Reliability of the Beyondcell score and its application in cancer cell lines under drug exposure
We applied Beyondcell to the Ben-David et al. dataset [16] to demonstrate the reliability of the BCS and to validate its usefulness for identifying drug-response cell subpopulations. This study dissects the genetic and transcriptional heterogeneity within cancer cell lines, providing an scRNA-seq dataset that includes 7101 cells obtained from one single-cell-derived clone from the MCF7 cell line (MCF7-AA) exposed to bortezomib. Cells were collected before and after 12, 48 and 96 h of drug exposure (t0, t12, t48 and t96) to study its antiproliferative effects. Also, a drug screening of 321 anticancer compounds was performed to study drug response heterogeneity across 27 strains of the MCF7 breast cancer cell line.
First, to demonstrate the reliability of the BCS, we computed BCS for each compound using SSC drug signatures to the collected MCF7-AA cells at t0. We found that median BCS obtained with SSC signatures for cells at t0 correlate significantly (R = − 0.19, p = 8e−03) with MCF7-AA cell viability measures reported by Ben-David et al. [16] after treatment, demonstrating that BCS reflects drug sensitivity (Fig. 2a). When we employed PSC signatures, drugs were then classified in three groups: chemotherapy, targeted therapy and others (including immunotherapy, hormone therapy and photodynamic therapy). The BCS for targeted therapies showed a significant correlation with MCF7-AA cell viability (R = − 0.24, p = 8.4e−03) (Additional file 1: Fig. S1A) while the rest of the therapies were not found significant. This could suggest that PSC signatures for targeted therapies reflect more accurately which cells are more likely to respond than chemotherapy signatures.
Next, we were interested in evaluating Beyondcell’s ability to identify distinct drug-response cell subpopulations before and after bortezomib exposure. Beyondcell’s analysis with the PSC collection clearly separates the cells into discrete clusters, in contrast to the mixed cell groups found using transcriptional profiles. The resulting therapeutic clusters not only separated bortezomib-treated and untreated cells but also retrieved drug exposure time-points. By focusing on a PSC bortezomib expression signature, t12 and t48 cells reflected the perturbation status induced by bortezomib in contrast to t0 cells. Interestingly, t96 cells reverted to a pre-perturbation status for the bortezomib signature, highlighting the reversible inhibitory capacity of this proteasome inhibitor [30] (Fig. 2b). In particular, cells were more sensitive to bortezomib when combined with SNX-2112, an HSP90 inhibitor, than in treatment with bortezomib alone, suggesting its role as a sensitiser to bortezomib treatment (Additional file 1: Fig. S1B). Finally, we applied Beyondcell removing the expression signatures of bortezomib from the PSC collection in order to demonstrate that the therapeutic clusters are not solely driven by the effect of bortezomib signatures and that the remaining signatures are able to rescue the biology of untreated and treated cells (Additional file 1: Fig. S1C). In summary, in this study, we validate the BCS as a measure of drug sensitivity, determining its significant correlation with drug screening experimental data. In addition, we demonstrate Beyondcell’s utility to recapitulate drug response in the MCF7 cancer cell line and propose single and drug combinations to sensitise the cells.
Analysis of BRAF inhibitor sensitive and resistant subpopulations in melanoma cells
Next, using data from a 451HLu human melanoma cell line treated with BRAF inhibitors (BRAFi), we evaluated Beyondcell’s ability to identify drug-resistant cellular populations and to propose drug treatments [17]. Beyondcell analysis with SSC drug signatures recapitulated ‘parental’ and ‘BRAFi-resistant’ cell populations and identified 6 different therapeutic clusters shown in a Beyondcell UMAP plot where cells are coloured according to the treatment condition or the Beyondcell therapeutic cluster. Therapeutic cluster 5 (TC5) included both parental and resistant cells. A small fraction of the parental cells in TC5 (15%) expressed BRAFi-resistance markers like AXL, NRG1, DCT and FGFR1 that are also expressed in BRAFi-resistant cells, showing that they were clonally selected from the parental population contributing to the resistance (Fig. 2c; Additional file 1: Fig. S2).
Additionally, Beyondcell identified specific drugs to target TC5, BRAFi-resistant and parental cells. For instance, cells in cluster 5 are differentially sensitive to dasatinib (SRCi) and unresponsive to dinaciclib (CDKi) and gemcitabine. On the other hand, cells in the resistant condition are differentially sensitive to bardoxolone methyl (NF-kBi) and unresponsive to AZD6482 (PIK3i) (Additional file 1: Fig. S3; Additional file 2: Table S1). MEK inhibitors (MEKi) are shown to target 451HLu cells including pre-resistant clones (TC5). For instance, trametinib had positive Beyondcell scores in each therapeutic cluster obtained for SSC drug signatures, showing a higher BCS score (higher sensitivity) in TC5, and therefore, it could be proposed to target BRAFi-unresponsive cells. In fact, MEKi is a standard treatment in advanced melanoma patients in combination with BRAFi (31) (Fig. 2d; Additional file 1: Fig. S4A). We observed that TC5 cells were also grouped in expression UMAPs overlapping with the scRNA-seq expression cluster 2 (EC2), suggesting a direct relationship between the drug response profiles and gene expression patterns (Additional file 1: Fig. S4B). In order to identify novel genes involved in BRAFi-resistance, we performed a differential gene expression analysis for TC5, revealing 572 significantly overexpressed genes (|log2(FC)| > 2, FDR < 0.05) (Additional file 3: Table S2), including some known BRAFi-resistance biomarkers (e.g. AXL and NRG1). In addition, vemurafenib and dabrafenib BCSs obtained using SSC showed that TC5 had lower sensitivity to RAF inhibitors than the rest of the TCs, confirming that TC5 cells are pre-resistant to BRAFi (Additional file 1: Fig. S4C). This validation demonstrates that Beyondcell is able to identify therapeutic clusters that recapitulate drug effects on cells, propose drugs to target sensitive and resistant cells and identify drug-response biomarkers.
Beyondcell characterises single-cell variability in drug response in pan-cancer cell line data
We also applied Beyondcell to describe the therapeutic heterogeneity in 198 cell lines from 22 cancer types [18]. Using SSC drug signatures, we found 5 TCs where 12 of 22 cancer types were overrepresented in at least one of these TCs. TC0 was mostly constituted by cells from skin cancer (melanoma) and endometrial/uterine cancer cell lines, while TC1 included cells from bladder, gallbladder and pancreatic cancer cell lines. TC3 was enriched in breast and colon/colorectal cancer, while gliomas were exclusively located in TC2 together with kidney and thyroid cancer (Additional file 1: Fig. S5; Additional file 4: Table S3). TC4 was mainly constituted by two cell lines: the osteosarcoma (HOS) and sarcoma (A204) cell lines. Interestingly, 11 out of 12 brain cancer cell lines clustered together in TC2 independently of whether the lineage is astrocytoma or glioblastoma, with the exception of the single medulloblastoma cell line that is located in TC0. These results suggest that the cell lines from these 12 cancer types that tend to cluster in the same TCs have a common drug response.
In contrast, cancer types such as lung, gastric and ovarian among others showed high cellular therapeutic heterogeneity. For instance, the four bile duct cancer cell lines are each grouped in a different TC showing different drug response profiles despite belonging to the same cancer type (Additional file 1: Fig. S6A). Interestingly, lung cancer cell lines are distributed between the TCs regardless of whether they are squamous or adenocarcinoma subtype showing diverse drug response (Additional file 1: Fig. S6B). We also tested whether these lung cancer cell lines expressing this distinct drug response pattern exhibit a unique pattern of mutations and genetic vulnerabilities. For this, we used the CCLE mutation dataset [32] as well as the Achilles dataset [24] of genome-wide CRISPR knockout screens to map known driver mutations in lung cancer (e.g. KRAS, EGFR, PI3KCA) and the genes identified as essential for proliferation. These analyses showed that lung cancer cell lines did not cluster together; therefore, TCs detected by Beyondcell are not driven by mutational and essentiality events (Additional file 1: Fig. S6C).
We hypothesised that the heterogeneous therapeutic landscape observed in cancer cell lines could also be an opportunity to infer drug repositioning strategies to target cell lines with different tissue origin or genetic background but clustered together in Beyondcell by similar drug responses [33]. For instance, most of the colon/colorectal cancer cell lines were clustered in TC3 except cells from the NCIH747 colorectal cell line, which are mostly concentrated in TC1 where bladder, gallbladder and pancreatic cancer cell lines are located (Additional file 1: Fig. S7). This suggests that the NCIH747 cell line could respond to tyrosine kinase inhibitors (TKIs) prescribed by Beyondcell for these tumour types such as EGFRi and also to inhibitors to target members from MAPK pathway (MEK and SRC). Interestingly, NCIH747 cell line has shown experimental sensitive response to selumetinib, a MEKi, this drug being the most differential sensitive drug for TC1 and for bladder and pancreatic cancer in our results. These findings highlight Beyondcell’s ability to propose drugs for repurposing, providing additional drug response information using transcriptional data that could complement diagnostic information (i.e. tissue origin, stage, mutational status, etc.) that commonly guide cancer treatment.
Overall, global expression profiles clustered cells by cancer type; however, the TCs did not show such separation, suggesting less variability in the drug response. More specifically, 172 of 198 cell lines were overrepresented in the same TC, indicating that these cell lines had a lower cellular therapeutic heterogeneity than the rest of the cell lines (n = 26), which were spread across the different TCs (Additional file 4: Table S3). The high-grade serous ovarian cancer cell lines are a clear example of high therapeutic heterogeneity, since cells from these cell lines are mostly distributed between TCs (Additional file 1: Fig. S8). This observed differential drug sensitivity led by varying patterns of gene expression could result from clonal dynamics and continuous genetic instability that translates into heterogeneity in cancer cell lines [16].
Beyondcell results for SSC revealed 136 differential sensitivity drugs for TCs and 183 drugs in cancer type comparison. In general, TC1 and TC4 showed higher sensitivity to EGFR and topoisomerase inhibitors respectively while TC0 and TC3 both showed higher sensitivity to PLK and CDK inhibitors (Fig. 3a; Additional file 1: Fig. S9). Using PSC 174 drugs showed differential sensitivity for TCs and 569 drugs in cancer type comparison (Additional file 5: Table S4). However, TCs did not form discrete clusters so we expect that changes in drug responses are subtle, with a lot of commonalities. Beyondcell was also used to compute drug-response similarity correlation modules using BCS matrix (Additional file 1: Fig. S10; Additional file 6: Table S5). These correlation modules could be used to infer therapeutic mechanisms of action (MoA) for those drugs with unknown targets.
We validated Beyondcell results using a recently generated dataset of clinical compounds screened across 578 cell lines [33]. Differential drug vulnerability analysis showed that TC1 and TC2 are the most relevant clusters in terms of drug sensitivity, with TC1 featuring sensitivity to multiple drug families (EGFR, MEK, AKT and Aurora kinase inhibitors) compared to TC2 with lower sensitivity (Additional file 7: Table S6). TC1 and TC3 are enriched in cell lines with higher sensitivity to EGFR inhibitors, while TC2 showed decreased sensitivity, confirming Beyondcell results. Cell lines from TC1 (but not TC3) are differentially sensitive to MEK inhibitors compared to those from TC2. Interestingly, Beyondcell predicts not only that EGFRi is the most enriched drug for TC1, but also for bladder and gallbladder cancer (Additional file 1: Fig. S11; Additional file 8: Table S7). Moreover, EGFR is overexpressed in up to 74% of bladder cancer tissue specimens but has a relatively low expression in normal urothelium suggesting that it could be a potential therapeutic target. In addition, EGFR is an independent predictor of decreased survival and stage progression in bladder cancer [34].
Beyondcell calculates an SP for every drug, providing a measure of drug response homogeneity and sensitivity in each cell line. For instance, cell line NCIH1568 (NSCLC, metastatic) presented higher drug response heterogeneity than RERFLCAD1 (NSCLC, primary), evidencing a more variable drug-response behaviour in the metastatic cell line. We found that 48% of cancer cell lines show > 60% of drug homogeneity (SP = 0 or SP = 1) suggesting low cell variability in drug response. A total of 88% of the cell lines have a median SP > 0.7, meaning that they contain a greater number of insensitive than sensitive cells, and 17% of cell lines have a median SP > 0.9, indicating that none of the cells would exhibit sensitivity against half of the therapeutic options (Additional file 1: Fig. S12; Additional file 9: Table S8).
To explore the functional properties of the TCs, we correlated BCS and 12 expression programs known to be recurrently heterogeneous within cancer cell lines (RHPs). Cells enriched in the epithelial senescence-associated (EpiSen) program correlated (r > 0.6) with high sensitivity to EGFRi, in agreement with experimental validations performed by Kinker and colleagues [18] (Fig. 3b). The EMT program (EMT-II) presented higher activity in TC2 cells and correlated with high sensitivity to PI3K and HMGCR inhibitors. In contrast, TC0 and TC3 cells correlated with low EMT-II activity and high sensitivity to HDAC inhibitors, in agreement with previous studies [35, 36] (Additional file 1: Fig. S13; Additional file 10: Table S9). Interestingly, EMT-high TC2—mostly represented by brain cancer cell lines—presents a more undifferentiated transcriptional state in contrast to the rest of the therapeutic clusters (p = 8.3e−13) [36]. TC2 differential expression analysis showed an up-regulated mesenchymal profile and enrichment of the EMT pathway (Additional file 1: Fig. S14; Additional file 11: Table S10), with Beyondcell results also showing a lower sensitivity to EGFRi (Additional file 5: Table S4), confirming previous results where undifferentiated cell lines showed decreased sensitivity to EGFRi (Additional file 12: Table S11) [37]. This result shows that distinct cell functional states lead to different drug responses which are successfully detected by Beyondcell TCs. Overall, our study reveals the therapeutic landscape in multiple cancer cell lines, finding recurrent patterns of drug heterogeneity shared by specific cancer types, cell lines, as well as their relationship with functional status.
Beyondcell characterises single-cell variability in drug response in cancer patients
We also employed our method to study more heterogeneous samples such as primary tumour samples. First, we used an scRNA-seq dataset from 16 melanoma patients treated with immune checkpoint inhibitors (ICIs) and 15 untreated patients. This prospective study aimed to detect transcriptional cell states related to responsiveness to ICIs and identify a transcriptional ICI-resistance program expressed by malignant cells associated with T cell exclusion and immune evasion which predicts clinical responses to immunotherapy in melanoma patients [19]. Beyondcell revealed 7 TCs, where TC2 and TC5 mainly contained cells from the untreated patients Mel79 and Mel81 respectively, whereas TC4 and TC6 included ICI-resistant patients (Additional file 1: Fig. S15). Non-responder patients were predicted by calculating the activation level of the ICI-resistance program with Beyondcell, thus tumour cells showing high BCS would have low response to ICIs. As expected, TC4 and TC6 defined by ICI-resistant patients showed high BCS values. TC5, which included the untreated patient Mel81, also had a high BCS, so we concluded that this patient could not respond to ICIs (Fig. 4a). Beyondcell showed that Mel81 would respond to CDK inhibitor (CDKi) drugs such as alvocidib, which has been proposed for use in combination with immunotherapy to improve the response in ICI-resistant patients. Conversely, ICIs in monotherapy would be the preferred treatment for Mel79 (Fig. 4b; Additional file 1: Fig. S16). This validation demonstrated that Beyondcell correctly identified non-responders to ICIs, confirming that CDKi can be a therapeutic option to overcome ICI-resistance.
In a second study, we wanted to dissect therapeutic heterogeneity and propose novel therapeutic strategies in small-cell lung cancer patients (SCLC) patients treated with cisplatin [5]. In general, SCLC patients’ initial responses occur in > 60% of patients; however, most patients relapse within 6 months. After relapse, approved therapies are effective in < 20% of patients with a median overall survival of about 10 months, indicating a dramatic shift towards resistance [38]. This remarks the need both to improve first-line treatments and to offer second-line therapies for refractory SCLC patients. With this aim, we applied Beyondcell to analyse a selection of SCLC circulating tumour cell-derived xenografts (CDX) models that included both platinum-sensitive and platinum-resistant samples. After Beyondcell analysis, we observed how the TCs were primarily driven by the patient/CDX origin regardless of response to platinum, thus underscoring the SCLC intertumoural heterogeneity (Fig. 4c). In addition, Beyondcell proposed drugs to target platinum-resistant cells including known inhibitors as well as approved drugs for repurposing (Additional file 13: Table S12). Interestingly, we found DNA repair inhibitor (bendamustine), AURKA inhibitors (GSK1070916), CHEK inhibitors (BX-912) and BCL inhibitors (navitoclax) inhibiting known therapeutic targets in SCLC [39, 40]. Beyondcell also proposes to target the MYC signalling pathway and EMT process using mTOR and PI3K inhibitors to overcome platinum-resistance (Fig. 4c).