Spontaneous rupture of the esophagus, also known as Boerhaave’s syndrome (BS), typically occurs after severe emesis as a highly morbid emergency condition [1]. BS accounts for about 15% of esophageal perforations, and the tears are usually located in lower third of the esophagus [2]. Contrast esophagram and computed tomography (CT) are sufficient for the diagnosis of BS.

Non-intubated video-assisted thoracoscopic surgery (VATS) can be utilized to avoid ventilation-associated adverse effects, which has been reported to be technically feasible and safe [3]. The major complications of non-intubated procedure include intraoperative hypoxia, hypercapnia, and cough.

To our knowledge, the onset of contralateral esophageal rupture after lung resection without lymph node dissection is rare. Herein we presented a case of BS following severe emesis after non-intubated lung surgery. Meanwhile, the current evidence regarding the safety of non-intubated/tubeless thoracic surgery was reviewed briefly.

Case presentation

The clinical data of the patient were treated anonymously for privacy concern. A 60-year-old previously healthy female non-smoker was admitted because the CT revealed a ground-glass nodule (GGN) about 0.5 cm in the left upper lobe (Fig. 1a). The serum neuron-specific enolase, cytokeratin-19 fragment, carcinoembryonic antigen, and squamous cell carcinoma were in normal range. After a preoperative workup, the patient was assigned to lung resection. Fast-track protocol was introduced. Preoperative three-dimensional CT angiography (3D-CTA) was established by OsiriX [4]; therefore, invasive labeling of the GGN by microcoil or hook-wire was avoided. Non-intubated uniportal VATS pulmonary wedge resection was performed under internal intercostal nerve block and targeted sedation [5, 6]. The operation time was 30 min, without obvious blood loss. Mediastinal lymph node sampling wasn’t performed because the frozen-section reported atypical adenomatous hyperplasia (AAH). Ultrasound-guided serratus anterior plane block (SAPB) using a bolus of 0.2% bupivacaine was utilized for postoperative analgesia.

Fig. 1
figure 1

The computed tomography images. a A nodule in the left upper lobe was indicated by arrow. b The right-sided hydropneumothorax. c The esophagus was healed

Next-day discharge was scheduled because air leak was not recorded. Postoperative pathological staining of the specimen confirmed the diagnosis of AAH. The patient complained of nausea and emesis about 3 h after the operation, which was alleviated gradually after intravenous ondansetron (4 mg, once). However, 6 h after the surgery, she developed sudden tachycardia, tachypnea, dyspnea and hypotension after oral feeding. Emergency CT revealed right-sided hydropneumothorax (Fig. 1b). The turbid, yellow fluid drained from the chest tube further confirmed the diagnosis of BS.

The patient refused a timely surgical intervention. Besides antibiotics and tube feeding, endoscopy-guided naso-leakage drainage of the pleural effusion was utilized, which had been reported to be effective to rinse vomica [7]. Finally, the esophagus was healed 40d after the treatment (Fig. 1c). During the 1-year follow up, tumor recurrence or metastasis was not recorded.

Discussion and conclusions

We identified a patient with BS after severe emesis following minimally invasive lung surgery. Severe emesis is a stressful complication of anesthesia or analgesia. A retrospective study presented 10 patients with esophageal perforation after emesis associated with large volume of food and alcohol intake [8]. Moreover, every perforation was longitudinal tears (about 1–4 cm), locating in the left lower-third of the esophagus. Then the authors hypothesized that esophageal perforation probably resulted from emesis through a pathophysiological reaction within the upper digestive tract. Furthermore, they proposed that BS should be defined as post-emetic esophageal perforation. Therefore, we concluded that the present BS was probably secondary to the uncontrolled emesis rather than the surgical procedure itself.

The incidence of post-discharge emesis after ambulatory surgery is approximately 30% [9]. Chest pain and emesis always suggest the onset of BS, but the patients don’t always present with typical clinical features. The major treatment options for BS were conservative, endoscopic and surgical approach; whereas the survival rate of the patients using these treatments was 75, 100 and 81%, respectively [10]. Surgery should be considered especially for those who are admitted within 24 h of perforation [11]. In addition, endoscopy also plays a role in the treatment of transmural defects [12], although an evidence-based recommendation is still lacking. Besides surgical and endoscopic interventions, naso-esophageal extraluminal drainage has been reported to be effective for the treatment of esophageal leaks and subsequent mediastinal abscess [13].

On the other hand, non-intubated thoracic surgery under minimal sedation with regional anaesthesia is useful to avoid nausea and emesis [14]. However, the evidence supporting non-intubated VATS as the preferred approach for lung surgery is still limited. Previous meta-analyses show that non-intubated procedures could attenuate surgery-related stress responses and decrease postoperative complications compared to intubated surgery [15, 16]. Moreover, for patients who are considered as high-risk under intubated general anesthesia due to their compromised lung function, non-intubated procedure could be considered [17]. A meta-analysis indicates that non-intubated VATS may be a better alternative to intubated surgery [18], although it requires extra vigilance to ensure the safety of the patients [19]. The disadvantages of non-intubated thoracic surgery include cough and poor maneuverability due to the movements of diaphragm and lung [20].

We searched PubMed, Web of Science, Scopus, Embase, Europe PMC, Cochrane Library and Google Scholar for randomized controlled trials (RCTs) up to June 2020 according to the PRISMA Protocol for updated evidence of nonintubated lung surgery. Key words in title or abstract include “non-intubated” or “tubeless” or “awake” and “pulmonary” or “lung” and “surgery”. Finally a total of 13 RCTs were obtained (Table 1), which covered 627 patients who underwent non-intubated or tubeless VATS. Among them, 11 (1.8%) morbidities due to gastrointestinal reactions were recorded. Based on these findings, non-intubated VATS is technically feasible and safe; however, the results should be interpreted with caution due to small samples in the trials and potential publication bias. Well-designed studies are warranted. The registered trials of non-intubated thoracic surgery were listed in Table 2, which might further elucidate the specific indications and contraindications of tubeless thoracic surgery.

Table 1 The reported randomized clinical trials regarding non-intubated thoracoscopic lung surgery
Table 2 The registered trials of non-intubated or tubeless thoracoscopic lung surgery

In summary, perioperative antiemetic with strict supervision should be considered as an indispensable item of fast-track thoracic surgery. Moreover, the occurrence of BS and a timely intervention should be kept in mind when the patients report chest distress after severe emesis following lung surgery.