Participants
Of the 116 participants in the study, 53% (n = 61) had a NDD diagnosis and 47% (n = 55) were TD. The percentage of specific NDD diagnoses in the sample were the following: 24% (n = 28) had a diagnosis of ASD, 32% (n = 37) ADHD, 8% (n = 9) ID, and 26% (n = 30) with other NDDs (e.g., motor, communication, or specific learning disorders). Fifty-seven percent (n = 66; 62% with NDDs) were male, and 43% (n = 50; 40% with NDDs) were female. Ages at examination ranged from 9 to 23 years (mean = 14.05, standard deviation = 3.40) (see Table 1). Details related to participants’ parents can be found in Additional file 3: Table S3.
Table 1 Demographic information on the sample by diagnosis and concordance for 58 twin pairs
Interrater agreement for MPA checklist
The interrater agreement between the two sets of raters ranged from 70.4 to 100% across the MPAs. The MPAs with the lowest agreement were downslanted palpebral fissure (70.4%), long eyelashes (70.4%), and straight eyebrows (74.1%). There were numerous MPAs with 100% agreement, including ectrodactyly of the hands and feet, broad thumbs, prominent heels, wide mouths, and hirsutism.
MPAs in NDDs
Twin pairs concordant for NDDs had a median of six MPAs, followed by a median of five MPAs for NDD-discordant co-twins and affected twins, respectively (Fig. 1a). In comparison, pairs concordant for TD had a median of three MPAs. These trends were similar for MZ twins (Fig. 1b). The most common MPAs in participants with NDDs were overweight (33%), arachnodactyly/long toes (31%), hypermobility (26%), straight eyebrows (25%), and vision impairment (21%; 46% of these with corrective lenses). In comparison, microtia (24%) and arachnodactyly/long toes (22%) were the only MPAs present in greater than 20% of participants with TD.
No significant association was found between a diagnosis of any NDD and the number of MPAs in the cohort (OR = 1.09, 95% CI = .94–1.27, p = .256). Since there was an association between IQ and MPAs in the cohort (β = − .95, SE = .32, 95% CI = − 1.59 to − .32, p = .003), in that for every MPA, the IQ score decreased by about one point, we controlled for IQ in the model testing the association between any NDD diagnosis and MPA, and the results did not change (OR = 1.05, 95% CI = .89–1.24, p = .592). Conversely, a cross-trait analysis comparing the MPA score from one twin to the IQ in the co-twin showed a strong association (β = − .88, 95% CI = − 1.52 to − .24, SE = .327 p = .007; Additional file 4: Table S4). The within-pairs association between NDD diagnosis and MPAs was neither significant for all participants (OR = 1.10, 95% CI = .46–2.65, p = .832), nor MZ twins only (OR = 1.11, 95% CI = .44–2.82, p = .824) (Additional file 5: Table S5).
MPAs in ASD and in relation to autistic traits
Twins pairs concordant for ASD had descriptively the highest median (Md) number of MPAs (Md = 9), followed by a median of six-and-a-half and six MPAs for ASD-discordant co-twins and affected twins, respectively (Fig. 1a). These trends were similar for MZ twins (Fig. 1b). The most common MPAs in participants with ASD included overweight (39%), hypermobility (36%), pes planus (29%), straight eyebrows (29%), vision impairment (25%; 29% of these with corrective lenses), arachnodactyly/long toes (25%), long eyelashes (21%), and microtia (21%).
There was an association between a diagnosis of ASD and MPAs (OR = 1.29, 95% CI = 1.00–1.66, p = .047). The association remained when controlling for ADHD (OR = 1.29, 95% CI = 1.02–1.63, p = .032), other NDD diagnoses (OR = 1.33, 95% CI = 1.05–1.67, p = .016), but not IQ (OR = 1.26, 95% CI = .98–1.61, p = .073). The within-pairs association for ASD was neither significant for all participants (OR = 1.28, 95% CI = .60–2.75, p = .529), nor MZ twins only (OR = 1.42, 95% CI = .63–3.19, p = .398) (Additional file 5: Table S5).
Due to the association between the number of MPAs and a clinical diagnosis of ASD, further analyses were conducted to examine if the association held when the number of MPAs was analyzed in relation to the severity of autistic traits. Using the linear regression model, there was an association between MPA scores and SRS-2 scores in the entire sample (β = 3.02, SE = .98, 95% CI = 1.09–4.94, p = .002), indicating that for every MPA, there was an approximately three-point increase in SRS-2 scores. The association remained when controlling for IQ (β = 2.28, SE = .97, 95% CI = .37–4.18, p = .019), but neither in the within-pairs analysis (β = 1.49, SE = 1.80, 95% CI = − 2.04 to 5.02, p = .409), nor MZ only twins (β = 2.11, SE = 1.85, 95% CI = −1.51–5.73, p = .254) (Table 2 and Additional file 5: Table S5). A cross-trait analysis comparing the MPA score from one twin in each pair to the total SRS-2 raw score showed a strong association (β = 3.34, 95% CI = 1.39–5.30, SE = 1.00, p < .001; Additional file 4: Table S4).
Table 2 Selected cohort and within-pairs estimates between mpas and categorical diagnoses/dimensional variables (Autistic Traits, IQ)
We also examined the presence of MPAs in all seven MZ ASD-discordant twin pairs in the sample. Of note, the overall number of MPAs was similar within pairs or even higher at times for the unaffected co-twin, but two out of seven ASD affected twins had scoliosis, which was absent in their co-twins (Additional file 6: Table S6).
MPAs in ADHD
Twin pairs concordant for ADHD had a median of six MPAs each, followed by a median of four and three MPAs for affected twins and co-twins in ADHD-discordant pairs, respectively (Fig. 1a). These trends were similar for MZ twins (Fig. 1b). The most common MPAs in participants with ADHD were overweight (32%), hypermobility (30%), vision impairment (24%; 29% of these with corrective lenses), and straight eyebrows (22%). However, no association was found between ADHD and MPAs in the cohort (OR = 1.05, 95% CI = .93–1.19, p = .435), in the within-pairs analysis for all participants (OR = .53, 95% CI = .24–1.19, p = .123), or when looking at MZ twins only (OR = .36, 95% CI = .09–1.44, p = .151) (Additional file 4: Table S4). We examined the presence of MPAs in the three ADHD-discordant MZ twin pairs in our sample. No major differences in the number or types of MPAs were noted within these twin pairs (Additional file 6: Table S6).
MPAs by zygosity
The number of MPAs within MZ twin pairs was highly correlated [Spearman correlation (rs) = .88, p < .001]. In contrast, no correlation was seen in the DZ pairs (rs = − .19, p = .676) (Fig. 2 and Additional file 7: Figure S1). MZ pairs had higher numbers of identical MPAs within pairs (Md = 4) compared to DZ pairs (Md = 1; z = − 2.764, p = .006). Additionally, we found that within MZ pairs, there was a smaller median difference in the specific MPAs present within pairs (Md = 2) compared to DZ pairs (Md = 4, z = − 1.066, p = .287).