McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci. 1950;36(6):344–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kazazian HH. Mobile DNA: Finding Treasure in Junk. New Jersey: FT Press, Upper Saddle River; 2011.
Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135(1):23–35.
CAS
PubMed
Article
Google Scholar
Mitra R, Li X, Kapusta A, Mayhew D, Mitra RD, Feschotte C, et al. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci. 2013;110(1):234–9.
CAS
PubMed
Article
Google Scholar
Stocking C, Kozak CA. Endogenous retroviruses. Cell Mol Life Sci. 2008;65(21):3383–98.
CAS
PubMed
PubMed Central
Article
Google Scholar
Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol. 2012.
Mager DL, Stoye JP. Mammalian Endogenous Retroviruses. Mobile DNA III: Washington, DC: American Society for Microbiology; 2015. p. 1079–100.
Zhang Y, Maksakova IA, Gagnier L, van de Lagemaat LN, Mager DL. Genome-Wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet. 2008;4(2):e1000007.
PubMed
PubMed Central
Article
CAS
Google Scholar
Jenkins NA, Copeland NG. High frequency germline acquisition of ecotropic MuLV proviruses in SWR/J-RF/J hybrid mice. Cell. 1985;43(3):811–9.
CAS
PubMed
Article
Google Scholar
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006;16(12):1548–56.
CAS
PubMed
PubMed Central
Article
Google Scholar
Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature. 2012;491(7426):774–8.
CAS
PubMed
PubMed Central
Google Scholar
Contreras-Galindo R, Kaplan MH, Dube D, Gonzalez-Hernandez MJ, Chan S, Meng F, et al. Human Endogenous Retrovirus Type K (HERV-K) Particles Package and Transmit HERV-K–Related Sequences. J Virol. 2015;89(14):7187–201.
CAS
PubMed
PubMed Central
Article
Google Scholar
Marchi E, Kanapin A, Magiorkinis G, Belshaw R. Unfixed endogenous retroviral insertions in the human population. J Virol. 2014;88(17):9529–37.
PubMed
PubMed Central
Article
CAS
Google Scholar
Naveira H, Bello X, Abal-Fabeiro JL, Maside X. Evidence for the persistence of an active endogenous retrovirus (ERVE) in humans. Genetica. 2014;142(5):451–60.
CAS
PubMed
Article
Google Scholar
Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci. 2016;113(16):E2326–34.
CAS
PubMed
Article
Google Scholar
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell. 2016;62(5):766–76.
CAS
PubMed
Article
Google Scholar
Malik HS, Burke WD, Eickbush TH. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol. 1999;16(6):793–805.
CAS
PubMed
Article
Google Scholar
Kapitonov VV, Tempel S, Jurka J. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene. 2009;448(2):207–13.
CAS
PubMed
PubMed Central
Article
Google Scholar
Boissinot S, Furano AV. Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol. 2001;18(12):2186–94.
CAS
PubMed
Article
Google Scholar
Khan H, Smit A, Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 2006;16(1):78–87.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
CAS
PubMed
Article
Google Scholar
Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 2003;13(12):2541–58.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ade C, Roy-Engel AM, Deininger PL. Alu elements: an intrinsic source of human genome instability. Curr Opin Virol. 2013;3(6):639–45.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ono M, Kawakami M, Takezawa T. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res. 1987;15(21):8725–37.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW, et al. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem. 1994;269(11):8466–76.
CAS
PubMed
Google Scholar
Ostertag EM, Goodier JL, Zhang Y, Kazazian HH. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet. 2003;73(6):1444–51.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE. Natural genetic variation caused by transposable elements in humans. Genetics. 2004;168(2):933–51.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, et al. SVA elements: a hominid-specific retroposon family. J Mol Biol. 2005;354(4):994–1007.
CAS
PubMed
Article
Google Scholar
Damert A, Raiz J, Horn AV, Lower J, Wang H, Xing J, et al. 5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res. 2009;19(11):1992–2008.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hancks DC, Kazazian Jr HH. SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol. 2010;20(4):234–45.
CAS
PubMed
PubMed Central
Article
Google Scholar
Friedli M, Trono D. The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol. 2015;31(1):429–51.
CAS
PubMed
Article
Google Scholar
Bantysh O, Buzdin A. Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA. Biochem Mosc. 2009;74(12):1393–9.
CAS
Article
Google Scholar
Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH. Exon-trapping mediated by the human retrotransposon SVA. Genome Res. 2009;19(11):1983–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DIK, Rocchi M, et al. Centromere remodeling in hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol. 2012;4(7):648–58.
CAS
PubMed
Article
Google Scholar
Hara T, Hirai Y, Baicharoen S, Hayakawa T, Hirai H, Koga A. A novel composite retrotransposon derived from or generated independently of the SVA (SINE/VNTR/Alu) transposon has undergone proliferation in gibbon genomes. Genes Genet Syst. 2012;87(3):181–90.
CAS
PubMed
Article
Google Scholar
Ianc B, Ochis C, Persch R, Popescu O, Damert A. Hominoid composite non-LTR retrotransposons--variety, assembly, evolution, and structural determinants of mobilization. Mol Biol Evol. 2014;31(11):2847–64.
PubMed
Article
Google Scholar
Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci. 2003;100(9):5280–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, et al. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141(7):1159–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
del Carmen SM, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH. Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc Natl Acad Sci. 2006;103(17):6611–6.
Article
CAS
Google Scholar
Cordaux R, Hedges DJ, Herke SW, Batzer MA. Estimating the retrotransposition rate of human Alu elements. Gene. 2006;373:134–7.
CAS
PubMed
Article
Google Scholar
Hancks DC, Kazazian HH. Active human retrotransposons: variation and disease. Curr Opin Genet Dev. 2012;22(3):191–203.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7(1):1.
Article
Google Scholar
Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell. 1993;72(4):595–605.
CAS
PubMed
Article
Google Scholar
Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol. 2001;21(6):1973–85.
CAS
PubMed
PubMed Central
Article
Google Scholar
Denli Ahmet M, Narvaiza I, Kerman Bilal E, Pena M, Benner C, Marchetto Maria CN, et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell. 2015;163(3):583–93.
CAS
PubMed
Article
Google Scholar
Adey NB, Schichman SA, Graham DK, Peterson SN, Edgell MH, Hutchison C. Rodent L1 evolution has been driven by a single dominant lineage that has repeatedly acquired new transcriptional regulatory sequences. Mol Biol Evol. 1994;11(5):778–89.
CAS
PubMed
Google Scholar
Martin SL. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol. 2006;2006:1–6.
Article
CAS
Google Scholar
Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol. 2010;7(6):706–11.
CAS
PubMed
PubMed Central
Article
Google Scholar
Martin SL, Branciforte D. Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol. 1993;13(9):5383–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hohjoh H, Singer MF. Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol. 1997;271(1):7–12.
CAS
PubMed
Article
Google Scholar
Goodier JL, Zhang L, Vetter MR, Kazazian HH. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol. 2007;27(18):6469–83.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, et al. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5:5276.
CAS
PubMed
Article
Google Scholar
Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006;172(6):803–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. RNA granules in germ cells. Cold Spring Harb Perspect Biol. 2011;3(12):a002774-a.
Article
CAS
Google Scholar
Goodier JL, Ostertag EM, Engleka K, Seleme M, Kazazian HH. A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet. 2004;13(10):1041–8.
CAS
PubMed
Article
Google Scholar
Goodier JL, Cheung LE, Kazazian HH. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res. 2013;41(15):7401–19.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rodić N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS, et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol. 2014;184(5):1280–6.
PubMed
PubMed Central
Article
CAS
Google Scholar
Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 2010;6(10):e1001150.
PubMed
PubMed Central
Article
CAS
Google Scholar
Goodier JL, Mandal PK, Zhang L, Kazazian HH. Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet. 2010;19(9):1712–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
De Luca C, Guadagni F, Sinibaldi-Vallebona P, Sentinelli S, Gallucci M, Hoffmann A, et al. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget. 2015;7(4):4048–61.
PubMed Central
Google Scholar
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome Res. 2008;18(3):343–58.
CAS
PubMed
Article
Google Scholar
Zamudio N, Bourc’his D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity. 2010;105(1):92–104.
CAS
PubMed
Article
Google Scholar
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet. 2011;12(1):187–215.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burns KH, Boeke JD. Human transposon tectonics. Cell. 2012;149(4):740–52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Huang CR, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet. 2012;46:651–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Richardson SR, Moran JV, Kopera HC, Doucet AJ, Moldovan JB, Garcia-Perez JL. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Mobile DNA III: Washington, DC: American Society for Microbiology; 2015. p. 1165–208.
Mita P, Boeke JD. How retrotransposons shape genome regulation. Curr Opin Genet Dev. 2016;37:90–100.
CAS
PubMed
Article
Google Scholar
Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet. 2002;31(2):159–65.
CAS
PubMed
Article
Google Scholar
Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int. 2006;6(1):1.
Article
CAS
Google Scholar
Sinibaldi‐Vallebona P, Lavia P, Garaci E, Spadafora C. A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosom Cancer. 2006;45(1):1–10.
PubMed
Article
CAS
Google Scholar
Hedges DJ, Deininger PL. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res. 2007;616(1–2):46–59.
CAS
PubMed
Article
Google Scholar
Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature. 2007;446(7132):208–12.
CAS
PubMed
Article
Google Scholar
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990;9(10):3353.
CAS
PubMed
PubMed Central
Google Scholar
Doolittle RF, Feng DF. Tracing the origin of retroviruses. Curr Top Microbiol Immunol. 1992;176:195–211.
CAS
PubMed
Google Scholar
Malik HS. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res. 2000;10(9):1307–18.
CAS
PubMed
Article
Google Scholar
Malik HS, Eickbush TH. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001;11(7):1187–97.
CAS
PubMed
Article
Google Scholar
Maxwell PH, Curcio MJ. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. Eukaryotic Cell. 2007;6(7):1069–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beauregard A, Curcio MJ, Belfort M. The take and give between retrotransposable elements and their hosts. Annu Rev Genet. 2008;42(1):587–617.
CAS
PubMed
PubMed Central
Article
Google Scholar
Siomi MC, Saito K, Siomi H. How selfish retrotransposons are silenced in Drosophila germline and somatic cells. FEBS Lett. 2008;582(17):2473–8.
CAS
PubMed
Article
Google Scholar
Eickbush TH, Eickbush DG. Integration, Regulation, and Long-Term Stability of R2 Retrotransposons. Mobile DNA III: American Society for Microbiology; 2015. p. 1127–46.
Rangwala SH, Kazazian HH. The L1 retrotransposition assay: a retrospective and toolkit. Methods. 2009;49(3):219–26.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kopera HC, Larson PA, Moldovan JB, Richardson SR, Liu Y, Moran JV. LINE-1 Cultured Cell Retrotransposition Assay. Methods Mol Biol. 2016;1400:139–56.
PubMed
Article
Google Scholar
Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985;40(3):491–500.
CAS
PubMed
Article
Google Scholar
Heidmann T, Heidmann O, Nicolas JF. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci. 1988;85(7):2219–23.
CAS
PubMed
PubMed Central
Article
Google Scholar
Freeman J, Goodchild N, Mager D. A modified indicator gene for selection of retrotransposition events in mammalian cells. Biotechniques. 1994;17(1):46–52.
CAS
PubMed
Google Scholar
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH. High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87(5):917–27.
CAS
PubMed
Article
Google Scholar
Ostertag EM, Prak E, DeBerardinis R, Moran JV, Kazazian HH. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 2000;28(6):1418–23.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xie Y, Rosser JM, Thompson TL, Boeke JD, An W. Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res. 2011;39(3):e16-e.
Article
CAS
Google Scholar
Terasaki N, Goodier JL, Cheung LE, Wang YJ, Kajikawa M, Kazazian HH, et al. In vitro screening for compounds that enhance human L1 mobilization. PLoS ONE. 2013;8(9):e74629.
CAS
PubMed
PubMed Central
Article
Google Scholar
Esnault C, Casella J-F, Heidmann T. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res. 2002;30(11):e49-e.
Article
Google Scholar
Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35(1):41–8.
CAS
PubMed
Article
Google Scholar
Dewannieux M, Dupressoir A, Harper F, Pierron G, Heidmann T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat Genet. 2004;36(5):534–9.
CAS
PubMed
Article
Google Scholar
Dewannieux M, Heidmann T. L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol. 2005;349(2):241–7.
CAS
PubMed
Article
Google Scholar
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet. 2011;20(17):3386–400.
CAS
PubMed
PubMed Central
Article
Google Scholar
Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 2012;40(4):1666–83.
CAS
PubMed
Article
Google Scholar
Bock A, Schumann GG. The Engineered SVA Trans-mobilization Assay. Methods Mol Biol. 2016;1400:203–22.
PubMed
Article
Google Scholar
Ewing AD. Transposable element detection from whole genome sequence data. Mobile DNA. 2015;6(1).
Ostertag EM, Kazazian HH. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res. 2001;11(12):2059–65.
CAS
PubMed
PubMed Central
Article
Google Scholar
Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature. 2004;429(6989):268–74.
CAS
PubMed
Article
Google Scholar
Minakami R, Kurose K, Etoh K, Furuhata Y, Hattori M, Sakaki Y. Identification of an internal cis-element essential for the human Li transcription and a nuclear factor (s) binding to the element. Nucleic Acids Res. 1992;20(12):3139–45.
CAS
PubMed
PubMed Central
Article
Google Scholar
Becker KG, Swergold G, Ozato K, Thayer RE. Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet. 1993;2(10):1697–702.
CAS
PubMed
Article
Google Scholar
Yang Z, Boffelli D, Boonmark N, Schwartz K, Lawn R. Apolipoprotein(a) gene enhancer resides within a LINE element. J Biol Chem. 1998;273(2):891–7.
CAS
PubMed
Article
Google Scholar
Tchénio T, Casella J, Heidmann T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 2000;28(2):411–5.
PubMed
PubMed Central
Article
Google Scholar
Yang N, Kazazian HH. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 2003;31(16):4929–40.
CAS
PubMed
PubMed Central
Article
Google Scholar
Athanikar JN, Badge RM, Moran JV. A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 2004;32(13):3846–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903–10.
CAS
PubMed
Article
Google Scholar
Laperriere D, Wang TT, White JH, Mader S. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution. BMC Genomics. 2007;8:23.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 2008;18(11):1752–62.
CAS
PubMed
PubMed Central
Article
Google Scholar
Román AC, Benitez DA, Carvajal-Gonzalez JM, Fernandez-Salguero PM. Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci. 2008;105(5):1632–7.
PubMed
PubMed Central
Article
Google Scholar
Harris C, Dewan A, Zupnick A, Normart R, Gabriel A, Prives C, et al. p53 responsive elements in human retrotransposons. Oncogene. 2009;28(44):3857–65.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009;12(9):1097–105.
CAS
PubMed
PubMed Central
Article
Google Scholar
Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, et al. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res/Fundam Mol Mech Mutagen. 2009;665(1–2):20–8.
CAS
Article
Google Scholar
Lee S-H, Cho S-Y, Shannon MF, Fan J, Rangasamy D. The impact of CpG island on defining transcriptional activation of the mouse L1 retrotransposable elements. PLoS ONE. 2010;5(6):e11353.
PubMed
PubMed Central
Article
CAS
Google Scholar
Román AC, González-Rico FJ, Moltó E, Hernando H, Neto A, Vicente-Garcia C, et al. Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res. 2011;21(3):422–32.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hu Q, Tanasa B, Trabucchi M, Li W, Zhang J, Ohgi KA, et al. DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol. 2012;19(11):1168–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves Â, Kutter C, et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell. 2012;148(1):335–48.
CAS
PubMed
PubMed Central
Article
Google Scholar
Belancio VP, Hedges DJ, Deininger P. LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Acids Res. 2006;34(5):1512–21.
CAS
PubMed
PubMed Central
Article
Google Scholar
Belancio VP, Roy-Engel AM, Deininger P. The impact of multiple splice sites in human L1 elements. Gene. 2008;411(1–2):38–45.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12(7):1060–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science. 2003;300(5623):1288–91.
CAS
PubMed
Article
Google Scholar
Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol. 2007;8(6):R127.
PubMed
PubMed Central
Article
CAS
Google Scholar
Shen S, Lin L, Cai JJ, Jiang P, Kenkel EJ, Stroik MR, et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci. 2011;108(7):2837–42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S, Stévant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 2013;152(3):453–66.
CAS
PubMed
PubMed Central
Article
Google Scholar
Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet. 1994;7(2):143–8.
CAS
PubMed
Article
Google Scholar
Moran JV, DeBerardinis R, Kazazian HH. Exon shuffling by L1 retrotransposition. Science. 1999;283(5407):1530–4.
CAS
PubMed
Article
Google Scholar
Pickeral OK, Makalowski W, Boguski M, Boeke JD. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 2000;10(4):411–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Goodier JL, Ostertag EM, Kazazian HH. Transduction of 3'-flanking sequences is common in L1 retrotransposition. Hum Mol Genet. 2000;9(4):653–7.
CAS
PubMed
Article
Google Scholar
Perepelitsa-Belancio V, Deininger P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet. 2003;35(4):363–6.
CAS
PubMed
Article
Google Scholar
Hohjoh H, Singer MF. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 1996;15(3):630.
CAS
PubMed
PubMed Central
Google Scholar
Cook PR, Jones CE, Furano AV. Phosphorylation of ORF1p is required for L1 retrotransposition. Proc Natl Acad Sci. 2015;112(14):4298–303.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418(6898):646–50.
CAS
PubMed
Article
Google Scholar
Harris RS, Liddament MT. Retroviral restriction by APOBEC proteins. Nat Rev Immunol. 2004;4(11):868–77.
CAS
PubMed
Article
Google Scholar
Vieira VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. BioMed Res Int. 2013;2013:1–18.
Article
CAS
Google Scholar
Willems L, Gillet NA. APOBEC3 Interference during Replication of Viral Genomes. Viruses. 2015;7(6):2999–3018.
CAS
PubMed
PubMed Central
Article
Google Scholar
Holmes RK, Malim MH, Bishop KN. APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci. 2007;32(3):118–28.
CAS
PubMed
Article
Google Scholar
Kinomoto M, Kanno T, Shimura M, Ishizaka Y, Kojima A, Kurata T, et al. All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res. 2007;35(9):2955–64.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schumann G. APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. Biochem Soc Trans. 2007;35(3):637–42.
CAS
PubMed
Article
Google Scholar
Chiu Y-L, Greene WC. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol. 2008;26(1):317–53.
CAS
PubMed
Article
Google Scholar
Koito A, Ikeda T. Intrinsic restriction activity by AID/APOBEC family of enzymes against the mobility of retroelements. Mobile Genetic Elements. 2011;1(3):197–202.
PubMed
PubMed Central
Article
Google Scholar
Arias JF, Koyama T, Kinomoto M, Tokunaga K. Retroelements versus APOBEC3 family members: No great escape from the magnificent seven. Front Microbio. 2012;3:275.
CAS
Article
Google Scholar
Koito A, Ikeda T. Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases. Front Microbio. 2013;4:28.
CAS
Google Scholar
MacDuff DA, Demorest ZL, Harris RS. AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity. Nucleic Acids Res. 2009;37(6):1854–67.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ikeda T, Abd El Galil KH, Tokunaga K, Maeda K, Sata T, Sakaguchi N, et al. Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons. Nucleic Acids Res. 2011;39(13):5538–54.
CAS
PubMed
PubMed Central
Article
Google Scholar
Metzner M, Jäck HM, Wabl M. LINE-1 retroelements complexed and inhibited by activation induced cytidine deaminase. PLoS ONE. 2012;7(11):e49358.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lindič N, Budič M, Petan T, Knisbacher BA, Levanon EY, Lovšin N. Differential inhibition of LINE1 and LINE2 retrotransposition by vertebrate AID/APOBEC proteins. Retrovirology. 2013;10(1):156.
PubMed
PubMed Central
Article
CAS
Google Scholar
Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Khatua AK, Taylor HE, Hildreth JEK, Popik W. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology. 2010;400(1):68–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Balaj L, Lessard R, Dai L, Cho Y-J, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.
PubMed
PubMed Central
Article
CAS
Google Scholar
Stenglein MD, Harris RS. APOBEC3B and APOBEC3F Inhibit L1 Retrotransposition by a DNA Deamination-independent Mechanism. J Biol Chem. 2006;281(25):16837–41.
CAS
PubMed
Article
Google Scholar
Esnault C, Priet S, Ribet D, Heidmann O, Heidmann T. Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo “traces” on the murine IAPE and human HERV-K elements. Retrovirology. 2008;5(1):75.
PubMed
PubMed Central
Article
CAS
Google Scholar
Anwar F, Davenport MP, Ebrahimi D. Footprint of APOBEC3 on the genome of human retroelements. J Virol. 2013;87(14):8195–204.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV, et al. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci. 2006;103(23):8780–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chiu YL, Witkowska HE, Hall SC, Santiago M, Soros VB, Esnault C, et al. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci. 2006;103(42):15588–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kozak SL, Marin M, Rose KM, Bystrom C, Kabat D. The Anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J Biol Chem. 2006;281(39):29105–19.
CAS
PubMed
Article
Google Scholar
Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006;2(5):e41.
PubMed
PubMed Central
Article
CAS
Google Scholar
Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol. 2007;81(5):2165–78.
CAS
PubMed
Article
Google Scholar
Lu C, Contreras X, Peterlin BM. P bodies inhibit retrotransposition of endogenous intracisternal A particles. J Virol. 2011;85(13):6244–51.
CAS
PubMed
PubMed Central
Article
Google Scholar
Horn AV, Klawitter S, Held U, Berger A, Vasudevan AAJ, Bock A, et al. Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res. 2014;42(1):396–416.
CAS
PubMed
Article
Google Scholar
Carmi S, Church GM, Levanon EY. Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Nat Commun. 2011;2:519.
PubMed
Article
CAS
Google Scholar
Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife. 2014;3:e02008.
Kulpa DA, Moran JV. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol. 2006;13(7):655–60.
CAS
PubMed
Article
Google Scholar
Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HCT, Rice GI, Christodoulou E, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 2011;480(7377):379–82.
CAS
PubMed
Article
Google Scholar
Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13(3):223–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Baldauf H-M, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, et al. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. Nat Med. 2012;18(11):1682–9.
CAS
PubMed
Article
Google Scholar
Gramberg T, Kahle T, Bloch N, Wittmann S, Müllers E, Daddacha W, et al. Restriction of diverse retroviruses by SAMHD1. Retrovirology. 2013;10(1):26.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD. SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol. 2013;87(23):12949–56.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, et al. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41(7):829–32.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhao K, Du J, Han X, Goodier John L, Li P, Zhou X, et al. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutières syndrome-related SAMHD1. Cell Rep. 2013;4(6):1108–15.
CAS
PubMed
PubMed Central
Article
Google Scholar
White TE, Brandariz-Nuñez A, Valle-Casuso JC, Knowlton C, Kim B, Sawyer SL, et al. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology. 2014;460–461:34–44.
PubMed
Article
CAS
Google Scholar
Upton K, Gerhardt D, Jesuadian J, Richardson S, Sánchez-Luque F, Bodea G, et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2):228–39.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu S, Li J, Xu F, Mei S, Le Duff Y, Yin L, et al. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation. PLoS Genet. 2015;11(7):e1005367.
PubMed
PubMed Central
Article
CAS
Google Scholar
Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X et al. Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nature Communications. 2013;4.
Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim S-Y, et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med. 2014;20(8):936–41.
CAS
PubMed
PubMed Central
Article
Google Scholar
Beliakova-Bethell N, Terry LJ, Bilanchone V, DaSilva R, Nagashima K, Wente SR, et al. Ty3 nuclear entry is initiated by viruslike particle docking on GLFG nucleoporins. J Virol. 2009;83(22):11914–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Checkley MA, Nagashima K, Lockett SJ, Nyswaner KM, Garfinkel DJ. P-Body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol Cell Biol. 2010;30(2):382–98.
CAS
PubMed
Article
Google Scholar
Bilanchone V, Clemens K, Kaake R, Dawson AR, Matheos D, Nagashima K, et al. Ty3 Retrotransposon Hijacks Mating Yeast RNA Processing Bodies to Infect New Genomes. PLoS Genet. 2015;11(9):e1005528.
PubMed
PubMed Central
Article
CAS
Google Scholar
O’Donnell KA, Boeke JD. Mighty Piwis defend the germline against genome intruders. Cell. 2007;129(1):37–44.
PubMed
PubMed Central
Article
CAS
Google Scholar
Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. 2009;364(1513):99–115.
CAS
PubMed
Article
Google Scholar
Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–58.
CAS
PubMed
Article
Google Scholar
Castañeda J, Genzor P, Bortvin A. piRNAs, transposon silencing, and germline genome integrity. Mutat Res/Fundam Mol Mech Mutagen. 2011;714(1–2):95–104.
Article
CAS
Google Scholar
Bao J, Yan W. Male germline control of transposable elements. Biol Reprod. 2012;86(5):162.
PubMed
PubMed Central
Article
CAS
Google Scholar
Guo M, Wu Y. Fighting an old war with a new weapon--silencing transposons by Piwi-interacting RNA. IUBMB Life. 2013;65(9):739–47.
CAS
PubMed
Article
Google Scholar
Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Seminars in Cell & Developmental Biology. 2016;pii: S1084-9521(16)30066-0.
Smalheiser N, Torvik V. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005;21(6):322–6.
CAS
PubMed
Article
Google Scholar
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453(7194):534–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453(7194):539–43.
CAS
PubMed
Article
Google Scholar
Oey HM, Youngson NA, Whitelaw E. The characterisation of piRNA-related 19mers in the mouse. BMC Genomics. 2011;12(1):315.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lukic S, Chen K. Human piRNAs are under selection in Africans and repress transposable elements. Mol Biol Evol. 2011;28(11):3061–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Roberts JT, Cardin SE, Borchert GM. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mobile Genetic Elements. 2014;4(3):e29255.
PubMed
PubMed Central
Article
Google Scholar
Soifer HS, Zaragoza A, Peyvan M, Behlke M, Rossi J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 2005;33(3):846–56.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen L, Dahlstrom JE, Lee S-H, Rangasamy D. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics. 2012;7(7):758–71.
CAS
PubMed
Article
Google Scholar
Hamdorf M, Idica A, Zisoulis DG, Gamelin L, Martin C, Sanders KJ, et al. miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nat Struct Mol Biol. 2015;22(10):824–31.
CAS
PubMed
Article
Google Scholar
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21(6):682–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang N, Kazazian HH. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol. 2006;13(9):763–71.
CAS
PubMed
Article
Google Scholar
Kanellopoulou C, Muljo S, Kung A, Ganesan S, Drapkin R, Jenuwein T, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19(4):489–501.
CAS
PubMed
PubMed Central
Article
Google Scholar
Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol. 2012;19(8):760–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Heras SR, Macias S, Plass M, Fernandez N, Cano D, Eyras E, et al. The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol. 2013;20(10):1173–81.
CAS
PubMed
Article
Google Scholar
Heras SR, Macias S, Cáceres JF, Garcia-Perez JL. Control of mammalian retrotransposons by cellular RNA processing activities. Mobile Genetic Elements. 2014;4(2):e28439.
PubMed
PubMed Central
Article
Google Scholar
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science. 2007;315(5818):1587–90.
CAS
PubMed
Article
Google Scholar
Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316(5825):744–7.
CAS
PubMed
Article
Google Scholar
Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008;31(6):785–99.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22(7):908–17.
CAS
PubMed
PubMed Central
Article
Google Scholar
Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG, et al. MIWI2 Is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12(4):503–14.
CAS
PubMed
Article
Google Scholar
Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, et al. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell. 2008;15(2):285–97.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xu M, You Y, Hunsicker P, Hori T, Small C, Griswold MD, et al. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol Reprod. 2008;79(1):51–7.
CAS
PubMed
Article
Google Scholar
Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, Zhu H, et al. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 2009;5(9):e1000635.
PubMed
PubMed Central
Article
CAS
Google Scholar
Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain–containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol. 2009;16(6):639–46.
CAS
PubMed
Article
Google Scholar
Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009;17(6):775–87.
CAS
PubMed
Article
Google Scholar
Yoshimura T, Toyoda S, Kuramochi-Miyagawa S, Miyazaki T, Miyazaki S, Tashiro F, et al. Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Dev Biol. 2009;335(1):216–27.
CAS
PubMed
Article
Google Scholar
Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev. 2010;24(9):887–92.
CAS
PubMed
PubMed Central
Article
Google Scholar
De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature. 2011;480(7376):259–63.
PubMed
Article
CAS
Google Scholar
Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, et al. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011;480(7376):264–7.
CAS
PubMed
Article
Google Scholar
Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y, Toyoda A, et al. MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell. 2011;20(3):364–75.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yabuta Y, Ohta H, Abe T, Kurimoto K, Chuma S, Saitou M. TDRD5 is required for retrotransposon silencing, chromatoid body assembly, and spermiogenesis in mice. J Cell Biol. 2011;192(5):781–95.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xiol J, Cora E, Koglgruber R, Chuma S, Subramanian S, Hosokawa M, et al. A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Mol Cell. 2012;47(6):970–9.
CAS
PubMed
Article
Google Scholar
Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell. 2013;50(4):601–8.
PubMed
Article
CAS
Google Scholar
Lim AK, Lorthongpanich C, Chew TG, Tan CWG, Shue YT, Balu S, et al. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development. 2013;140(18):3819–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, Kajita S, et al. Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci. 2013;110(41):16492–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 2013;32(13):1869–85.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ichiyanagi T, Ichiyanagi K, Ogawa A, Kuramochi-Miyagawa S, Nakano T, Chuma S, et al. HSP90 plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Res. 2014;42(19):11903–11.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11(10):e1005620.
PubMed
PubMed Central
Article
CAS
Google Scholar
Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N, et al. DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015;29(12):1256–70.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang Z, Chen K-M, Pandey Radha R, Homolka D, Reuter M, Janeiro BK, et al. PIWI Slicing and EXD1 Drive Biogenesis of Nuclear piRNAs from Cytosolic Targets of the Mouse piRNA Pathway. Mol Cell. 2016;61(1):138–52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jaenisch R, Jähner D, Nobis P, Simon I, Löhler J, Harbers K, et al. Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell. 1981;24(2):519–29.
CAS
PubMed
Article
Google Scholar
Mooslehner K, Müller U, Karls U, Hamann L, Harbers K. Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain. Mol Cell Biol. 1991;11(2):886–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dalmay T, Horsefield R, Braunstein TH, Baulcombe DC. SDE3 encodes an RNA helicase required for post‐transcriptional gene silencing in Arabidopsis. EMBO J. 2001;20(8):2069–77.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell. 2004;116(6):817–29.
CAS
PubMed
Article
Google Scholar
Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Lührmann R, et al. Identification of novel argonaute-associated proteins. Curr Biol. 2005;15(23):2149–55.
CAS
PubMed
Article
Google Scholar
Furtak V, Mulky A, Rawlings SA, Kozhaya L, Lee K, KewalRamani VN, et al. Perturbation of the P-Body component Mov10 inhibits HIV-1 infectivity. PLoS ONE. 2010;5(2):e9081.
PubMed
PubMed Central
Article
CAS
Google Scholar
Wang X, Han Y, Dang Y, Fu W, Zhou T, Ptak RG, et al. Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J Biol Chem. 2010;285(19):14346–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burdick R, Smith JL, Chaipan C, Friew Y, Chen J, Venkatachari NJ, et al. P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J Virol. 2010;84(19):10241–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Arjan-Odedra S, Swanson CM, Sherer NM, Wolinsky SM, Malim MH. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology. 2012;9(1):53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y, et al. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs. Virology. 2015;486:15–26.
CAS
PubMed
Article
Google Scholar
Goodier JL, Cheung LE, Kazazian HH. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 2012;8(10):e1002941.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gregersen L, Schueler M, Munschauer M, Mastrobuoni G, Chen W, Kempa S, et al. MOV10 Is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol Cell. 2014;54(4):573–85.
CAS
PubMed
Article
Google Scholar
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet. 2015;11(5):e1005121.
PubMed
PubMed Central
Article
CAS
Google Scholar
Li X, Zhang J, Jia R, Cheng V, Xu X, Qiao W, et al. The MOV10 helicase inhibits LINE-1 mobility. J Biol Chem. 2013;288(29):21148–60.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lu C, Luo Z, Jager S, Krogan NJ, Peterlin BM. Moloney leukemia virus type 10 inhibits reverse transcription and retrotransposition of intracisternal A particles. J Virol. 2012;86(19):10517–23.
CAS
PubMed
PubMed Central
Article
Google Scholar
Taylor MS, LaCava J, Mita P, Molloy K, Huang CR, Li D, et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell. 2013;155(5):1034–48.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moldovan JB. Identification of cellular host factors that associate with LINE-1 ORF1p and the effect of the Zinc Finger Antiviral Protein ZAP on LINE-1 retrotransposition [Ph.D. Thesis]: University of Michigan; 2015.
Zheng K, Wang PJ. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet. 2012;8(11):e1003038.
CAS
PubMed
PubMed Central
Article
Google Scholar
Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, Ma J, et al. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev. 2015;29(6):617–29.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu X, Zhi E, Li Z. MOV10L1 in piRNA processing and gene silencing of retrotransposons during spermatogenesis. Reproduction. 2015;149(5):R229–35.
CAS
PubMed
Article
Google Scholar
Frost RJ, Hamra FK, Richardson JA, Qi X, Bassel-Duby R, Olson EN. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc Natl Acad Sci. 2010;107(26):11847–52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, McLaughlin KJ, et al. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci. 2010;107(26):11841–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, Kashigi F, et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol. 2011;12(1):37–44.
CAS
PubMed
Article
Google Scholar
Guo X, Carroll JWN, MacDonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 2004;78(23):12781–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo X, Ma J, Sun J, Gao G. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci. 2007;104(1):151–6.
CAS
PubMed
Article
Google Scholar
Lee H, Komano J, Saitoh Y, Yamaoka S, Kozaki T, Misawa T, et al. Zinc-finger antiviral protein mediates retinoic acid inducible gene I-like receptor-independent antiviral response to murine leukemia virus. Proc Natl Acad Sci. 2013;110(30):12379–84.
CAS
PubMed
PubMed Central
Article
Google Scholar
Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. PLoS Genet. 2015;11(5):e1005252.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol. 2003;77(21):11555–62.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu Y, Chen G, Lv F, Wang X, Ji X, Xu Y, et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci. 2011;108(38):15834–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Silverman RH. Viral Encounters with 2',5'-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. J Virol. 2007;81(23):12720–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang A, Dong B, Doucet AJ, Moldovan JB, Moran JV, Silverman RH. RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res. 2014;42(6):3803–20.
CAS
PubMed
Article
Google Scholar
Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. 2010;11(11):1005–13.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hasan M, Yan N. Safeguard against DNA sensing: the role of TREX1 in HIV-1 infection and autoimmune diseases. Front Microbiol. 2014;5:193.
PubMed
PubMed Central
Article
Google Scholar
Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134(4):587–98.
CAS
PubMed
PubMed Central
Article
Google Scholar
deHaro D, Kines KJ, Sokolowski M, Dauchy RT, Streva VA, Hill SM, et al. Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night. Nucleic Acids Res. 2014;42(12):7694–707.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dai L, Taylor MS, O’Donnell KA, Boeke JD. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol Cell Biol. 2012;32(21):4323–36.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li P, Li J, Timmerman S, Krushel L, Martin S. The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucleic Acids Res. 2006;34(3):853–64.
CAS
PubMed
PubMed Central
Article
Google Scholar
Peddigari S, Li PW-L, Rabe JL, Martin SL. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41(1):575–85.
CAS
PubMed
Article
Google Scholar
Kuntz S, Kieffer E, Bianchetti L, Lamoureux N, Fuhrmann G, Viville S. Tex19, a Mammalian-Specific Protein with a Restricted Expression in Pluripotent Stem Cells and Germ Line. Stem Cells. 2008;26(3):734–44.
CAS
PubMed
Article
Google Scholar
Ollinger R, Childs AJ, Burgess HM, Speed RM, Lundegaard PR, Reynolds N, et al. Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice. PLoS Genet. 2008;4(9):e1000199.
PubMed
PubMed Central
Article
CAS
Google Scholar
Reichmann J, Reddington JP, Best D, Read D, Ollinger R, Meehan RR, et al. The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice. Hum Mol Genet. 2013;22(9):1791–806.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tarabay Y, Kieffer E, Teletin M, Celebi C, Van Montfoort A, Zamudio N, et al. The mammalian-specific Tex19.1 gene plays an essential role in spermatogenesis and placenta-supported development. Hum Reprod. 2013;28(8):2201–14.
CAS
PubMed
Article
Google Scholar
Su Y-Q, Sugiura K, Sun F, Pendola JK, Cox GA, Handel MA, et al. MARF1 regulates essential oogenic processes in mice. Science. 2012;335(6075):1496–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Su Y-Q, Sun F, Handel MA, Schimenti JC, Eppig JJ. Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes. Proc Natl Acad Sci. 2012;109(46):18653–60.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bloch DB, Li P, Bloch EG, Berenson DF, Galdos RL, Arora P, et al. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression. PLoS ONE. 2014;9(4):e94784.
PubMed
PubMed Central
Article
CAS
Google Scholar
Suzuki K, Morimoto M, Kondo C, Ohsumi Y. Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae. Dev Cell. 2011;21(2):358–65.
CAS
PubMed
Article
Google Scholar
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology. 2011;411(2):180–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2(12):e391.
PubMed
PubMed Central
Article
Google Scholar
Blow M, Futreal P, Wooster R, Stratton M. A survey of RNA editing in human brain. Genome Res. 2004;14(12):2379–87.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim D, Kim T, Walsh T, Kobayashi Y, Matise T, Buyske S, et al. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 2004;14(9):1719–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22(8):1001–5.
CAS
PubMed
Article
Google Scholar
Eisenberg E, Nemzer S, Kinar Y, Sorek R, Rechavi G, Levanon EY. Is abundant A-to-I RNA editing primate-specific? Trends Genet. 2005;21(2):77–81.
CAS
PubMed
Article
Google Scholar
Nishikura K. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol. 2006;7(12):919–31.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. NatRev Mol Cell Biol. 2016;17(2):83-96.
Crichton JH, Dunican DS, MacLennan M, Meehan RR, Adams IR. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci. 2014;71(9):1581–605.
CAS
PubMed
Article
Google Scholar
Schlesinger S, Goff SP. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Cell Biol. 2015;35(5):770–7.
PubMed
Article
CAS
Google Scholar
Zhang H, Zhu JK. RNA-directed DNA methylation. Curr Opin Plant Biol. 2011;14(2):142–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gebert D, Rosenkranz D. RNA‐based regulation of transposon expression. Wiley Interdiscip Rev: RNA. 2015;6(6):687–708.
CAS
PubMed
Article
Google Scholar
Hutnick LK, Huang X, Loo T-C, Ma Z, Fan G. Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism. J Biol Chem. 2010;285(27):21082–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 2012;8(6):e1002750.
CAS
PubMed
PubMed Central
Article
Google Scholar
Leung DC, Lorincz MC. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci. 2012;37(4):127–33.
CAS
PubMed
Article
Google Scholar
Kondo Y, Issa JP. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem. 2003;278(30):27658–62.
CAS
PubMed
Article
Google Scholar
Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 2005;24(4):800–12.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci. 2012;109(43):17657–62.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bulut-Karslioglu A, De La Rosa-Velázquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell. 2014;55(2):277–90.
CAS
PubMed
Article
Google Scholar
Di Giacomo M, Comazzetto S, Sampath SC, Sampath SC, O’Carroll D. G9a co-suppresses LINE1 elements in spermatogonia. Epigenetics Chromatin. 2014;7(1):24.
PubMed
PubMed Central
Article
CAS
Google Scholar
Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 2008;27(20):2691–701.
CAS
PubMed
PubMed Central
Article
Google Scholar
Varshney D, Vavrova-Anderson J, Oler AJ, Cowling VH, Cairns BR, White RJ. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun. 2015;6:6569.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu S, Brind’Amour J, Karimi MM, Shirane K, Bogutz A, Lefebvre L, et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 2014;28(18):2041–55.
CAS
PubMed
PubMed Central
Article
Google Scholar
Huda A, Mariño-Ramírez L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA. 2010;1(1):2.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rangasamy D. Distinctive patterns of epigenetic marks are associated with promoter regions of mouse LINE-1 and LTR retrotransposons. Mob DNA. 2013;4(1):27.
PubMed
PubMed Central
Article
CAS
Google Scholar
Su M, Han D, Boyd-Kirkup J, Yu X, Han J-DJ. Evolution of Alu elements toward enhancers. Cell Rep. 2014;7(2):376–85.
CAS
PubMed
Article
Google Scholar
Fadloun A, Le Gras S, Jost B, Ziegler-Birling C, Takahashi H, Gorab E, et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol. 2013;20(3):332–8.
CAS
PubMed
Article
Google Scholar
Hatanaka Y, Inoue K, Oikawa M, Kamimura S, Ogonuki N, Kodama EN, et al. Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci. 2015;112(47):14641–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Montoya-Durango DE, Ramos KA, Bojang P, Ruiz L, Ramos IN, Ramos KS. LINE-1 silencing by retinoblastoma proteins is effected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer. 2016;16(1):1.
Article
Google Scholar
Hagan CR, Rudin CM. DNA cleavage and Trp53 differentially affect SINE transcription. Genes Chromosomes Cancer. 2007;46(3):248–60.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wylie A, Jones AE, D’Brot A, Lu W-J, Kurtz P, Moran JV, et al. p53 genes function to restrain mobile elements. Genes Dev. 2015;30(1):64–77.