $$
(3.2)

for some constant \(\alpha\in\mathbb{R} \) with \(0 < \alpha< \frac{1}{16}\), and all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \) and \(z \perp x \). Then there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$ N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq N^{'}_{\beta} \bigl(\varphi(0,x,0), \bigl(\alpha ^{-\beta}-16^{\beta}\bigr)t\bigr) $$
(3.3)

for all \(x \in X\), \(t > 0 \).

Proof

It follows from (3.2) that

$$ N^{'}_{\beta} \biggl(\varphi \biggl(\frac{x}{2^{j}}, \frac{y}{2^{j}},\frac {z}{2^{j}} \biggr), t \biggr)\geq N^{'}_{\beta} \biggl( \varphi(x,y,z),\frac{t}{\alpha^{\beta j}} \biggr) $$
(3.4)

for all \(x,y,z \in X\), \(t > 0 \), and any integers \(j\geq0\), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Replacing \((x,y,z)\) by \((0,x,0)\) in (3.1), Since \(0 \perp x \), we get

$$ N_{\beta}\bigl(f(2x)-16f(x), t\bigr) \geq N^{'}_{\beta} \bigl(\varphi(0,x,0), t\bigr) $$
(3.5)

for all \(x \in X \) and all \(t > 0 \). Replacing x by \(\frac{x}{2} \) in (3.5)

$$ N_{\beta} \biggl(f(x)-16f \biggl( \frac{x}{2} \biggr), t \biggr) \geq N^{'}_{\beta} \biggl( \varphi \biggl( 0,\frac{x}{2},0 \biggr),t \biggr) $$
(3.6)

for all \(x \in X \) and all \(t > 0 \). Replacing x by \(\frac{x}{2^{j}} \) in (3.6)

$$ N_{\beta} \biggl(f \biggl( \frac{x}{2^{j}} \biggr)-16f \biggl( \frac {x}{2^{j+1}} \biggr), t \biggr) \geq N^{'}_{\beta} \biggl( \varphi \biggl(0,\frac{x}{2^{j+1}},0 \biggr), t \biggr) $$
(3.7)

for all \(x \in X \) and all \(t > 0 \). Now from (N3) and (3.7), we get

$$N_{\beta} \biggl(16^{j}f \biggl( \frac{x}{2^{j}} \biggr)-16^{j+1}f \biggl(\frac{x}{2^{j+1}} \biggr), 16^{\beta j}t \biggr) \geq N^{'}_{\beta} \biggl(\varphi \biggl(0, \frac{x}{2^{j+1}},0 \biggr), t \biggr) $$

for all \(x \in X \) and all \(t > 0 \). It follows from (3.4) that

$$ N_{\beta} \biggl(16^{j}f \biggl( \frac{x}{2^{j}} \biggr)-16^{j+1}f \biggl(\frac{x}{2^{j+1}} \biggr), 16^{\beta j}t \biggr) \geq N^{'}_{\beta} \biggl(\varphi(0,x,0), \frac{t}{\alpha^{\beta (j+1)}} \biggr) $$
(3.8)

for all \(x \in X \) and all \(t > 0 \), namely,

$$ N_{\beta} \biggl(16^{j}f \biggl( \frac{x}{2^{j}} \biggr)-16^{j+1}f \biggl(\frac{x}{2^{j+1}} \biggr), 16^{\beta j} \alpha^{\beta(j+1)} t \biggr) \geq N^{'}_{\beta}\bigl(\varphi (0,x,0), t\bigr) $$
(3.9)

for all \(x \in X \) and all \(t > 0 \). So

$$ \begin{aligned}[b] & N_{\beta} \Biggl(16^{n}f \biggl( \frac{x}{2^{n}} \biggr)-f(x),\sum_{j=0}^{n-1} 16^{\beta j} \alpha^{\beta(j+1)} t \Biggr) \\ &\quad = N_{\beta} \Biggl(\sum_{j=0}^{n-1} \biggl(16^{j+1} f \biggl(\frac{x}{2^{j+1}} \biggr)-16^{j}f \biggl( \frac{x}{2^{j}} \biggr) \biggr), \sum_{j=0}^{n-1}16^{\beta j} \alpha^{\beta(j+1)} t \Biggr) \\ &\quad \geq \min_{0\leq j \leq n-1} \biggl\{ N_{\beta} \biggl( 16^{j+1}f \biggl( \frac{x}{2^{j+1}} \biggr) \biggr)-16^{j}f \biggl( \frac{x}{2^{j}} \biggr), 16^{\beta j} \alpha ^{\beta(j+1)} t \biggr\} \\ &\quad \geq N^{'}_{\beta}\bigl(\varphi(0,x,0), t\bigr), \end{aligned} $$
(3.10)

which yields

$$\begin{aligned} &N_{\beta} \Biggl( 16^{n+p} f \biggl( \frac{x}{2^{n+p}} \biggr)-16^{p}f \biggl(\frac{x}{2^{p}} \biggr), \sum _{j=0}^{n-1}16^{\beta(p+1)} \alpha^{\beta(j+p+1)}t \Biggr) \\ &\quad =N_{\beta} \Biggl(\sum_{j=0}^{n-1} \biggl(16^{p+j} f \biggl(\frac{x}{2^{p+j}} \biggr)-16^{p+j+1}f \biggl( \frac{x}{2^{p+j+1}} \biggr) \biggr), \sum_{j=0}^{n-1}16^{\beta(p+j)} \alpha^{\beta(p+j+1)} t \Biggr) \\ &\quad \geq\min_{0\leq j \leq n-1} \biggl\{ N_{\beta} \biggl( 16^{p+j}f \biggl( \frac{x}{2^{p+j}} \biggr) \biggr)-16^{p+j+1}f \biggl( \frac{x}{2^{p+j+1}} \biggr), 16^{\beta (p+j)} \alpha^{\beta(p+j+1)} t \biggr\} \\ &\quad \geq N^{'}_{\beta}\bigl(\varphi(0,x,0), t\bigr) \end{aligned}$$

for all \(x \in X\), \(t > 0 \), and \(n>0\), \(p \geq0 \). So,

$$ N_{\beta} \biggl( 16^{n+p} f \biggl( \frac{x}{2^{n+p}} \biggr)-16^{p}f \biggl(\frac{x}{2^{p}} \biggr), t \biggr) \geq N^{'}_{\beta} \biggl( \varphi(0,x,0), \frac{t}{\sum_{j=0}^{n-1}16^{\beta(p+j)} \alpha^{\beta(p+j+1)}} \biggr) $$
(3.11)

for all \(x \in X\), \(t > 0 \), and \(n>0\), \(p \geq0 \). Since the series \(\sum_{j=0}^{n-1} 16^{\beta j} \alpha^{\beta j}\) is convergent, we see by taking the limit \(p \rightarrow\infty\) in the last inequality that the sequence \(\{16^{n}f ( \frac{x}{2^{n}} ) \}\) is a Cauchy sequence in the complete fuzzy β-normed space\((Y,N_{\beta})\), so it converges in Y. We define a mapping \(Q: X \rightarrow Y\) by \(Q(x)=N_{\beta}\)-\(\lim_{n\rightarrow\infty}16^{n}f(\frac{x}{2^{n}})\) for all \(x \in X\). It means that

$$\lim_{n\rightarrow\infty}N_{\beta} \biggl(Q(x)-16^{n}f \biggl(\frac {x}{2^{n}} \biggr),t \biggr)=1 $$

for all \(x \in X\), \(t > 0 \).

Replacing x, y, z by \(2^{n}x\), \(2^{n}y\), \(2^{n}z\) in (3.1), respectively, we get

$$N_{\beta} \biggl( Df \biggl(\frac{x}{2^{n}},\frac{y}{2^{n}}, \frac {z}{2^{n}} \biggr), t \biggr)\geq N^{'}_{\beta} \biggl( \varphi \biggl(\frac{x}{2^{n}},\frac{y}{2^{n}},\frac{z}{2^{n}} \biggr), t \biggr) $$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and all \(n \in\mathbb{N}\). Since \(\frac{x}{2^{n}} \perp\frac{y}{2^{n}}\), \(\frac{y}{2^{n}} \perp \frac{z}{2^{n}} \), and \(\frac{z}{2^{n}} \perp\frac{x}{2^{n}} \), we have

$$N_{\beta} \biggl( 16^{n}Df \biggl(\frac{x}{2^{n}}, \frac{y}{2^{n}},\frac {z}{2^{n}} \biggr), 16^{n \beta}t \biggr)\geq N^{'}_{\beta} \biggl( \varphi \biggl(\frac{x}{2^{n}}, \frac{y}{2^{n}},\frac{z}{2^{n}} \biggr), t \biggr), $$

namely,

$$N_{\beta} \biggl( 16^{n}Df \biggl(\frac{x}{2^{n}}, \frac{y}{2^{n}},\frac {z}{2^{n}} \biggr), t \biggr)\geq N^{'}_{\beta} \biggl( \varphi \biggl(\frac{x}{2^{n}},\frac{y}{2^{n}},\frac{z}{2^{n}} \biggr), \frac {t}{16^{n \beta}} \biggr) $$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and all \(n \in\mathbb{N}\). From (3.4), we get

$$N_{\beta} \biggl( 16^{n}Df \biggl(\frac{x}{2^{n}}, \frac{y}{2^{n}},\frac {z}{2^{n}} \biggr), t \biggr)\geq N^{'}_{\beta} \biggl( \varphi(x,y,z),\frac{t}{(16\alpha)^{n \beta}} \biggr) $$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and all \(n \in\mathbb{N}\). So

$$\begin{aligned} &N_{\beta} \biggl(16^{n}f \biggl(\frac{2x+y+z}{2^{n}} \biggr)+16^{n}f \biggl(\frac{2x-y+z}{2^{n}} \biggr)+16^{n}f \biggl(\frac{2x-y+z}{ 2^{n}} \biggr) \\ &\qquad {}+16^{n}f \biggl(\frac{-2x+y+z}{2^{n}} \biggr)-8 \biggl[16^{n}f \biggl(\frac {x+y}{2^{n}} \biggr)+16^{n}f \biggl(\frac{x-y}{2^{n}} \biggr) \\ &\qquad {}+16^{n}f \biggl(\frac{x+z}{2^{n}} \biggr)+16^{n}f \biggl(\frac {x-z}{2^{n}} \biggr) \biggr]\\ &\qquad {}-2 \biggl[16^{n} f \biggl( \frac{y+z}{2^{n}} \biggr)+16^{n}f \biggl(\frac{y-z}{2^{n}} \biggr) \biggr] -32\times16^{n}f \biggl(\frac{x}{2^{n}} \biggr),t \biggr)\\ &\quad \geq N^{'}_{\beta} \biggl( \varphi(x,y,z),\frac{t}{(16\alpha)^{n \beta}} \biggr) \end{aligned}$$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and all \(n \in\mathbb{N}\). Since

$$\lim_{n\rightarrow\infty}N^{'}_{\beta} \biggl( \varphi(x,y,z),\frac {t}{(16\alpha)^{n \beta}} \biggr)=1 $$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \) and all \(n \in\mathbb{N}\), we get

$$\begin{aligned} &N_{\beta}\bigl(Q(2x+y+z)+Q(2x+y-z)+Q(2x-y+z)+Q(-2x \\ &\quad {}+y+z)+Q(2y)+Q(2z)-8\bigl[Q(x+y)+Q(x-y)+Q(x+z) \\ &\quad {}+Q(x-z)\bigr]-2\bigl[Q(y+z)+Q(y-z)\bigr]-32Q(x),t\bigr)=1 \end{aligned}$$

for all \(x,y,z\in X\), \(t > 0 \) with \(x \perp y\), \(y \perp z \), and \(z \perp x \). So, we get \(Q: X \rightarrow Y\) is a quartic mapping.

Since \(f(x)\) is an even mapping, \(Q(x)\) is an even mapping, the mapping \(Q: X \rightarrow Y\) is an orthogonally quartic mapping.

Letting \(n \rightarrow\infty\) in (3.10), we get the inequality (3.3).

To prove the uniqueness of Q, let \(L: X \rightarrow Y\) be another orthogonally quartic mapping satisfying (3.3). We have

$$\begin{aligned} &N_{\beta}\bigl(Q(x)-L(x),t\bigr) \\ &\quad =N_{\beta} \biggl(16^{n}Q \biggl(\frac{x}{2^{n}} \biggr)-16^{n}L \biggl(\frac{x}{2^{n}} \biggr),t \biggr) \\ &\quad \geq\min \biggl\{ N_{\beta} \biggl(16^{n}Q \biggl( \frac{x}{2^{n}} \biggr)-16^{n}f \biggl(\frac{x}{2^{n}} \biggr),t \biggr),N_{\beta} \biggl(16^{n}f \biggl(\frac{x}{2^{n}} \biggr)-16^{n}L \biggl(\frac{x}{2^{n}} \biggr),t \biggr) \biggr\} \\ &\quad \geq\min \biggl\{ N^{'}_{\beta} \biggl(\varphi \biggl(0, \frac {x}{2^{n}},0 \biggr),\frac{(\alpha^{-\beta}-16^{\beta})t}{2\cdot16^{n \beta}} \biggr), N^{'}_{\beta} \biggl(\varphi \biggl(0,\frac{x}{2^{n}},0 \biggr),\frac {(\alpha^{-\beta}-16^{\beta})t}{2\cdot16^{n \beta}} \biggr) \biggr\} \\ &\quad \geq N^{'}_{\beta} \biggl(\varphi(0,x,0),\frac{(\alpha^{-\beta}-16^{\beta })t}{2} \frac{1}{(16\alpha)^{n \beta}} \biggr), \end{aligned}$$

which tends to 1 as \(n \rightarrow\infty\), for all \(x \in X\), \(t > 0 \), and all \(n \in\mathbb{N}\). So \(Q: X \rightarrow Y\) is unique. This completes the proof. □

Corollary 3.2

Let \(\theta\geq0\), p be a real positive number with \(p>4\), \((X, \perp)\) be a real orthogonality vector space with norm \(\Vert \cdot \Vert \) with \(0< \beta\leq1\) and \((\mathbb{R},N^{'})\) be a complete fuzzy β-normed space. If \(f : X \rightarrow Y \) is an even mapping satisfying \(f(0)=0\) and the inequality

$$ N_{\beta}\bigl( Df (x,y,z), t \bigr)\geq N^{'}_{\beta} \bigl(\theta\bigl(\Vert x\Vert ^{p}+\Vert y\Vert ^{p}+\Vert z\Vert ^{p}\bigr),t\bigr) $$
(3.12)

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq N^{'}_{\beta} \bigl(\varphi(0,x,0),\bigl(2^{p\beta }-16^{\beta}\bigr)t\bigr) $$

for all \(x \in X\), \(t > 0 \).

Proof

From Theorem 3.1 by taking \(\varphi(x,y,z)=\theta(\Vert x\Vert ^{p}+\Vert y\Vert ^{p}+\Vert z\Vert ^{p})\) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), and choosing \(\alpha =2^{-p\beta}\) we get the desired result. □

Theorem 3.3

Assume that a mapping \(f : X \rightarrow Y \) is an even mapping satisfying the inequality (3.1) and \(f(0)=0 \) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \). Let \(\varphi: X^{3} \rightarrow Z \) be a mapping for which there is a constant \(\alpha\in\mathbb{R} \) satisfying \(0 < \alpha< 16\) such that

$$N^{'}_{\beta} \bigl(\varphi (x, y, z ), \alpha^{\beta}t \bigr) \geq N^{'}_{\beta} \biggl(\varphi \biggl( \frac{x}{2}, \frac{y}{2}, \frac {z}{2} \biggr),t \biggr) $$

for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \) and \(z \perp x \). Then there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq N^{'}_{\beta} \bigl(\varphi(0,x,0), \bigl(16^{\beta }-\alpha^{\beta}\bigr)t\bigr) $$

for all \(x \in X\), \(t > 0 \).

Corollary 3.4

Let \(\theta\geq0\), p be a real positive number with \(4>p>0\), \((X, \perp)\) be a real orthogonality vector space with norm \(\Vert \cdot \Vert \) with \(0< \beta\leq1\) and \((\mathbb{R},N^{'})\) be a complete fuzzy β-normed space. If \(f : X \rightarrow Y \) is an even mapping satisfying the inequality (3.12) and \(f(0)=0 \) for all \(x,y,z \in X\), \(t > 0 \), with \(x \perp y\), \(y \perp z \), and \(z \perp x \), there is a unique orthogonally quartic mapping \(Q : X \rightarrow Y\) such that

$$N_{\beta} \bigl(f(x)-Q(x), t\bigr)\geq N^{'}_{\beta} \bigl(\varphi(0,x,0),\bigl(16^{\beta }\bigr)t-2^{p\beta}\bigr) $$

for all \(x \in X\), \(t > 0 \).