Baseline characteristics of the study population
A total of 4047 children under 5 years were sampled and analyzed in this study. Baseline characteristics of the study population are presented in Table 1. Overall, approximately 39% of children were stunted, while 12 and 2% were underweight and wasted respectively. In terms of birth weight, a majority of children (about 90%) were born with normal and above weight. With regards to child biological and health-related factors, more than half (51%) of the children were female and a majority of them (97%) were the products of single births while 41% of children born between 24 and 47 month intervals. Furthermore, about 22 and 32% of children had diarrhea and fever episodes in the last 2 weeks respectively. In terms of maternal and household characteristics, approximately 29% of respondents were distributed in the age group 20–24 years, two-thirds had primary school education and a majority (75%), had a normal body mass index. Additionally, only 1% of the participants were exposed to all forms of media (newspaper, radio, and Television). With regards to household environmental and health service utilization factors, a majority of participants 84%, had access to an improved water source while nearly 80% had improved sanitation facilities. Similarly, a majority of participants (> 90%) had institutional delivery, whilst 59% had perceived the distance to the nearest health facility to a big problem. In terms of community characteristics, 46% of respondents were southern region dwellers and 92% were rural dwellers.
Prevalence of undernutrition according to sociodemographic factors
Table 1, also presents the prevalence of stunting, underweight, and wasting by sociodemographic characteristics. The prevalence of stunting was observed to be significantly high in children with a low birth weight, male children, in children aged 36–47 months, in children who were products of multiple births, in children whose proceeding birth intervals were less than 24 months, inn children whose mothers were 35–49 years, in children whose mothers had no formal education, in children whose mothers had BMI less than 18.5 kg/m2, in children who were residing in the poorest households, in children whose households had ≥4 under-five children, in children whose households were not exposed to mass media, form in children whose households had no access to improved water sources, in children from rural areas, and in children from central region.
With respect to underweight, the prevalence was observed to be significant high in children with a low birthweight, in children aged 36–47 months, in children whose mothers had no formal education, in children whose mothers had BMI less than 18.5 kg/m2, in children who were residing in the poorest households, in children whose households had ≥4 under-five children, in children whose households were not exposed to mass media, and in children who delivered occurred in homes and other places.
In terms of wasting, the prevalence was observed to be significant high in children with a low birthweight, in children aged 6–11 months, in children with an episode of fever in the last 2 weeks, in children with an episode of diarrhea in the last 2 weeks, in children whose mothers had BMI less than 18.5 kg/m2, in children whose households had ≥4 under-five children, and in children from rural areas.
Low birthweight and the risk of childhood undernutrition
Tables 2, 3 and 4 present the association of the LBW with childhood undernutrition. The unadjusted models (Model 1) showed that compared to children who had normal birth weight those with LBW had an increased odds of being stunted (Crude odds ratio [CrOR]:1.72; 95% confidence interval [CI]: 1.35–2.20), of being underweight (CrOR: 2.30; 95% CI: 1.68–3.14), and, of being wasted (CrOR: 2.42; 95% CI: 1.38–4.25). The associations remain unchanged even after adjustments for the child’s biological factors (Model 2), child’s health factors (Model 3), maternal or household factors (Model 4), household environmental factors (Model 5), and health service utilization (Model 6) though with varying strength of odd ratios. The full models (Model 7) showed that the odds increased by 55% for being stunted (adjusted odds ratio [aOR]: 1.55; 95% CI: 1.91–2.01), 16% for being underweight (aOR: 2.16; 95% CI: 1.56–2.99), and 51% for being wasted (aOR: 2.53; 95% CI: 1.40–4.57) in children who had LBW compared to those children who were born with normal weight.
Table 2 Multivariate logistic analysis of the association of low birthweight with childhood stunting while controlling for several covariates
Table 3 Multivariate logistic analysis of the association of low birthweight with childhood underweight while controlling for several covariates
Table 4 Multivariate logistic analysis of the association of low birthweight with childhood wasted while controlling for several covariates