Andelic N, Anke A, Skandsen T, Sigurdardottir S, Sandhaug M, Ader T, et al. Incidence of hospital-admitted severe traumatic brain injury and in-hospital fatality in Norway: a National Cohort Study. Neuroepidemiology. 2012;38:259–67.
CAS
PubMed
Article
Google Scholar
Dewan M, Rattani A, Gupta S, Baticulon R, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1–18.
Google Scholar
Rached M, Gaudet J, Delhumeau C, Walder B. Comparison of two simple models for prediction of short term mortality in patients after severe traumatic brain injury. Injury. 2019;50:65–72.
PubMed
Article
Google Scholar
Walder B, Haller G, Rebetez M, Delhumeau C, Bottequin E, Schoettker P, et al. Severe traumatic brain injury in a high-income country: an epidemiological study. J Neurotrauma. 2013;30(23):1934–42.
PubMed
Article
Google Scholar
Domingues C, Coimbra R, Poggetti R, Nogueira L, de Sousa R. New Trauma and Injury Severity Score (TRISS) Adjustments for Survival Prediction. World J Emerg Surg. 2018;13:12.
PubMed
PubMed Central
Article
Google Scholar
Rau C, Kuo P, Chien P, Huang C, Hsieh H, Hsieh C. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192.
PubMed
PubMed Central
Article
CAS
Google Scholar
Maeda Y, Ichikawa R, Misawa J, Shibuya A, Hishiki T, Maeda T, et al. External Validation of the TRISS, CRASH, and IMPACT Prognostic Models in Severe Traumatic Brain Injury in Japan. PloS one. 2019;14(8):e0221791-e.
Article
CAS
Google Scholar
Han J, King N, Neilson S, Gandhi M, Ng I. External validation of the CRASH and IMPACT prognostic models in severe traumatic brain injury. J Neurotrauma. 2014;31(13):1146–52.
PubMed
Article
Google Scholar
Carter E, Hutchinson P, Kolias A, Menon D. Predicting the outcome for individual patients with traumatic brain injury: a case-based review. Br J Neurosurg. 2016;30(2):227–32.
PubMed
Article
Google Scholar
Wong G, Teoh J, Yeung J, Chan E, Siu E, Woo P, et al. Outcomes of traumatic brain injury in Hong Kong: validation with the TRISS, CRASH, and IMPACT models. J Clin Neurosci. 2013;20(12):1693–6.
PubMed
Article
Google Scholar
Reith F, Van den Brande R, Synnot A, Gruen R, Maas A. The reliability of the Glasgow coma scale: a systematic review. Intensive Care Med. 2016;42(1):3–15.
PubMed
Article
Google Scholar
Hale A, Stonko D, Brown A, Lim J, Voce D, Gannon S, et al. Machine-learning analysis outperforms conventional statistical models and CT classification Systems in Predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg Focus. 2018;45(5):E2.
PubMed
Article
Google Scholar
Maas A, Hukkelhoven C, Marshall L, Steyerberg E. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57(6):1173–82.
PubMed
Article
Google Scholar
Raj R, Siironen J, Skrifvars M, Hernesniemi J, Kivisaari R. Predicting outcome in traumatic brain injury: development of a novel computerized tomography classification system (Helsinki computerized tomography score). Neurosurgery. 2014;75(6):632–47.
PubMed
Article
Google Scholar
Liesemer K, Riva-Cambrin J, Bennett KS, Bratton S, Tran H, Metzger R, et al. Use of Rotterdam CT scores for mortality risk stratification in children with traumatic brain injury. Pediatr Crit Care Med. 2014;15(6):554–62.
PubMed
PubMed Central
Article
Google Scholar
Jacobs B, Beems T, van der Vliet T, van Vugt A, Hoedemaekers C, Horn J, et al. Outcome prediction in moderate and severe traumatic brain injury: a focus on computed tomography variables. Neurocrit Care. 2013;19(1):79–89.
PubMed
Article
Google Scholar
Eftekhar B, Mohammad K, Ardebili H, Ghodsi M, Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Informatics Decis Mak. 2005;5:3.
Article
Google Scholar
Chen C, Shi H, Lee K, Huang T. In-hospital mortality prediction in patients receiving mechanical ventilation in Taiwan. Am J Crit Care. 2013;22(6):506–13.
PubMed
Article
Google Scholar
Senders J, Staples P, Karhade A, Zaki M, Gormley W, Broekman M, et al. Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg. 2018;109:476–86.e1.
PubMed
Article
Google Scholar
Bellazzi R, Zupan B. Predictive data Mining in Clinical Medicine: current issues and guidelines. Int J Med Inform. 2008;77:81–97.
PubMed
Article
Google Scholar
Zolbanin H, Delen D, Hassan Z. Predicting overall survivability in comorbidity of cancers: a data mining approach. Decis Support Syst. 2015;74:150–61.
Article
Google Scholar
Garcia-Laencina P, Abreu P, Abreu M, Afonoso N. Missing data imputation on the 5-year survival prediction of breast Cancer patients with unknown discrete values. Comput Biol Med. 2015;59:125–33.
PubMed
Article
Google Scholar
Walker A, Mason A, Quan T, Fawcett N, Watkinson P, Llewelyn M, et al. Mortality risks associated with emergency admissions during weekends and public holidays: an analysis of electronic health records. Lancet. 2017;390(10089):62–72.
PubMed
PubMed Central
Article
Google Scholar
Han L, Sutton M, Clough S, Warner R, Doran T. Impact of out-of-hours admission on patient mortality: longitudinal analysis in a tertiary acute hospital. BMJ Qual Saf. 2018;27(6):445.
PubMed
Article
Google Scholar
Dag A, Oztekin A, Yucel A, Bulur S, Megahed F. Predicting heart transplantation outcomes through data analytics. Decis Support Syst. 2017;94:42–52.
Article
Google Scholar
Han J, Kamber M, Pie J. Data mining: concepts and techniques. 3rd ed. San Francisco: Morgan Kaufmann Publishers Inc; 2012.
Google Scholar
Das A, Ben-Menachem T, Cooper G, Chak A, Sivak M, Gonet J, et al. Prediction of outcome in acute lower-gastrointestinal Haemorrhage based on an artificial neural network: internal and external validation of a predictive model. Lancet. 2003;362(9392):1261–6.
PubMed
Article
Google Scholar
Schumacher P, Olinsky A, Quinn J, Smith R. A comparison of logistic regression, neural networks, and classification trees predicting success of actuarial students. J Educ Bus. 2010;85(5):258–63.
Article
Google Scholar
Cui S, Wang D, Wang Y, Yu P, Jin Y. An improved support vector Machine-Base diabetic readmission prediction. Comput Methods Prog Biomed. 2018;166:123–35.
Article
Google Scholar
Archer K, Kimes R. Empirical characterization of random Forest variable importance measures. Computa Stat Data Anal. 2008;52(4):2249–60.
Article
Google Scholar
Roozenbeek B, Chiu Y, Lingsma H, Gerber L, Steyerberg E, Ghajar J, et al. J Neurotrauma. 2012;29:1306–12.
PubMed
PubMed Central
Article
Google Scholar
Mushkudiani N, Hukkelhoven C, Hernández A, Murray G, Choi S, Maas A, et al. A systematic review finds methodological improvements necessary for prognostic models in determining traumatic brain injury outcomes. J Clin Epidemiol. 2008;61(4):331–43.
PubMed
Article
Google Scholar
Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet. 1974;304(7872):81–4.
Article
Google Scholar
Jovanovic B, Milan Z, Markovic-Denic L, Djuric O, Radinovic K, Doklestic K, et al. Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma Centre. Int J Infect Dis. 2015;38:46–51.
PubMed
Article
Google Scholar
Boutin A, Moore L, Lauzier F, Chassé M, English S, Zarychanski R, et al. Transfusion of red blood cells in patients with traumatic brain injuries admitted to Canadian trauma health Centres: a multicentre cohort study. BMJ Open. 2017;7(3):e014472.
PubMed
PubMed Central
Article
Google Scholar
East JM, Viau-Lapointe J, McCredie VA. Transfusion practices in traumatic brain injury. Curr Opin Anaesthesiol. 2018;31(2):219–26.
PubMed
PubMed Central
Article
Google Scholar
Mohseni S, Talving P, Lam L, Chan L, Ives C, Demetriades D. Venous thromboembolic events in isolated severe traumatic brain injury. J Emerge Trauma Shock. 2012;5(1):11–5.
Article
Google Scholar
Jha R, Kochanek P, Simard J. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145:230–46.
CAS
PubMed
Article
Google Scholar
Unterberg A, Stover J, Kress B, Kiening K. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.
CAS
PubMed
Article
Google Scholar
Bratton S, Chestnut R, Ghajar J, McConnell Hammond F, Harris O, Hartl R, et al. Guidelines for the Management of Severe Traumatic Brain Injury. I. Blood Pressure and Oxygenation. J Neurotrauma. 2007;24(Suppl 1):7–13.
Article
Google Scholar
Bartels R, Meijer F, van der Hoeven H, Edwards M, Prokop M. Midline shift in relation to thickness of traumatic acute subdural hematoma predicts mortality. BMC Neurol. 2015;15(1):220.
PubMed
PubMed Central
Article
Google Scholar
Inoue A, Hifumi T, Kuroda Y, Nishimoto N, Kawakita K, Yamashita S, et al. Mild decrease in heart rate during early phase of targeted temperature management following tachycardia on admission is associated with unfavorable neurological outcomes after severe traumatic brain injury: a post hoc analysis of a multicenter randomized controlled trial. Crit Care. 2018;22(1):352.
PubMed
PubMed Central
Article
Google Scholar
Ramesh V, Thirumaran K, Raja M. A new scale for prognostication in head injury. J Clin Neurosci. 2008;15(10):1110–3.
CAS
PubMed
Article
Google Scholar
Anselmi L, Meacock R, Kristensen S, Doran T, Sutton M. Arrival by ambulance explains variation in mortality by time of admission: retrospective study of admissions to hospital following emergency department attendance in England. BMJ Qual Saf. 2017;26(8):613.
PubMed
Article
Google Scholar
Aljerian N, Alhaidar S, Alothman A, AlJohi W, Albaqami F, Alghnam S. Association between the mode of transport and in-hospital medical complications in trauma patients: findings from a level-I trauma Center in Saudi Arabia. Ann Saudi Med. 2018;38(1):8–14.
PubMed
PubMed Central
Article
Google Scholar