Vassetzky NS, Kramerov DA. SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 2013;41:D83–9 [cited 2014 Jun 4]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3531059&tool=pmcentrez&rendertype=abstract.
CAS
Article
Google Scholar
Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity (Edinb). 2011;107:487–95 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21673742.
CAS
Article
Google Scholar
Shedlock AM, Takahashi K, Okada N. SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol. 2004;19:545–53 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16701320.
Article
Google Scholar
Suh A, Bachg S, Donnellan S, Joseph L, Brosius J, Kriegs JO, et al. De-novo emergence of SINE retroposons during the early evolution of passerine birds. Mob DNA Mobile DNA. 2017;8:1–8.
Article
Google Scholar
Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn TC, Papenfuss TJ, et al. A phylogenomic analysis of turtles. Mol Phylogenet Evol. 2015;83:250–7 Elsevier Inc. Available from: https://doi.org/10.1016/j.ympev.2014.10.021.
Article
Google Scholar
Endoh H, Nagahashi S, Okada N. A highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon. Eur J Biochem. 1990;189:25–31 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1691979.
CAS
Article
Google Scholar
Nishihara H, Smit AF, Okada N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006;16:864–74 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16717141.
CAS
Article
Google Scholar
Smit AF, Riggs AD. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 1995;23:98–102 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7870595.
CAS
Article
Google Scholar
Gilbert N, Labuda D. Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol. 2000;298:365–77 Available from: http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10772856&dopt=Abstract.
CAS
Article
Google Scholar
Shedlock AM, Botka CW, Zhao S, Shetty J, Zhang T, Liu JS, et al. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc Natl Acad Sci U S A. 2007;104:2767–72.
CAS
Article
Google Scholar
Shedlock AM. Phylogenomic investigation of CR1 LINE diversity in reptiles. Syst Biol. 2006;55:902–11.
Article
Google Scholar
Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, et al. The tuatara genome reveals ancient features of amniote evolution. Nature. 2020;584:403–9.
CAS
Article
Google Scholar
Kramerov DA, Vassetzky NS. SINEs. Wiley Interdiscip Rev RNA. 2011;2:772–86 [cited 2014 Jun 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21976282.
CAS
Article
Google Scholar
Liu Y, Zhou Q, Wang Y, Luo L, Yang J, Yang L, et al. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun. 2015;6 Nature Publishing Group. [cited 2020 Nov 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/26598231/.
Hara Y, Takeuchi M, Kageyama Y, Tatsumi K, Hibi M, Kiyonari H, et al. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol BMC Biology. 2018;16:1–19.
Article
Google Scholar
Xiong Z, Li F, Li Q, Zhou L, Gamble T, Zheng J, et al. Draft genome of the leopard gecko, Eublepharis macularius. GigaScience. 2016;5 Available from: https://doi.org/10.1186/s13742-016-0151-4.
Darevskia (ID 327916) - BioProject - NCBI [Internet]. [cited 2020 Dec 9]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/327916
GenomeArk - Lacerta agilis [Internet]. [cited 2020 Dec 2]. Available from: https://vgp.github.io/genomeark/Lacerta_agilis/
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, et al. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience. 2019;8:22 NLM (Medline). [cited 2020 Nov 29]. Available from: http://orcid.org/0000-0001-7839-735X.
Google Scholar
Andrade P, Pinho C, De Lanuza GPI, Afonso S, Brejcha J, Rubin CJ, et al. Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard. Proc Natl Acad Sci U S A. 2019;116:5633–42 [cited 2020 Dec 2]. National Academy of Sciences. Available from: https://www.pnas.org/content/116/12/5633.
CAS
Article
Google Scholar
Yurchenko AA, Recknagel H, Elmer KR. Chromosome-level assembly of the common lizard (Zootoca vivipara) genome. Genome Biol Evol. 2020;12:1953–60.
Article
Google Scholar
Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, et al. The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly. Gigascience Oxford University Press. 2018;7:1–13.
CAS
Google Scholar
Ullate-Agote A, Milinkovitch MC, Tzika AC. The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. Int J Dev Biol. 2014;58:881–8.
CAS
Article
Google Scholar
Pantherophis obsoletus (ID 88953) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/88953?genome_assembly_id=889057
Ptyas mucosa (ID 44753) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/44753?genome_assembly_id=884075
GenomeArk - Thamnophis elegans [Internet]. [cited 2020 Dec 2]. Available from: https://vgp.github.io/genomeark/Thamnophis_elegans/
Thamnophis sirtalis (ID 16688) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/16688?genome_assembly_id=245767
Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, et al. Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proc Natl Acad Sci U S A. 2018;115:8406–11.
CAS
Article
Google Scholar
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc R Soc B Biol Sci. 2019;286.
Hydrophis cyanocinctus (ID 75161) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/75161?genome_assembly_id=437861
Hydrophis hardwickii (ID 75162) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/75162?genome_assembly_id=437862
Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, et al. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet. 2020;52:106–17 Springer US. Available from: https://doi.org/10.1038/s41588-019-0559-8.
CAS
Article
Google Scholar
Notechis scutatus (ID 14408) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/14408?genome_assembly_id=408294
Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.
CAS
Article
Google Scholar
Pseudonaja textilis (ID 72610) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/72610?genome_assembly_id=408420
Castoe TA, De Koning APJ, Hall KT, Card DC, Schield DR, Fujita MK, et al. Erratum: The Burmese python genome reveals the molecular basis for extreme adaptation in snakes (Proceedings of the National Academy of Sciences of the United States of America (2013) 110, 51, (20645–20650) DOI: 10.1073/pnas. 1314475110). Proc Natl Acad Sci U S A. 2014;111:3194.
Google Scholar
Crotalus horridus (ID 16679) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/16679?genome_assembly_id=274149
Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc R Soc B Biol Sci. 2014;281.
Crotalus viridis viridis (ID 71654) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/71654?genome_assembly_id=434976
Shibata H, Chijiwa T, Oda-Ueda N, Nakamura H, Yamaguchi K, Hattori S, et al. The habu genome reveals accelerated evolution of venom protein genes. Sci Rep. 2018;8:1–11.
Google Scholar
Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS. Population genomic analysis of a pitviper reveals microevolutionary forces underlying venom chemistry. Genome Biol Evol. 2017;9:2640–9.
CAS
Article
Google Scholar
Vipera berus berus (ID 14467) - Genome - NCBI [Internet]. [cited 2020 Dec 2]. Available from: https://www.ncbi.nlm.nih.gov/genome/14467?genome_assembly_id=214193
Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience. 2017;6:1–6.
Article
Google Scholar
Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R, et al. A genome draft of the legless anguid lizard, Ophisaurus gracilis. Gigascience. 2015;4:15–7.
Article
Google Scholar
Lind AL, Lai YYY, Mostovoy Y, Holloway AK, Iannucci A, Mak ACY, et al. Genome of the komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat Ecol Evol. 2019;3:1241–52 Springer US. Available from: https://doi.org/10.1038/s41559-019-0945-8.
Article
Google Scholar
Georges A, Li Q, Lian J, O’Meally D, Deakin J, Wang Z, et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience. 2015;4 Available from: https://doi.org/10.1186/s13742-015-0085-2.
Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–91.
Article
Google Scholar
Brian Simison W, Parham JF, Papenfuss TJ, Lam AW, Henderson JB. An annotated chromosome-level reference genome of the red-eared slider turtle (Trachemys scripta elegans). Genome Biol Evol. 2020;12:456–62.
Article
Google Scholar
Ghosh A, Johnson MG, Osmanski AB, Louha S, Bayona-Vásquez NJ, Glenn TC, et al. A High-Quality Reference Genome Assembly of the Saltwater Crocodile, Crocodylus porosus, Reveals Patterns of Selection in Crocodylidae. Genome Biol Evol. 2019;12:3635–46 Oxford University Press. [cited 2020 Dec 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/31821505/.
Article
Google Scholar
Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.
CAS
Article
Google Scholar
Nikaido M, Noguchi H, Nishihara H, Toyoda A, Suzuki Y, Kajitani R, et al. Coelacanth genomes reveal signatures for evolutionary transition from water to land. Genome Res. 2013;23:1740–8.
CAS
Article
Google Scholar
Gregory TR. Animal Genome Size Database. 2020. Available from: http://www.genomesize.com
Google Scholar
Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data - reexamination of the usefulness of chained guide trees. Bioinformatics. 2016;32:3246–51.
CAS
Article
Google Scholar
Nicholas KB, Nicholas HBJ. GeneDoc: Analysis and Visualization of Genetic Variation 1997. Available from: http://www.nrbsc.org/gfx/genedoc/index.html
Google Scholar
Eddy S, Cambridge U. SQUID - C function library for sequence analysis; 2005.
Google Scholar