1 Introduction

For a positive integer n, let \(S_{n}\) be the set of all n! permutations of \(\{1, 2, \ldots, n\}\). We denote by \(\mathbb{C}^{n\times n}\) and \(\mathbb{R}^{n\times n}\) the set of \(n \times n\) complex matrices and the set of \(n \times n\) real matrices, respectively. If \(A=(a_{i,j}) \in\mathbb{C}^{n\times n}\) and \(\sigma\in S_{n}\), then the sequence \(a_{1,\sigma(1)}, a_{2,\sigma(2)}, \ldots, a_{n,\sigma (n)}\) is called a transversal of A [1]. In 2012, Professor Xingzhi Zhan defined the following new concept at a seminar and suggested studying its properties.

Definition 1.1

A matrix \(A=(a_{i,j})\in\mathbb{C}^{n\times n}\) is called diagonally magic if

$$ \sum_{i=1}^{n} a_{i,\sigma(i)}=\sum_{i=1}^{n} a_{i,\pi(i)} $$
(1)

for all \(\sigma, \pi\in S_{n}\).

Obviously, the zero matrix \(0_{n\times n}\) and \(J=[1]_{n\times n}\), the matrix of all ones, are diagonally magic matrices. Denote

$$ B_{n}= \begin{pmatrix} 1&2 & \cdots& n\\ n+1&n+2 & \cdots& 2n\\ \vdots&\vdots& \ddots& \vdots\\ (n-1)n+1&(n-1)n+2 & \cdots& n^{2} \end{pmatrix} $$
(2)

and

$$ C_{n}= \begin{pmatrix} 1&2 & \cdots& n\\ 2&3 & \cdots& n+1\\ \vdots&\vdots& \ddots& \vdots\\ n&n+1 & \cdots& 2n-1 \end{pmatrix} . $$
(3)

We will show that \(B_{n}\) and \(C_{n}\) are diagonally magic matrices. So, there are a lot of diagonally magic matrices. \(C_{n}\) is a Hankel matrix. \(B_{n}\) and \(C_{n}\) are nonnegative matrices which have been a hot research area [2, 3].

For matrix \(D=(d_{ij})\in\mathbb{C}^{m\times n}\), let the columns of D be \(d_{1},d_{2},\ldots,d_{n}\). \(\operatorname{vec}(D)\) is a vector defined by \(\operatorname{vec}(D)=(d^{T}_{1},d^{T}_{2},\ldots,d^{T}_{n})^{T}\), where the superscript T denotes the transpose. The matrix \(E_{i,j}^{n}\) denotes the Type 1 elementary matrix [4], p.8, which is simply the identity matrix \(I_{n}\) of order n, the i, i and j, j entries replaced by 0 and the i, j entry (respectively j, i entry) replaced by 1 (respectively 1). Given two matrices A and B, their direct sum is written as \(A\oplus B\). Given a sequence of matrices \(A_{i}\), for \(i=1, \ldots, k\), one may write their direct sum as

$$A=\bigoplus_{i=1}^{k}A_{i}= \operatorname{diag} (A_{1}, \ldots, A_{k}). $$

Each \(A_{i}\) is called a direct summand of A. Let \(e_{n}=(\underbrace{1, \ldots, 1} _{n})^{T}\) and \(\widehat{e}_{n}=(\underbrace{0, \ldots, 0} _{n-1}, 1)^{T}\).

2 Main results

Let \(A=(a_{i,j})\in\mathbb{C}^{n\times n}\) be a diagonally magic matrix with \(n\geq2\). Assume that the sum of every transversal is c. From the definition of diagonally magic matrices (1), we have a system of linear equations

$$ \widetilde{A}_{n} \operatorname{vec} \bigl(A^{T} \bigr)=ce_{n!}, $$
(4)

where \(\widetilde{A}_{n}=(\widetilde{a}_{1}, \widetilde{a}_{2}, \ldots, \widetilde{a}_{n^{2}}) \in\mathbb{R}^{n!\times n^{2}}\) is the coefficient matrix. If \(n=2\), from the definition of the diagonally magic matrices and (4), the coefficient matrix \(\widetilde {A}_{2}\) can be chosen to be the \(2 \times4\) matrix

$$\widetilde{A}_{2}= \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{pmatrix} =(\widetilde{a}_{1}, \widetilde{a}_{2}, \widetilde{a}_{3}, \widetilde{a}_{4}), $$

and the augmented matrix is

$$ \widehat{A}_{2}= \left ( \textstyle\begin{array}{c@{\hspace{3pt}}c@{\quad}c@{\quad}c|@{\quad}c} 1 & 0 & 0 & 1& c\\ 0 & 1 & 1 & 0& c \end{array}\displaystyle \right ). $$
(5)

This augmented matrix is the row-reduced echelon form.

Suppose \(n\geq2\) and that, for \(n = 2, \ldots, k\), we have constructed the coefficient matrix

$$\widetilde{A}_{k}=(\widetilde{a}_{1}, \widetilde{a}_{2}, \ldots, \widetilde{a}_{k^{2}}). $$

Let \(n=k+1\). We use the following method to construct the coefficient matrix \(\widetilde{A}_{k+1}\). Firstly, let

$$\begin{aligned}& C_{1,1}^{k+1}= (e_{k!}, 0_{k!\times k} ), \\& C_{1, m+1}^{k+1}= (0_{k!\times1},\widetilde{a}_{(m-1)k+1}, \widetilde{a}_{(m-1)k+2}, \ldots, \widetilde{a}_{mk} ) \end{aligned}$$

for \(1\leq m \leq k\). Secondly, construct

$$C_{i,j}^{k+1}=C_{i-1,j}^{k+1}E_{i-1,i}^{k+1} $$

for \(i=2,3,\ldots,k+1\), \(j=1,2,3,\ldots,k+1\), where \(E_{i,j}^{n}\) denotes the Type 1 elementary matrix [4], p.8, which is simply the identity matrix \(I_{n}\) of order n, the i, i and j, j entries replaced by 0 and the i, j entry (respectively j, i entry) replaced by 1 (respectively 1). Then we get the coefficient matrix

$$ \widetilde{A}_{k+1}= \begin{pmatrix} C_{1,1}^{k+1}& C_{1,2}^{k+1}& \cdots& C_{1,k+1}^{k+1}\\ C_{2,1}^{k+1}& C_{2,2}^{k+1}& \cdots& C_{2,k+1}^{k+1}\\ \vdots& \vdots& \ddots& \vdots\\ C_{k+1,1}^{k+1}& C_{k+1,2}^{k+1}& \cdots& C_{k+1,k+1}^{k+1} \end{pmatrix}. $$

For example, if \(n=3\), according to the constructing method and \(\widetilde{A}_{2}\), we have

$$\begin{aligned} \widetilde{A}_{3}&= \begin{pmatrix} C_{1,1}^{3}& C_{1,2}^{3}& C_{1,3}^{3}\\ C_{2,1}^{3}& C_{2,2}^{3}& C_{2,3}^{3}\\ C_{3,1}^{3}& C_{3,2}^{3}& C_{3,3}^{3} \end{pmatrix} \\ &=\left ( \textstyle\begin{array}{ccc|ccc|ccc} 1& 0& 0 &0&1&0 &0&0&1\\ 1& 0& 0 &0&0&1 &0&1&0\\ \hline 0&1& 0 &1&0&0 &0&0&1\\ 0&1& 0 &0&0&1 &1&0&0\\ \hline 0& 0&1 &1&0&0 &0&1&0\\ 0& 0&1 &0&1&0 &1&0&0 \end{array}\displaystyle \right ) \\ &=(\widetilde{a}_{1}, \widetilde{a}_{2}, \widetilde{a}_{3}, \widetilde {a}_{4},\widetilde{a}_{5}, \widetilde{a}_{6},\widetilde{a}_{7}, \widetilde {a}_{8}, \widetilde{a}_{9}). \end{aligned}$$

Assume

$$C_{j}= \bigl(C_{j,1}^{k+1}, C_{j,2}^{k+1}, \ldots, C_{j,k+1}^{k+1}, ce_{k!} \bigr) $$

for \(j=1, 2, \ldots, k+1\). Consequently, the augmented matrix of \(\widetilde{A}_{k+1}\) is

$$\bigl(C_{1}^{T}, C_{2}^{T}, \ldots, C_{k+1}^{T} \bigr)^{T}. $$

Let

$$\begin{aligned}& D_{n}= \begin{pmatrix} 0 & \cdots& 0 & 1\\ \vdots& \ddots& \vdots& \vdots\\ 0 & \cdots& 0 & 1\\ 0 & \cdots& 0 & 1 \end{pmatrix} \in \mathbb{R}^{n\times n}, \\& F_{(n-1)\times n}= (\textstyle\begin{array}{@{}c@{\quad}c@{}} I_{n-1} & -e_{n-1} \end{array}\displaystyle ) \in\mathbb{R}^{(n-1)\times n}, \\& G_{n}= \begin{pmatrix} 0 & 1& \cdots& 1 & 3-n\\ 1 & 0& \cdots& 1 & 3-n\\ \vdots&\vdots& \ddots&\vdots&\vdots\\ 1 & 1& \cdots& 0 & 3-n\\ 1 & 1& \cdots& 1 & 2-n \end{pmatrix} \in \mathbb{R}^{n\times n}. \end{aligned}$$

We claim that the row-reduced echelon form of the augmented matrix in the system of linear equations (4) has the following form:

$$ \textstyle\begin{array}{@{}c@{}} \textstyle\begin{array}{@{\hspace{-30pt}}l} \overbrace{\hphantom{\hspace{43mm}}}^{(n-2)n} \end{array}\displaystyle \\ \widehat{A}_{n}=\left ( \textstyle\begin{array}{cccccc|c} I_{n}&D_{n} &D_{n} &\cdots&D_{n}&G_{n}&ce_{n}\\ & F_{(n-1)\times n} & 0 &\cdots& 0& -F_{(n-1)\times n}&0 \\ & &F_{(n-1)\times n}& \cdots&0&-F_{(n-1)\times n}&0 \\ & & & \ddots&\vdots&\vdots&\vdots\\ & & & & F_{(n-1)\times n}&-F_{(n-1)\times n}&0\\ &&{\Huge0}&& &0&0 \end{array}\displaystyle \right ). \end{array} $$
(6)

We prove this by induction on n. For example, \((\widetilde{A}_{2}, ce_{2!})\) is row-equivalent to

$$ \widehat{A}_{2}=\left ( \textstyle\begin{array}{cccc|c} 1 & 0 & 0 & 1& c\\ 0 & 1 & 1 & 0& c \end{array}\displaystyle \right ). $$

The row-reduced echelon form of the augmented matrix \((\widetilde{A}_{3}, ce_{3!})\) has the following form:

$$\begin{aligned} \widehat{A}_{3}&=\left ( \textstyle\begin{array}{ccc|c} I_{3}& D_{3}& G_{3}&ce_{3}\\ 0_{2\times3}& F_{2\times3}& -F_{2\times3}&0_{3\times1}\\ 0_{1\times3}& 0_{1\times3}& 0_{1\times3}&0 \end{array}\displaystyle \right ) \\ &=\left ( \textstyle\begin{array}{ccc|ccc|ccc|c} 1& 0& 0 &0&0&1 &0&1&0 &1\\ 0& 1& 0 &0&0&1 &1&0&0 &1\\ 0& 0 &1 &0&0&1 &1&1&-1 &1\\ \hline 0&0&0 &1&0& -1 &-1&0&1 &0\\ 0&0&0 &0& 1&-1 &0&-1&1 &0\\ \hline 0& 0&0 &0&0&0 &0&0&0 &0 \end{array}\displaystyle \right ). \end{aligned}$$

Obviously, if \(n=2\), \(\widehat{A}_{2}\) in (5) has the form (6). Suppose \(n\geq2\) and that, for \(n = 2, \ldots, k\), the assertion has been proved for n!-by-\(n^{2}\) matrix \(\widetilde {A}_{n}\). Let \(n=k+1\),

$$\begin{aligned}& H_{k\times(k+1)}= (e_{k}, 0_{k\times k} ), \qquad J_{k\times (k+1)}= (0_{k\times1}, I_{k} ), \\& \widetilde{D}_{k\times(k+1)}= (0_{k\times1}, D_{k} ),\qquad \widetilde{G}_{k\times(k+1)}= (0_{k\times1}, G_{k} ), \\& \widetilde{F}_{(k-1)\times(k+1)}= (0_{k\times1}, F_{(k-1)\times k} ). \end{aligned}$$

By the inductive hypothesis, we can obtain the following matrix after a sequence of elementary operations for \(C_{1}\):

$$ {{\begin{aligned} P_{1} &=\left ( \textstyle\begin{array}{ccccccc|c} H_{k\times(k+1)}&J_{k\times(k+1)}&\widetilde{D}_{k\times(k+1)} &\widetilde{D}_{k\times(k+1)} &\cdots&\widetilde{D}_{k\times (k+1)}&\widetilde{G}_{k\times(k+1)}&ce_{k}\\ && \widetilde{F}_{(k-1)\times(k+1)} & 0 &\cdots& 0& -\widetilde {F}_{(k-1)\times(k+1)}&0 \\ && &\widetilde{F}_{(k-1)\times(k+1)}& \cdots&0&-\widetilde {F}_{(k-1)\times(k+1)}&0 \\ && & & \ddots&\vdots&\vdots&\vdots\\ & & & & & \widetilde{F}_{(k-1)\times(k+1)}&-\widetilde{F}_{(k-1)\times (k+1)}&0\\ &&\Huge0&&& &0&0 \end{array}\displaystyle \right ) \\ &\equiv \begin{pmatrix} P_{1,1} \\ P_{1,2} \\ P_{1,3} \\ \vdots\\ P_{1,k-1} \\ 0 \end{pmatrix} , \end{aligned}}} $$

where

$$\begin{aligned}& P_{1,1}=\left ( \textstyle\begin{array}{ccccccc|c} H_{k\times(k+1)}&J_{k\times(k+1)}&\widetilde{D}_{k\times(k+1)} &\widetilde{D}_{k\times(k+1)} &\cdots&\widetilde{D}_{k\times (k+1)}&\widetilde{G}_{k\times(k+1)}&ce_{k} \end{array}\displaystyle \right ),\\& \textstyle\begin{array}{@{}c@{}} \textstyle\begin{array}{@{\hspace{-30pt}}c} \overbrace{\hphantom{\hspace{15mm}}}^{(k-i-1)(k+1)\ \mathrm{columns}} \end{array}\displaystyle \\ P_{1,i}=\left ( \textstyle\begin{array}{cccccccc|c} 0&\cdots& 0&\widetilde{F}_{(k-1)\times(k+1)} & 0 &\cdots& 0& -\widetilde{F}_{(k-1)\times(k+1)}&0 \end{array}\displaystyle \right )\in \mathbb{R}^{(k-1)\times((k+1)^{2}+1)} \end{array}\displaystyle \end{aligned}$$

for \(i=2, 3, \ldots, k-1\). \(C_{j}\) is row-equivalent to

$$P_{j}=P_{j-1} \Biggl( \Biggl(\bigoplus ^{k+1}_{i=1}E_{j-1,j}^{k+1} \Biggr) \oplus1 \Biggr)= \bigl(P_{j,1}^{T}, \ldots, P_{j,k-1}^{T}, 0^{T} \bigr)^{T} $$

for \(j=2, \ldots, k+1\). \(P_{j,1}\in\mathbb{R}^{k\times((k+1)^{2}+1)}\) is the first k rows of \(P_{j}\). \(P_{j,i}\in\mathbb{R}^{(k-1)\times ((k+1)^{2}+1)}\) is the rows of \(P_{j}\) from \((k+(i-2)(k-1)+1)\)th to \((k+(i-1)(k-1))\)th row, \(i=2, \ldots, k-1\). In \(P_{1,1}\), multiplying row k by the scalar −1 and adding to row j, for \(j=1, \ldots, k-1\), then \(P_{1,1}\) is row-equivalent to

$$\widehat{P}_{1,1}= (\widehat{H}_{k\times(k+1)}, \widehat {J}_{k\times(k+1)}, \widehat{\widetilde{D}}_{k\times(k+1)}, \widehat { \widetilde{D}}_{k\times(k+1)}, \ldots, \widehat{\widetilde {D}}_{k\times(k+1)}, \widehat{\widetilde{G}}_{k\times(k+1)}, c\widehat {e}_{k} ), $$

where

$$\begin{aligned}& \widehat{H}_{k\times(k+1)}= \begin{pmatrix} 0&0_{(k-1)\times k}\\ 1&0 \end{pmatrix} ,\qquad \widehat{J}_{k\times(k+1)}= \begin{pmatrix} 0& I_{k-1}&-e_{k-1}\\ 0&0&1 \end{pmatrix} , \\& \widehat{\widetilde{D}}_{k\times(k+1)}= \begin{pmatrix} 0_{(k-1)\times k}&0\\ 0&1 \end{pmatrix} ,\qquad \widehat{\widetilde{G}}_{k\times(k+1)}= \begin{pmatrix} 0 & -1& 0&\cdots& 0 & 1\\ 0 & 0& -1&\cdots& 0 & 1\\ \vdots&\vdots& \vdots&\ddots&\vdots&\vdots\\ 0 & 0& 0&\cdots& -1 & 1\\ 0 & 1&1& \cdots& 1 & 2-k \end{pmatrix} . \end{aligned}$$

Applying this method to \(P_{j,1}\), \(j=2, \ldots, k+1\), then \(P_{j,1}\) is row-equivalent to

$$\widehat{P}_{j,1}=\widehat{P}_{j-1,1} \Biggl( \Biggl(\bigoplus ^{k+1}_{i=1}E_{j-1,j}^{k+1} \Biggr)\oplus1 \Biggr). $$

Multiplying row \(k-1\) of \(\widehat{P}_{1,1}\) by the scalar −1 and adding to row k of \(\widehat{P}_{k+1,1}\), and multiplying row \(k-1\) of \(P_{1,i}\) by the scalar −1 and adding to row k of \(\widehat {P}_{k+1,1}\) for \(i=2, 3, \ldots, k-1\), then row k of \(\widehat {P}_{k+1,1}\) changes to

$$ \bigl(\underbrace{\widehat{e}_{k+1}^{T}, \ldots, \widehat{e}_{k+1}^{T}} _{k(k+1)}, \underbrace{1, \ldots, 1} _{k}, 1-k, c \bigr). $$
(7)

Picking row k of \(\widehat{P}_{j,1}\), \(j=1, 2, \ldots, k\), and (7), we have

$$ (I_{k+1}, \underbrace{D_{k+1}, D_{k+1}, \ldots, D_{k+1}} _{(k-1)(k+1)}, G_{k+1}, ce_{k+1} ). $$
(8)

Combining row 1 of \(\widehat{P}_{2,1}\) and row i of \(\widehat {P}_{1,1}\), for \(i=1, \ldots, k-1\), we have

$$ (0_{k\times(k+1)}, F_{k\times(k+1)}, \underbrace{0_{k\times (k+1)}, \ldots, 0_{k\times(k+1)}} _{(k-3)(k+1)}, -F_{k\times(k+1)}, 0 ). $$
(9)

Combining row 1 of \(P_{2,i}\) and row j of \(P_{1,i}\), for \(i, j=1, 2, \ldots, k-1\), we get

$$ \left ( \textstyle\begin{array}{ccccccc|c} 0_{k\times(k+1)}& 0_{k\times(k+1)}&F_{k\times(k+1)}&0_{k\times (k+1)}& \cdots&0_{k\times(k+1)}&-F_{k\times(k+1)}&0 \\ 0_{k\times(k+1)}& 0_{k\times(k+1)}&0_{k\times(k+1)}&F_{k\times (k+1)}& \cdots&0_{k\times(k+1)}&-F_{k\times(k+1)}&0 \\ & & & &\ddots&\vdots&\vdots&\vdots\\ &&\Huge0&& & F_{k\times (k+1)}&-F_{k\times(k+1)}&0 \end{array}\displaystyle \right ). $$
(10)

Combining (8), (9) and (10), we have

$$ \left ( \textstyle\begin{array}{cccccc|c} I_{k+1}& D_{k+1}& D_{k+1}& \cdots& D_{k+1}& G_{k+1}& ce_{k+1}\\ & F_{k\times(k+1)} & 0 &\cdots& 0& -F_{k\times(k+1)}&0 \\ & &F_{k\times(k+1)}& \cdots&0&-F_{k\times(k+1)}&0 \\ & & & \ddots&\vdots&\vdots&\vdots\\ &&\Huge0& & F_{k\times (k+1)}&-F_{k\times(k+1)}&0 \end{array}\displaystyle \right ). $$

The other rows depend linearly on some rows of the above matrix. From the row-reduced echelon form (6), we get \(\operatorname{rank}(\widetilde{A}_{n})=n^{2}-2n+2\). \(a_{j,n}\), \(a_{n,i}\), for \(2\leq j\leq n\), \(1\leq i\leq n-1\), are free variables. The other entries of matrix \(A=(a_{i,j})\in\mathbb{C}^{n\times n}\) are the pivot variables. The pivot variables are completely determined in terms of free variables.

Theorem 2.1

Let \(A \in\mathbb{C}^{n\times n}\) be a diagonally magic matrix. Then \(\operatorname{rank}(A)\leq2\).

Proof

Let \(A=(a_{i,j})\in\mathbb{C}^{n\times n}\) be a diagonally magic matrix. If \(n=1\), the conclusion is trivial. Next, we prove that it is true for \(n\geq2\). Assume unknowns \(a_{j,n}\), \(a_{n,i}\), for \(2\leq j\leq n\), \(1\leq i\leq n-1\), are free variables. According to (6), we have

$$a_{1,i}=-\sum_{j=2}^{n-1}a_{j,n}- \sum_{j\neq i}^{n-1}a_{n,j}+(n-3)a_{n,n}+c $$

for \(i=1, \ldots, n-1\), and

$$a_{1,n}=-\sum_{j=2}^{n-1}a_{j,n}- \sum_{j= 1}^{n-1}a_{n,j}+(n-2)a_{n,n}+c. $$

We also have

$$a_{i,j}=a_{i,n}+a_{n,j}-a_{n,n} $$

for \(2\leq i, j \leq n-1\). That is,

$$ {{A= \begin{pmatrix} -\sum_{j=2}^{n-1}a_{j,n}-\sum_{j\neq 1}^{n-1}a_{n,j}+(n-3)a_{n,n}+c &\cdots &-\sum_{j=2}^{n-1}a_{j,n}-\sum_{j= 1}^{n-1}a_{n,j}+(n-2)a_{n,n}+c\\ \vdots&\ddots&\vdots\\ a_{n,1}&\cdots&a_{n,n} \end{pmatrix}.}} $$
(11)

Using row elementary operations, A is row-equivalent to

$$ \begin{pmatrix} c-\sum_{j=1}^{n}a_{n,j}&c-\sum_{j=1}^{n}a_{n,j}&\cdots &c-\sum_{j=1}^{n}a_{n,j}&c-\sum_{j=1}^{n}a_{n,j}\\ a_{2,n}-a_{n,n}&a_{2,n}-a_{n,n}&\cdots&a_{2,n}-a_{n,n}&a_{2,n}-a_{n,n}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ a_{n-1,n}-a_{n,n}&a_{n-1,n}-a_{n,n}&\cdots &a_{n-1,n}-a_{n,n}&a_{n-1,n}-a_{n,n}\\ a_{n,1}&a_{n,2}&\cdots&a_{n,n-1}&a_{n,n} \end{pmatrix}. $$
(12)

From (12), we can easily get

$$\operatorname{rank}(A)\leq2. $$

This completes the proof. □

According to (11), we know that the matrices \(B_{n}\) in (2) and \(C_{n}\) in (3) are diagonally magic matrices. It is easy to verify that \(B_{n}\) is row-equivalent to

$$ B_{n}\longrightarrow \begin{pmatrix} 1&2 &3& \cdots& n\\ 0&1 &2& \cdots& n-1\\ 0&0 &0& \cdots& 0\\ \vdots&\vdots& \vdots&\ddots& \vdots\\ 0&0 &0& \cdots& 0 \end{pmatrix} . $$

\(C_{n}\) is row-equivalent to

$$ C_{n}\longrightarrow \begin{pmatrix} 1&2 &3& \cdots& n\\ 0&1 &2& \cdots& n-1\\ 0&0 &0& \cdots& 0\\ \vdots&\vdots& \vdots&\ddots& \vdots\\ 0&0 &0& \cdots& 0 \end{pmatrix} . $$

Now it is clear that there are diagonally magic matrices of ranks 0, 1, 2. Indeed, \(\operatorname{rank} (0_{n\times n} )=0\), \(\operatorname{rank} ([1]_{n\times n} )=1\), and \(\operatorname{rank}(B_{n})=\operatorname{rank}(C_{n})=2\).

Theorem 2.2

If the diagonally magic matrix \(A\in\mathbb{C}^{n\times n}\) has a form (11), then the characteristic polynomial of A is

$$ \begin{aligned} p_{A}(\lambda)= \lambda^{n-2} \bigl(\lambda^{2}-c\lambda+d \bigr), \end{aligned} $$
(13)

where \(d= (\sum_{j=1}^{n}a_{n,j}-c )\sum_{j=2}^{n} (a_{n,1}-a_{n,j} )-n\sum_{j=2}^{n-1} (a_{n,n}-a_{j,n} ) (a_{n,1}-a_{n,j} )\).

From (13), we can see that the algebraic multiplicity of the eigenvalue 0 of the diagonally magic matrix A is at least \(n-2\).

Theorem 2.3

Let A and B be diagonally magic matrices of the same order. Then \(A\pm B\), kA, \(PAQ\) and \(A^{*}\) are diagonally magic matrices, where k is a constant, P and Q are the square matrices every row and every column of which has at most one nonzero entry, and \(A^{*}\) denotes the conjugate transpose of A.

Proof

This can be easily checked from the definition. □

Let \(A\in\mathbb{C}^{n\times n}\), \(1\leq i_{1} \leq i_{2}\leq\cdots\leq i_{k}\leq n\), \(1\leq j_{1} \leq j_{2}\leq\cdots\leq j_{s}\leq n\). We denote by \(A[i_{1}, i_{2}, \ldots, i_{k}|j_{1}, j_{2}, \ldots, j_{s}]\) the \(k\times s\) submatrix of A that lies in the rows \(i_{1}, i_{2}, \ldots, i_{k}\) and columns \(j_{1}, j_{2}, \ldots, j_{s}\). Denote by \(A(i_{1}, i_{2}, \ldots, i_{k}|j_{1}, j_{2}, \ldots, j_{s})\) the \((n-k)\times(n-s)\) submatrix of A obtained by deleting the rows \(i_{1}, i_{2}, \ldots, i_{k}\) and columns \(j_{1}, j_{2}, \ldots, j_{s}\).

Theorem 2.4

Any square submatrix of a diagonally magic matrix is diagonally magic.

Proof

Let B be a \(k\times k\) submatrix of a diagonally magic matrix \(A=(a_{i,j})\). Then there are row and column indices \(\alpha=(i_{1},i_{2},\ldots,i_{k})\) and \(\beta=(j_{1},j_{2},\ldots,j_{k})\) such that \(B=A[\alpha|\beta]\). Note that the union of a transversal of B and a transversal of \(A(\alpha|\beta)\) is a transversal of A. Choose an arbitrary but fixed transversal T of the square matrix \(A(\alpha|\beta)\). For any \(\sigma,\pi\in S_{k}\), \(a_{i_{1},j_{\sigma(1)}},\ldots ,a_{i_{k},j_{\sigma(k)}}\) and the entries in T constitute a transversal of A, while \(a_{i_{1},j_{\pi(1)}},\ldots,a_{i_{k},j_{\pi(k)}}\) and the entries in T also constitute a transversal of A. Let b be the sum of the entries in T. Since A is diagonally magic, we have

$$\sum_{t=1}^{k} a_{i_{t},j_{\sigma(t)}}+b=\sum _{t=1}^{k} a_{i_{t},j_{\pi(t)}}+b, $$

which yields

$$\sum_{t=1}^{k} a_{i_{t},j_{\sigma(t)}}=\sum _{t=1}^{k} a_{i_{t},j_{\pi(t)}}. $$

This shows that B is diagonally magic. □