Mechanical design
A computer-aided design software (SolidWorks®, Dassault Systèmes, France) was used to model the 3D architecture of the orthosis. Each individual part was printed with a polylactic acid (PLA) filament, which is easy to use and biodegradable. We used a fused deposition modeling (FDM)-based 3D printer (Moment2®, Moment Co., Ltd., Seoul, Korea). FDM is one of the most widely used manufacturing techniques in 3D printing and has advantages of being able to print products fast and at a low cost [20].
The designed orthosis consists of 3 parts: forearm cuff, hand, and finger ring parts (Fig. 1). The forearm cuff consists of 2 subparts, namely, a dorsal and a volar forearm splint. On the dorsal forearm splint, a linear motor (L12-30F-4®, IR Robot Co., Ltd., Korea), which can generate 30 Newton force with 41 mm stroke length, is mounted to control the wrist extension. The volar forearm splint stabilizes the wrist joint and is bound to the dorsal forearm splint with a velcro strap so that it can be adjusted to the participant’s forearm. The hand part wraps around the hand and anchored to the linear motor. Therefore, when the motor is activated, the wrist part is pulled toward the forearm, which makes the wrist extended. The finger ring parts are located in each phalange of the thumb, index and middle finger, and each volar side of finger ring is connected to the volar forearm splint by nylon thread. Cable guide structures were added to the volar side of each finger ring and hand part to route the nylon thread along the fingertip to the volar forearm splint. When the wrist is extended by the linear motor, the nylon thread tightens, which strengthens the tenodesis grip (Fig. 2). Thus, wrist extension leads to the simultaneous flexion of the interphalangeal and metacarpophalangeal joints of each finger including thumb. Therefore, when an object is placed in the user’s palm or between the fingers, the user can grasp the object by activating the linear motor. This is the key mechanism of orthosis that allows more people to use the device, including patients with high-level SCI who cannot control their wrists. The length of the nylon thread was adjusted so that the finger ring parts could be pulled sufficiently when the wrist is extended.
The handbreadth and circumference of each phalange were measured to make customized orthosis before printing the hand and finger ring parts. The handbreadth was defined as the distance across the palm of the hand at the metacarpal-phalangeal joints of the index to little finger [26]. Because the PLA filament is thermoplastic, all parts printed with the 3D printer were heated using torch gas and re-adjusted to the individual hand shape in detail. After re-adjustment, the self-adhesive pad was attached to the inside of the hand to prevent skin erosion. All mechanical joints were omitted in the orthosis and it was designed to use the patient’s own joint. The wrists of some patients with SCI are radially deviated by radial extensor innervated by C6, which interferes with the effectiveness of the conventional orthosis. By removing the artificial joints of the orthosis, the device can accommodate such a wrist deviation.
The total estimated cost of the developed orthosis is roughly $230 US (Table 1). This includes the price of all components needed to fabricate the orthosis, with the exception of the 3D printer. However, considering that the amount of filament required for each orthosis is estimated to be between 90 and 170 g, depending on its size, and only three surface electromyography (sEMG) electrodes are needed, thus the estimated price is expected to decrease further.
Table 1 Cost estimate for the developed orthosis Electronics of the orthosis
The developed myoelectric orthosis was invented to be operated by sEMG recorded in the user’s upper extremity muscles. The control unit was designed to operate the linear motor when the sEMG signal exceeded the preset threshold. To acquire accurate signals, the location of the sEMG electrodes was optimized according to the level of injury and subject’s convenience. We tried to determine appropriate muscles that were easily accessible and preserved after the SCI. In this experiment, either the ipsilateral biceps or the upper trapezius muscle was selected as the target, as all subjects were able to contract the muscles without difficulty. As a result, a pair of sEMG electrodes was located at either the ipsilateral biceps or the upper trapezius muscle depending on the convenience of the subjects. According to the guidelines of sEMG for the non-invasive assessment of muscles, a pair of electrodes was located on the most prominent bulge of the muscle belly and the inter-electrode distance was set as 2 cm [27]. A ground electrode was located at the olecranon of the dominant arm.
Before putting the orthosis on, the sEMG signal was processed. To maximize the quality of the signal, 1000-fold signal amplification was undertaken, and we removed background noise by applying a Sallen-Key band pass filter with 10–500 Hz. The root mean square (RMS) was selected as the parameter for controlling the linear motor because it is one of the most commonly used values in the analysis of EMG signals and is closely related to constant force and muscle contraction [28,29,30]. Figure 3 shows the raw sEMG signal and RMS for the sEMG signal in each situation. The on/off threshold was set to 80% of the maximal contraction level in RMS in order to distinguish signals from intended and unintended movements. However, the subjects were allowed to adjust the threshold level until they felt comfortable. By doing this, the threshold could be customized according to the users’ ability and injury status. The definition of the RMS can be expressed as follows.
$$ \mathrm{RMS}=\sqrt{\frac{1}{N}\sum \limits_{i=1}^N{X_i}^2} $$
Arduino (Arduino Mega 2560®, Arduino, Torino, Italy) was used as a microcontroller board. It has an analog input with 10 bits of resolution, and the sampling frequency was 1000 Hz. A 12 V rechargeable lithium-ion battery (F2600®, FAIRMAN Co., Kyonggi do, Korea) was used as a power source for the control unit and the linear motor. The control unit was designed to be as small as possible to maximize the portability. The size and weight of the control box were 10 cm × 5.3 cm × 1.7 cm and 81 g, respectively. The schematic of the control strategy is illustrated in Fig. 4.
Participants
A total of 10 participants with chronic cervical SCI (9 men, 1 woman; age range, 31–65 years) with stable disability were enrolled in the study (Table 2). They were recruited through the Korea Spinal Cord Injury Association from March 27th, 2019 to April 31st, 2019 on the basis of the following inclusion criteria: (1) age between 18 and 65 years, (2) at least 12 months after cervical SCI, (3) neurological level of injury from cervical 4 to 7 (C4 to C7) according to American Spinal Injury Association (ASIA) guideline, and (4) impairment of hand function due to SCI. Those who met 1 of the following criteria were excluded from the study: (1) a medical history of other coexisting neurological injuries (e.g, traumatic brain injury, stroke, or cerebral palsy), (2) severe hand deformity or spasticity (Modified Ashworth scale (MAS) ≥ 3) [32], (3) severe neuropathic pain on the upper extremity after the SCI, (4) severe orthostatic hypotension, (5) having unstable spinal fractures, (6) persistent other medical conditions (e.g, cardiopulmonary disease, or infection), or (7) pregnant women.
Table 2 Clinical characteristics of the study participants Prior to the study, participants were instructed regarding the experiment, and all provided written informed consent. The study was approved by the Clinical Research Information Service (KCT0003995) and Institutional Review Board of the Gwangju Institute of Science and Technology (20190327-HR-43-01-02).
Experiment procedure
Before the experiment, all the participants underwent thorough clinical examination by a physiatrist with many years of experience in this field. The motor and sensory function of the upper extremities along with the neurologic level of injury, according to the ASIA guidelines, were evaluated. Furthermore, spasticity of the dominant hand was evaluated using MAS.
The experiment was designed to compare the participant’s situation with and without the orthosis. Prior to donning the orthosis, participants underwent baseline measurements of hand function and functional independence in daily living. Baseline measurement without the orthosis might create a bias to the evaluation because it is not blinded. Accordingly, evaluating baseline conditions while wearing the orthosis with the motor being passive might be a better method. However, we decided to evaluate the baseline condition with their bare hands because it reflects the actual baseline hand function. Hand function of the dominant side was evaluated using the Toronto Rehabilitation Institute Hand Function Test (TRI-HFT) for the primary outcome measure [33]. This simple test was specially designed to evaluate the unilateral gross motor function of patients with C4 to C7 SCI using standardized objects that might be encountered in daily living. The TRI-HFT is known to be sensitive enough to assess the change in hand function under different conditions in patients with SCI. Therefore, many previous studies have used this assessment tool to prove the effectiveness of hand assistive devices or therapeutic interventions [33,34,35,36,37]. The test consists of 2 parts: the first part of the test evaluates the ability to manipulate objects with 10 standardized items, and the second part evaluates the strength of the grasp using 9 rectangular wooden blocks, an instrumented cylinder and credit card attached to a dynamometer, and wooden bar. The 9 wooden blocks of different weights and frictions are used to evaluate the strength and stability of grasp, while the three other items are used to measure the torque generated by palmar grasp, lateral pinch force, and eccentric load that the grasp could sustain, respectively. However, the latter tree items have not been validated yet and primarily focus on evaluating forces exerted by the motorized hand exoskeleton [33, 37]. Therefore, we evaluated the hand function using 10 items in the first part and 9 wooden blocks in the second part of the test. Each subset is scored on a scale of 0 to 7 based on the TRI-HFT criteria; therefore, the total maximum scores for the 2 parts was 133 points. There was no time limit in performing the task. Participants were allowed to terminate each task when they thought they had accomplished the task to the best of their capabilities. Furthermore, sufficient rest was allowed to minimize muscle fatigue. The whole assessment was recorded on video, and 2 independent observers scored the test according to the TRI-HFT guidelines to minimize observer bias. Sufficient discussion to achieve a consensus occurred between the observers if there were any difference in test scores.
For the secondary outcome, functional independence in daily living was evaluated using the Functional Independence Measure (FIM) self-care subscale, and the Spinal Cord Independence Measure (SCIM) III self-care subscale. The evaluation was undertaken by observation and interview. The FIM is the most widely used functional independence measurement tool and has been used in many rehabilitation communities. It assesses functional ability in 6 distinct areas (self-care, sphincter management, transfers, locomotion, communication, and social cognition) [38, 39]. Among them, we evaluated the FIM self-care subscale only (6 items, subscores 0–42) as this subscale is most likely to be affected by hand function. SCIM III, the second functional independence measurement tool, is the latest version of SCIM that is developed specifically for patients with SCI. It evaluates the ability of performance in activities of daily living (ADL) and is known to be the most sensitive, reliable, and valid measurement for individuals with SCI [40, 41]. The SCIM consists of 3 subscales, namely, self-care, respiration and sphincter management, and mobility. We only evaluated the self-care subscale (4 items, subscores 0–20), which is relevant to the hand function. Finally, the Korean-Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (K-QUEST 2.0) was used to evaluate a person’s satisfaction with several components of the orthosis [42, 43]. K-QUEST 2.0 is a 12-item outcome measurement tool rated on a 5-point satisfaction scale (range 1 to 5). It assesses user satisfaction in 2 aspects, device and services. We only surveyed with regard to device dimension, which consisted of 8 items.
After the baseline measurements, participants put the myoelectric orthosis on their dominant hand, and improvements in hand function and functional independence were evaluated using the same methods. After finishing the experiment, a careful observation was done to see if there were any side effects related to the experiment, including pressure ulcers. Since the participants had limitations with regard to independent walking due to SCI, the experiments were conducted at the Gwangju Spinal Cord Injury Association Center or the participants’ home, depending on what was more convenient for the participants.
Statistical analysis
All functional measurements, including TRI-HFT, FIM, and SCIM III, were evaluated in all participant. Non-parametric statistics were used as the sample size was small, and data did not show normal distribution in the Shapiro–Wilk test (p-value < 0.05). Therefore, the Wilcoxson signed-rank test was used to assess the improvement of total scores of functional measurements before and after wearing the orthosis. Additionally, the false discovery rate method was applied to control the multiple testing problem. All statistical analyses were conducted using MATLAB version 2017b (Mathworks, Inc.). For all tests, statistical significance was set at 0.05.