Design
The biophysical effects of massage may include vascular or sensory changes [13, 15], therefore a comparator in the form of was applied over the calf muscles in an attempt to assess any mechanical effects due to such vascular and sensory changes. A randomised cross-over design was used to investigate the effects of massage and superficial heating on the passive mechanical characteristics of the calf muscle complex [Fig. 1]. A wash-out period of at least ten days was interposed between the two interventions.
Participants
A total of 29 unimpaired participants (17 male, 12 female) were recruited via open advertisement. Participants were aged between 18 and 45 years of age (mean 22, SD 5) to ensure skeletal maturity and the absence of age-related changes, both of which have been shown to affect MTU stiffness [9, 16]. Exclusion criteria were the presence of any current or recent (<6 months) lower leg injury on either side, a history of significant vascular or neuromuscular illness or impairment affecting the lower limbs (surgical reconstruction, arthritis, stroke, etc.) or skin conditions contraindicating massage. Participants with a body mass index (BMI) >30 kg.m−2 were excluded as the leg positioning of obese subjects when measuring stiffness has been reported as problematic [17]. Volunteer participants met all criteria and had a mean BMI of 22.9 (SD 3.3). Written and informed consent was obtained and the rights of the participants were protected at all times. The project received Institutional Ethics Committee approval (University of Western Sydney HREC: #H10544).
Instrumentation
Passive stiffness measures were obtained using a custom-built, hinged, footplate, instrumented with a load cell Footnote 1 and potentiometer Footnote 2 to record torque and angular displacement and identical to that previously described and validated for measurement of passive ankle stiffness [11, 12] [Fig. 2]. Force and angle data were recorded at a sampling frequency of 200 Hz and stored on a personal computer Footnote 3. Surface electromyography (sEMG) signal Footnote 4 of the tibialis anterior and soleus muscles were recorded [18] to monitor muscle activity and ensure that processed data were not affected by agonist or antagonist muscle activity during passive ankle motion, which could assist or resist motion of the footplate.
Testing Procedures
The order of massage or superficial heating of the calf muscle and of the leg treated were randomly selected with the contralateral limb as a resting control. Following the washout period, the alternative intervention was applied to the initial control limb and the contralateral limb acted as the control for the second intervention. To investigate both immediate and persisting effects of the interventions, measures of MTU passive mechanical characteristics were taken prior to, immediately following and 30 minutes after each intervention [Fig. 1]. The order of testing was randomized at each interval. The intervention and the side to which it had been applied was concealed from the assessor performing the measures of by covering both limbs using loose long pants. The fact that the opposite limb was treated in the second intervention was also not disclosed.
Participants remained in a reclined, seated position throughout testing and during the application of each intervention to minimize the effect of confounding variables. Testing was performed by the primary investigator rhythmically oscillating the footplate at a cadence of 0.5 Hz as monitored by an audible metronome. The selected frequency corresponded to ankle dorsiflexion during stance [19]. Fifteen cycles of continuous dorsiflexion-plantarflexion were performed for each test on each side with the knee in both a fully extended position and flexed to 30°. The two positions were used to explore the relative effect of the interventions on the deep and superficial components of the calf complex [20].
Interventions
Massage of the calf complex was performed for 10 minutes and consisted of petrissage (kneading) strokes, with linking effleurage, applied distal to proximal over the belly of the calf muscle complex. The massage intervention was administered by one of two qualified and experienced physical therapists. To ensure consistency of treatment between therapists, along with participant comfort and safety, participants were asked to report their comfort level as ‘completely tolerable’, ‘strong but tolerable’, ‘uncomfortable’, or ‘intolerable’. The intensity was maintained at a ‘strong but tolerable’ level for consistency and efficacy.
Following screening for thermal sensitivity and being warned of the danger of burns, a superficial heat pack was applied over the belly of the calf muscle complex. The level of heating was adjusted to provide a ‘distinctly warm, but comfortable and even’ heating. Both interventions were provided by an experienced and registered physical therapist.
Reliability
The reliability of the measurement system was assessed using data from the first 12 subjects. Intra-session reliability was determined by comparing measurements from the control side at the pre-intervention, post-intervention and 30 minute time points. Inter-session reliability was determined by comparing pre-intervention trials on each side at the initial session and that conducted after the wash-out period. Data from both knee positions were collected.
Data processing and analysis
Of the 15 cycles recorded for each limb in each testing session, the initial two cycles were discarded to exclude possible thixotropic effects [21]. For each remaining cycle, the applied torque values were calculated using the product of force and perpendicular distance between the point of force application and the axis of rotation of the footplate (aligned to the mid-point of the lateral malleolus). These torque values were then scaled by dividing by the subject’s body mass (Nm.kg−1); this permits comparison of data across subjects of widely different body size. Ankle dorsiflexion and plantarflexion excursion (degrees) were determined relative to the neutral ankle joint position. If either sEMG signal was above baseline then that trial was discarded ensuring that all measures (torque and angular displacement) were representative of the passive application of force through the ankle by the primary investigator. The remaining cycles were ensemble averaged for further processing.
Intra- and inter-session reliability was determined using intra-class correlation coefficients for ankle dorsiflexion angles resulting from applied torque values of 0.1, 0.15 and 0.2 Nm.kg−1 and for the torque values required to move the ankle to 0°, 5° and 10° of dorsiflexion. Visual inspection of measurement consistency utilised Bland-Altman plots [22].
Dependant variables included ankle dorsiflexion position at consistent applied torque values (0.1, 0.15 and 0.2 Nm.kg−1) and calf stiffness through ankle dorsiflexion between torque values of 0.1 to 0.2 Nm.kg−1computed from the relationship [12]:
$$ \tau = {\mathrm{e}}^{\mathrm{k}.\theta } $$
where τ represents applied torque, k is the coefficient of stiffness and θ is the ankle dorsiflexion angle.
A repeated measures ANOVA was performed to determine significant differences between interventions, with post-hoc analysis using a least significant difference (LSD) test. Statistical significance was accepted at alpha less than 0.05. Independent analyses were conducted for the knee extended and flexed positions for each of the dependant variables.