Schnorenberg AJ, Slavens BA, Wang M, Vogel LC, Smith PA, Harris GF. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility. J Biomech. 2014;47(1):269. https://doi.org/10.1016/j.jbiomech.2013.11.014.
Article
PubMed
Google Scholar
van der Woude LH, Veeger D, Dallmeijer AJ, Janssen TW, Rozendaal LA. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 2001;23(10):713–33. https://doi.org/10.1016/S1350-4533(01)00083-2.
CAS
Article
PubMed
Google Scholar
Vegter RJK, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer Jan W, Veeger Dirkjan HEJ. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion. J Neuroeng Rehabil. 2015;12. Retrieved from https://doi.org/10.1186/s12984-015-0017-5.
Article
Google Scholar
Bergamini E, Morelli F, Marchetti F, Vannozzi G, Polidori L, Paradisi F, Delussu, AS. Wheelchair propulsion biomechanics in junior basketball players: a method for the evaluation of the efficacy of a specific training program. BioMed Res Int. 2015;275965. Retrieved from https://doi.org/10.1155/2015/275965.
Article
Google Scholar
Leving M, Horemans H, Vegter R, de Groot S, Bussmann J, van der Woude L. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living. PLoS One. 2018;13(4):e0194864.
Article
Google Scholar
van der Slikke R, Berger M, Bregman D, Lagerberg A, Veeger H. Opportunities for measuring wheelchair kinematics in match settings: reliability of a three inertial sensor configuration. J Biomech. 2015;48:3398–405.
CAS
Article
Google Scholar
van der Slikke R, Berger M, Bregman D, Veeger H. From big data to rich data: the key features of athlete wheelchair mobility performance. J Biomech. 2016;49:3340–6.
CAS
Article
Google Scholar
van der Slikke R, Mason B, Berger M, Goosey-Tolfrey V. Speed profiles in wheelchair court sports: comparison of two methods for measuring wheelchair mobility performance. J Biomech. 2017;65:221–5.
CAS
Article
Google Scholar
van der Slikke R, Bregman D, Berger M, de Witte A, Veeger D. The future of classification in wheelchair sports: can data science and technological advancement offer an alternative point of view? Int J Sports Physiol Perform. 2018;13:742–9.
Article
Google Scholar
Dellabiancia F, Porcellini G, Merolla G. Instruments and techniques for the analysis of wheelchair propulsion and upper extremity involvement in patients with spinal cord injuries: current concept review. Muscles Ligaments Tendons J. 2013;3(3):150–6.
PubMed
PubMed Central
Google Scholar
Conger SA, Scott SN, Fitzhugh EC, Thompson DL, Bassett DR. Validity of physical activity monitors for estimating energy expenditure during wheelchair propulsion. J Phys Act Health. 2015;12(11):1520. Retrieved from https://doi.org/10.1123/jpah.2014-0376.
Article
Google Scholar
Kenny S, Gowran RJ. Outcome measures for wheelchair and seating provision: a critical appraisal. Br J Occup Ther. 2014;77(2):67–77. https://doi.org/10.4276/030802214X13916969447119.
Article
Google Scholar
Boninger M, Koontz A, Sisto S, Dyson-Hudson T, Chang M, Price R, Cooper R. Pushrim biomechanics and injury prevention in spinal cord injury: recommendations based on CULP-SCI investigations. J Rehabil Res Dev. 2005;42(3):9–20.
PubMed
Google Scholar
Bonnechère, B., Jansen, B., Salvia, P., Bouzahouene, H., Omelina, L., Moiseev, F., . . . Van Sint Jan, S. (2014). Validity and reliability of the kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture, 39(1), 593–598. doi:https://doi.org/10.1016/j.gaitpost.2013.09.018.
Article
PubMed
Google Scholar
Dutta T. Evaluation of the Kinect sensor for 3-D kinematic measurement in the workplace. Appl Ergon. 2012;43:645–9.
Article
Google Scholar
Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson's disease. Gait Posture. 2014;39(4):1062–8. https://doi.org/10.1016/j.gaitpost.2014.01.008.
Article
PubMed
Google Scholar
Otte K, Kayser B, Mansow-Model S, Verrel J, Paul F, Brandt AU, Schmitz-Hübsch T. Accuracy and reliability of the kinect version 2 for clinical measurement of motor function. PLoS One. 2016;11(11):e0166532. https://doi.org/10.1371/journal.pone.0166532.
CAS
Article
PubMed
PubMed Central
Google Scholar
van Diest M, Stegenga J, Wortche HJ, Postema K, Verkerke GJ, Lamoth CJC. Suitability of kinect for measuring whole body movement patterns during exergaming. J Biomech. 2014;47(12):2925–32. https://doi.org/10.1016/j.jbiomech.2014.07.017.
Article
PubMed
Google Scholar
Huber ME, Seitz AL, Leeser M, Sternad D. Validity and reliability of kinect skeleton for measuring shoulder joint angles: a feasibility study. Physiotherapy. 2015;101(4):389–93. https://doi.org/10.1016/j.physio.2015.02.002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park H, Kim K. Measurement of shoulder range of motion in patients with adhesive capsulitis using a kinect. PLoS One. 2015;10(6):e0129398. https://doi.org/10.1371/journal.pone.0129398.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mobini A, Behzadipour S, Saadat M. Test-retest reliability of kinect's measurements for the evaluation of upper body recovery of stroke patients. Biomed Eng Online. 2015;14:75 Retrieved from https://doi.org/10.1186/s12938-015-0070-0.
CAS
Article
Google Scholar
Rammer J, Krzak J, Riedel S, Harris G. Evaluation of upper extremity movement characteristics during standardized pediatric functional assessment with a Kinect®-based Markerless motion analysis system. IEEE Eng Med Biol Conf. 2014:2525–8. https://doi.org/10.1109/EMBC.2014.6944136.
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50. https://doi.org/10.1109/TBME.2007.901024.
Article
PubMed
Google Scholar
Holzbaur K, Murray W, Delp S. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 2005;33(6):829–40. https://doi.org/10.1007/s10439-005-3320-7.
Article
PubMed
Google Scholar
Saul K, Hu X, Goehler C, Vidt M, Daly M, Velisar A, Murray W. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin. 2014;18(13):1–14.
Google Scholar
DiGiovine CP, Cooper RA, Boninger ML. Dynamic calibration of a wheelchair dynamometer. J Rehabil Res Dev. 2001;38(1):41 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11322470.
CAS
PubMed
Google Scholar
Rammer J, Riedel S, Harris G. A portable, low-cost wheelchair ergometer design based on a mathematical model of pediatric wheelchair dynamics. In: Proceedings of 2015 Annual Meeting of the Rehabilitation Engineering and Assistive Technology Society of North America; 2015. p. 4.
Google Scholar
de Groot S, Vegter R, Vuijik C, van Dijk F, et al. WHEEL-I: development of a wheelchair propulsion laboratory for rehabilitation. J Rehabil Med. 2014;46:493–503.
Article
Google Scholar
Kwarciak A, Turner J, Guo L, Richter W. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion. Spinal Cord. 2011;49:457–62.
CAS
Article
Google Scholar
Rump S. Rigorous sensitivity analysis for systems of linear and nonlinear equations. Math Comput. 1990;54(190):721–36.
Article
Google Scholar
Autrique L, Lormel C. Numerical design of experiment for sensitivity analysis—application to skin burn injury prediction. IEEE Trans Biomed Eng. 2008;55(4):1279–90.
Article
Google Scholar
Fang X, Yang T. Regression methodology for sensitivity analysis of solar heating walls. Appl Therm Eng. 2008;28:2289–94.
CAS
Article
Google Scholar
Small D. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J Am Stat Assoc. 2007;102(49):1049–58.
CAS
Article
Google Scholar
Suchao X, Hongqi T. Influencing factors and sensitivity analysis of occupant impact injury in passenger compartment. Traffic Injury Prevention. 2013;14:816–22.
Article
Google Scholar
Tondel K, Vik J, Martens J, Indahl U, Smith N, Omholt S. Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models. Chemom Intell Lab Syst. 2013;120:25–41.
Article
Google Scholar
Rankin J, Richter W, Neptune R. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion. J Biomech. 2011;44:1246–52.
Article
Google Scholar
Vegter R, de Groot S, Lamoth C, Veeger D, van der Woude L. Initial skill acquisition of handrim wheelchair propulsion: a new perspective. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):104–13.
Article
Google Scholar
Hosseini SM, Oyster ML, Kirby RL, Harrington AL, Boninger ML. Manual wheelchair skills capacity predicts quality of life and community integration in persons with spinal cord injury. Arch Phys Med Rehabil. 2012;93(12):2237. https://doi.org/10.1016/j.apmr.2012.05.021.
Article
PubMed
Google Scholar
Best K, Kirby R, Smith C, MacLeod D. Wheelchair skills training for community-based manual wheelchair users: a randomized controlled trial. Arch Phys Med Rehabil. 2005;86:2316–24.
Article
Google Scholar
Mulroy SJ, Hatchett P, Eberly VJ, Haubert LL, Conners S, Requejo PS. Shoulder strength and physical activity predictors of shoulder pain in people with paraplegia from spinal injury: prospective cohort study. Phys Ther. 2015;95(7):1027–38. https://doi.org/10.2522/ptj.20130606.
Article
PubMed
PubMed Central
Google Scholar
Consortium for Spinal Cord Medicine. Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals; 2005. p. 48.
Google Scholar
Zwinkels, M. G. J., Verschuren, O. W., Janssen, T., Ketelaar, M., Takken, T., Backx, F. J. G., . . . Volman, M. (2014). Exercise training programs to improve hand rim wheelchair propulsion capacity: a systematic review. Clin Rehabil, 28(9), 847–861. doi:https://doi.org/10.1177/0269215514525181.
Article
PubMed
Google Scholar
Slowik J, Requejo P, Mulroy S, Neptune R. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress. J Biomech. 2016;49:1554–61.
Article
Google Scholar
Dallmeijer A, Kilkens O, Post M, de Groot S, Angenot E, van Asbeck F, van der Woude L. Hand-rim wheelchair propulsion capacity during rehabilitation of persons with spinal cord injury. J Rehabil Res Dev. 2005;42(3 Suppl 1):55 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16195963.
PubMed
Google Scholar
Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua Y. Concurrent validity of the microsoft kinect for assessment of spatiotemporal gait variables. J Biomech. 2013a;46(15):2722–5. https://doi.org/10.1016/j.jbiomech.2013.08.011.
Article
PubMed
Google Scholar
Clark RA, Pua Y, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL. Validity of the microsoft kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7. https://doi.org/10.1016/j.gaitpost.2012.03.033.
Article
PubMed
Google Scholar
Clark, R. A., Pua, Y., Oliveira, C. C., Bower, K. J., Thilarajah, S., McGaw, R., . . . Mentiplay, B. F. (2015a). Reliability and concurrent validity of the microsoft xbox one kinect for assessment of standing balance and postural control. Gait Posture, 42(2), 210–213. doi:https://doi.org/10.1016/j.gaitpost.2015.03.005.
Article
PubMed
Google Scholar
Clark, R. A., Vernon, S., Mentiplay, B. F., Miller, K. J., McGinley, J. L., Pua, Y. H., . . . Bower, K. J. (2015b). Instrumenting gait assessment using the kinect in people living with stroke: reliability and association with balance tests. J Neuroeng Rehabil, 12(1), 15. doi:https://doi.org/10.1186/s12984-015-0006-8.
Article
PubMed
PubMed Central
Google Scholar
Boninger M, Souza A, Cooper R, Fitzgerald S, Koontz A, Fay B. Propulsion patterns and Pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil. 2002;83:718–23.
Article
Google Scholar
Clark RA, Pua Y, Bryant AL, Hunt MA. Validity of the microsoft kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture. 2013b;38(4):1064–6. https://doi.org/10.1016/j.gaitpost.2013.03.029.
Article
PubMed
Google Scholar
de Groot S, Veeger H, Hollander A, van der Woude L. Consequence of feedback-based learning of effective hand rim wheelchair force production on mechanical efficiency. Clin Biomech. 2002;17:219–26.
CAS
Article
Google Scholar
de Groot S, de Bruin M, Noomen S, van der Woude L. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training. Clin Biomech. 2008;23:434–41.
CAS
Article
Google Scholar
Finley M, Rodgers M. Prevalence and identification of shoulder pathology in athletic and nonathletic wheelchair users with shoulder pain: a pilot study. J Rehabil Res Dev. 2004;38:395–402.
Article
Google Scholar
Gonzalez-Jorge H, Rodríguez-Gonzálvez P, Martínez-Sánchez J, González-Aguilera D, Arias P, Gesto M, Díaz-Vilariño L. Metrological comparison between kinect I and kinect II sensors. Measurement. 2015;70:21–6. https://doi.org/10.1016/j.measurement.2015.03.042.
Article
Google Scholar
Guo L, Kwarciak A, Rodriguez R, Sarkar N, Richter W. Validation of a biofeedback system for wheelchair propulsion training. Rehabil Res Pract. 2011;2011:590780 7p.
PubMed
PubMed Central
Google Scholar
Kertis JD, Fritz JM, Long JT, Harris GF. Static and dynamic calibration of an eight-camera optical system for human motion analysis. Crit Rev Phys Rehabil Med. 2010;22(1–4):49–60.
Article
Google Scholar
Knippenberg E, Verbrugghe J, Lamers I, Palmaers S, Timmermans A, Spooren A. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population, and efficacy. J NeuroEng Rehabil. 2017;14:61 11p.
Article
Google Scholar
Morrow M, Van Straaten M, Murthy N, Braman J, Zanella E, Zhao K. Detailed shoulder MRI findings in manual wheelchair users with shoulder pain. Biomed Res Int. 2014;2014:1–7.
Article
Google Scholar
Rankin J, Kwarciak A, Richter W, Neptune R. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech. 2012;27:879–86.
Article
Google Scholar
Rice I, Gagnon D, Gallagher J, Boninger M. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles. J Spinal Cord Med. 2010;33:33–42.
Article
Google Scholar
Rice I, Pohlig R, Gallagher J, Boninger M. Handrim wheelchair propulsion training effect on Overground propulsion using biomechanical real-time visual feedback. Arch Phys Med Rehabil. 2013;94:256–63.
Article
Google Scholar
Richter W, Kwarciak A, Guo L, Turner J. Effects of single-variable biofeedback on wheelchair Handrim biomechanics. Arch Phys Med Rehabil. 2011;92:572–7.
Article
Google Scholar
Rodgers M, Keyser R, Gardner E, Russell P, Gorman P. Influence of trunk flexion on biomechanics of wheelchair propulsion. J Rehabil Res Dev. 2000;37(3):283–95.
CAS
PubMed
Google Scholar
Sabick M, Korajarvi B, An K. A new method to quantify demand on the upper extremity during manual wheelchair propulsion. Arch Phys Med Rehabil. 2004;85:1151–9.
Article
Google Scholar
Veeger H, Rozendaal L, van der Helm F. Load on the shoulder in low-intensity wheelchair propulsion. Clin Biomech. 2002;17:211–8.
CAS
Article
Google Scholar
Wu G, van der Helm F, Veeger H, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna A, McQuade K, Wang X, Werner F, Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist, and hand. J Biomech. 2005;38:981–92.
CAS
Article
Google Scholar
Xu X, McGorry RW. The validity of the first and second generation microsoft kinect™ for identifying joint center locations during static postures. Appl Ergon. 2015;49:47–54. https://doi.org/10.1016/j.apergo.2015.01.005.
Article
PubMed
Google Scholar
Xu X, McGorry RW, Chou L, Lin J, Chang C. Accuracy of the microsoft kinect for measuring gait parameters during treadmill walking. Gait Posture. 2015;42(2):145–51. https://doi.org/10.1016/j.gaitpost.2015.05.002.
Article
PubMed
Google Scholar