Abstract
Background
Biological control is a promising alternative or complementary approach for controlling vector populations in response to the spread of insecticide resistance in malaria vectors. This study evaluated the efficacy of three selected potential predators on the density and fitness parameters of Anopheles funestus larvae in rural Tanzania.
Methods
Common predator families Aeshnidae (dragonflies), Coenagrionidae (damselflies), and Notonectidae (backswimmers) and An. funestus group larvae were collected from natural aquatic habitats in rural south-eastern Tanzania. Predators were starved for 12-h while An. funestus larvae were given fish food before starting the experiment. Anopheles funestus larvae were placed into artificial habitats containing predators, exposing them to potential predation. The number of surviving An. funestus larvae were counted every 24-h. An emergence traps were placed at the top of artificial habitats to capture emerging mosquitoes. Emerged mosquitoes were monitored until they died. Female wings were measured and used as a proxy for body size. Generalized linear mixed models (GLMM) with binomial variates at 95% CI and Cox proportional hazard models were used to assess the proportion of dead mosquitoes and the daily survival determined.
Results
There were significant differences in the number of emerged mosquitoes between the treatment and control groups (P < 0.001). Thus, all predator species played a significant role in reducing the density of An. funestus mosquitoes (P < 0.001). Furthermore, these predators had notable effects on the fitness parameters and survival of emerged mosquitoes (P < 0.001). Among the three predators studied, Coenagrionidae (damselflies) were most efficient followed by Notonectidae (backswimmers), with Aeshnidae (dragonflies) being the least efficient.
Conclusion
Selected aquatic predators have the potential to reduce the survival and density of An. funestus larvae. They might eventually be included within an integrated malaria vector control strategy, ultimately leading to a reduction in malaria transmission.
Similar content being viewed by others
Background
Despite significant efforts made to reduce its burden, malaria continues to be one of the major public health challenges in Africa [1]. For example, there were 247 million malaria cases and 619,000 deaths globally, with sub-Saharan Africa contributing to about 95% and 96% of these cases and deaths, respectively [2]. Though the core vector control tools, insecticide-treated nets (ITNs), indoor residual spraying (IRS) and effective diagnosis and treatment have significantly reduced malaria cases and deaths across Africa since 2001 [3], the previous World Malaria report shows that transmission has stalled due to major control limitations associated with COVID-19 disruptions [4], insecticide resistance [5], behaviour change in mosquitoes [6], as well as human behaviour and activities [7, 8]. Due to these challenges, achieving malaria elimination will be difficult unless additional methods are developed that complement existing interventions [9].
Biological control of mosquitoes is recognized as one of the best approaches for controlling malaria vectors in endemic countries [5, 10, 11]. Different aquatic invertebrate predators including, Aeshnidae (dragonflies) [12,13,14], Notonectidae (backswimmers) [12,13,14] and Dytiscidae (predaceous diving beetles) [13,14,15,16], Coenagrionidae (damselflies) [13, 14], Belostomatidae (giant water bugs) [14], Corixidae (water boatmen) [14], Ranidae (tadpole) [14], Nepidae (water scorpions) [13, 14] were found to coexist with mosquito larvae in their aquatic habitats. Thus, malaria control interventions leveraging the interaction between mosquito larvae and aquatic predators might be established to reduce the survival of the larvae of malaria vectors, in particular Anopheles funestus, and eventually reduce malaria transmission [14].
Kweka et al. found evidence that natural predators in the aquatic habitats of Anopheles gambiae sensu lato (s.l.) could control populations and reduce malaria transmission in the highlands of western Kenya [16]. Other studies elsewhere have documented the efficiency of predators in controlling various mosquito species, such as Aedes aegypti [17] and Culex quinquefasciatus [18]. However, the studies did not address the effects of predators in areas where An. funestus is the predominant malaria vector, such as the Kilombero Valley, where it contributes to more than 85% of malaria transmission [19,20,21].
Thus, it remains unknown whether the same predation efficiency observed for other mosquito species would be observed for An. funestus [16,17,18]. Such information would be important in tackling the challenges associated with chemical-based interventions [11]. Therefore, this study aimed to evaluate the impact of three common predators recently identified in An. funestus aquatic habitats in rural southern Tanzania [14]. Specifically, this study assess the impacts of aquatic predators on (i) larval and adult An. funestus density and (ii) fitness traits of An. funestus mosquitoes (wing size, larval and adult survivals) in a semi-field system.
Methods
Study area
The study was conducted at between June to November 2022, in a semi-field system facility known as ‘mosquito city’ [22], located at Kining’ina village in south eastern Tanzania. The semi-field system consists of three-chambered large screened-enclosures, measuring 28.8 m by 21 m, with walls made of UV-resistant shade netting, and a polyethylene roof mounted on a raised concrete platform [22]. This study used two chambers of this facility, each measuring 28.8 m by 7 m (Fig. 1). In addition, this large semi-field system has self-sustaining colonies of malaria vectors, experimental huts and vegetation to mimic natural environments. Aquatic predators and An. funestus larvae were collected from five villages in Kilombero and Ulanga districts Fig. 2; Itete (− 8.400°, 36.2506°), Tulizamoyo (− 8.35447°, 36.70546°), Minepa (− 8.2551°, 36.6839°), Ikwambi (− 7.97927°, 36.81630°), and Kisawasawa (− 7.89657°, 36.88058°). These villages were found to have both permanent and temporary water bodies including river stream, swamp, grounded pool. Water bodies from these villages were previously identified as harbouring common aquatic predators [14]. The area has received LLINs since the inception of distribution campaigns including the Tanzania National Voucher Scheme (TNVS) in 2004, mass distribution campaigns, Universal Coverage Campaigns (UCC) and School Net Programme (SNP) [23]. Previous studies in the area have mainly focused on characterizing An. funestus aquatic habitats [24], and identifying the common predators and factors influencing their abundance [14]. However, the interaction between An. funestus and these predators in their aquatic habitats is poorly understood.
Predators and mosquito larvae collection
Predators were collected from natural An. funestus aquatic habitats using 10-L buckets and aquatic nets while An. funestus larvae were collected using 10-L buckets and pipettes as described by Mahenge et al. [14] and Nambunga et al. [24]. Both predators and An. funestus were transferred to buckets with water from their natural habitats and transported to the semi-field. In this experiment, only three predator families were collected, namely Aeshnidae (dragonflies), Coenagrionidae (damselflies), and Notonectidae (backswimmers). To avoid cannibalism between predators, each predator family was placed in a separate bucket. The An. funestus larvae were also placed in a separate bucket to prevent early predation. In the semi-field, An. funestus larvae were given fish food while predators were starved for 12-h as described by Kweka et al. [16], then were introduced into the artificial habitats.
Preliminary evaluation within 24-h in a semi-field system to determine the appropriate larval instar stage for use in the study
A preliminary evaluation was performed in order to determine the larval instar stage that would be used in an experiment. Each predator family was assessed first for its preference and efficacy on all larval instars. This preliminary assessment identified the most suitable larval instar stage for the subsequent investigation. During the evaluation, all three-predator families were found to consume An. funestus larvae. In comparison to other larval instars, third larval instars were mostly consumed by all predators after 24-h of evaluation. Therefore, third instar larvae were used in all experiments in a semi-field.
Experimental design in the semi-field and 24-h evaluation
Experiments were conducted in one habitat type which contained stone, 2 kg of sand and grass (Fig. 4a) which mimicked hiding structures found in natural habitats for An. funestus larvae against predators [16]. Five litres of water from the natural breeding habitats, 2 kg of soil, aquatic predators and the third instar of An. funestus larvae. The evaluation was taken after every 24-h in semi-field experiments.
In this experiment, three different predators were evaluated against a control (An. funestus larvae without predators). Four groups with different densities of predators were created to evaluate the effect of predatory density on different fitness traits of An. funestus. Different numbers of each predator type were placed in each group (i.e., 20, 15, 10 and 5). In each group a constant number of 100 An. funestus larvae were placed and another 100 An. funestus larvae were placed in the control arm. Each experimental group had three replicates. In all groups, the number of surviving larvae was counted and recorded every 24-h. This experiment is summarized in Fig. 3.
The remaining mosquito larvae were monitored until pupation, and then an emergence trap captured the emerging mosquitoes (Fig. 4b). The number of emerged mosquitoes in each group was recorded.
Assessing the survival of adult mosquitoes
All mosquitoes emerged from both the treatment and control groups were transferred into 15 × 15 cm cages. They were then provided with 10% glucose solution-soaked cotton wool and their mortality was recorded every 24-h until all the mosquitoes had died.
Assessing mosquito body size
Dead female mosquitoes were removed from the cages for wing measurement. A single wing of from each mosquito was placed on the microscope slide and a drop of distilled water was used for sticking it to the slide. Wing length was measured, using a micrometre ruler under a microscope, from the alula notch to the wing tip following procedures described by Lyimo et al. [25]. Wing length measurements were used as a proxy for mosquito body size.
Statistical analysis
Assessing the impact of aquatic predators on An. funestus larval and adult density
Data were analysed using open source software R version 4.2.2 [26]. Generalized linear mixed model (GLMM) [27] with binomial variates was used to (i) estimate the Odds ratio and the absolute proportion of the number of larvae alive in each predator type, (ii) to assess the emergence rate of mosquitoes. The number of larvae alive and emerged mosquitoes in the artificial habitats was first assed in a group and later assessed individually. Results were presented as Odds Ratio (OR) with their corresponding 95% CI. Statistical significance was considered when P-value < 0.05. All plots were produced using ggplot2 package [28]. The efficacy of each predator family was calculated as follows:
where “control” is the number of larvae alive in a habitat without predators, “treatment” is the number of larvae alive in habitats with predators.
Assessing the impact of aquatic predation on fitness traits of An. funestus mosquitoes (wing size and adult survivals)
Survival analysis was done using the Cox proportional hazard model using the survival package [29] to assess the odds of mortality for emerged mosquitoes (both males and females) for each predator type. The response variable was the observed time. Graphs were produced by suveminer package from a Kaplan Meir survival model [30]. Post-Hoc tests using the Tukey Honest Significance Difference (THSD) was used to assess in the mean differences in wing size of mosquitoes emerged from different predators and the control.
Results
Impact of predators on larvae and adult density
The predation impact of the three predator families varied significantly in both treatment and control (P < 0.001, Table 1, Fig. 5). The proportion of larvae alive was high in habitats with a small number of Notonectidae (backswimmers) and Coenagrionidae (damselflies) (P < 0.001, Table 2, Fig. 6). Contrarily, Aeshnidae (dragonflies), larval survival was high in treatments with a high number of predators and low in habitats with a low number of predators (P < 0.001, Table 2, Fig. 6).
Impact of predators on the adult’s density
There were significant differences in the emerged mosquitoes from the treatment group and the control group (P < 0.001, Table 3, Fig. 7). Moreover, the proportion of mosquitoes that emerged from the habitat containing Coenagrionidae (damselflies) was lower compared to those that emerged from the other predators (P < 0.001, Table 3, Fig. 7).
Assessing the impact of predators on the fitness parameters of the mosquitoes (wing size, survival and fecundity)
Survival time of emerged mosquitoes
Cox regression analysis showed a significant difference between the median survival of mosquitoes that emerged from the control group and those that emerged from all treatment groups (i.e., their larvae were exposed to Coenagrionidae (damselflies), Notonectidae (backswimmers) and Aeshnidae (dragonflies). The analysis showed that An. funestus mosquitoes emerged from Coenagrionidae (damselflies) were seventeen times more likely to die earlier [HR = 17.31 (95% CI 6.24, 48.02), P < 0.001] compared to the control group. Those exposed to Notonectidae (backswimmers) and Aeshnidae (dragonflies) were 2.82 [HR = 2.82 (1.70, 4.66), P < 0.001] and 1.88 [HR = 1.88 (1.19, 2.97), P < 0.001] times more likely to die compared to the control group respectively (Table 4, Fig. 8). In addition, there was no significant difference between the survival of male and female mosquitoes emerged from different predator types (P > 0.05, Table 5, Figs. 9 and 10). Overall, mosquitoes in the control group took a median of 12 (95% CI 11–15) days to die while those exposed to predators took less than 10 days (P-value < 0.001, Table 4).
Mosquito body size
A Tukey’s post hoc test showed that the An. funestus mean wings size varied significantly between the groups i.e., treatment (with different predators’ families) and the control (P < 0.05, Table 6, Figs. 11 and 12), while there was no difference in wing size in mosquitoes emerged from Notonectidae (backswimmers), Coenagrionidae (damselflies) and Aeshnidae (dragonflies) treatments (P > 0.05, Figs. 11 and 12).
Discussion
This is the first study which assesses the impact of predators on larval and adult density as well as on the fitness characteristics of An. funestus. Coenagrionidae (damselflies) and Notonectidae (backswimmers) were more efficient predators of An. funestus than Aeshnidae (dragonflies). Similarly, studies reported the efficiency of Notonectidae (backswimmers) on other mosquito species [16, 31]. Earlier study reported the direct impact of aquatic predators on An. gambiae larvae and the number of eggs laid by adult An. gambiae mosquitoes [32].
Using an epidemiological model, Roux et al. [33] demonstrated that the trait alteration by larval predation stress can decrease malaria transmission. This is primarily attributed to lower fecundity and longevity, which are important factors of the mosquitoes’ vectorial capacity. Additionally, other studies have suggested that the direct and indirect effects of predators on vector life-history traits and consequently on mosquito vectorial capacity and consequently, the transmission of pathogens [34, 35].
In recent years, Aeshnidae (dragonflies) have been shown to be efficient in reducing An. arabiensis [36] and Aedes aegypti [37]. The current study tested their efficacy on An. funestus larvae and found them to be the least efficient when compared to other predators tested Coenagrionidae (damselflies) and Notonectidae (backswimmers). This findings corroborate with Kweka et al., on An. gambiae, which demonstrated that Aeshnidae (dragonflies) were inefficient when compared to Notonectidae (backswimmers) and other predators evaluated together [16]. This could be due to differences in eating preferences and hunting modes among predator species, though it is difficult to determine this, because the current study did not morphologically identify these predators into species level.
During the preliminary assessment, it was observed that all predators significantly consumed An. funestus larvae of intermediate size (instar 3), while showing less interest in small instars (Instar 1 and Instar 2) and larger larvae (Instar 4). These findings align with previous studies conducted on various mosquito species in different settings [16, 35, 38, 39]. The selection of larvae instar 3 could potentially be attributed to the challenges predators face in handling the other instar sizes particularly very small and larger ones. In the semi-field experiment, daily and overall predation rates (consumption, pupation rate, emergence and adult survival rate) varied depending on predator families and densities. The rates of consumption varied among predators during the 24-h of evaluation. Consumption was higher in habitats with a higher number of predators of Coenagrionidae (damselflies) and Notonectidae (backswimmers). On the other hand, Aeshnidae (dragonflies) consumption rate was highest in habitats with a small number of these predators. This could be due to higher inter-species competition in habitats with a higher number of Aeshnidae (dragonflies) than in habitats with a lower number. Therefore, this may increase the rate of consumption in lower numbers of Aeshnidae (dragonflies). Among the evaluated predators, Coenagrionidae (damselflies) had the greatest impact on An. funestus larvae in terms of consumption rate, emergence, adult mosquito survival, and wing size. The number of mosquitoes that emerged was lower in Coenagrionidae (damselflies) than in Notonectidae (backswimmers) and Aeshnidae (dragonflies) treatments. In general, there is a significant difference in the number of mosquitoes emerging in predators versus control.
Overall, all mosquito larvae exposed to aquatic predators had a lower adult survival rate, but among all emerged mosquitoes, only that emerged from Coenagrionidae (damselflies) died earlier than those that emerged from Notonectidae (backswimmers) and Aeshnidae (dragonflies). This could be because each predator has a different mode of action on mosquito larvae and different feeding behaviour. Nevertheless, when comparing the effects of all three predators on survival of adult male and female mosquitoes there was no significant difference. This indicates that, predators have an equal likelihood of affecting both males and females An. funestus, hence positive impact on malaria vector reduction.
One advantage of using biological control methods is that they can target mosquito species at low densities, with no impact on non-targeted organisms. Also, it is easy to implement in the field [40]. However, before introducing or implementing these predators as a bio-control of An. funestus mosquito larvae, it is important to understand their ecological implications because these could result in other negative impacts on the ecosystem if it is not well assessed.
This study effectively assessed the impact of aquatic predators on the An. funestus larval density and the impact of predation on the fitness parameters (body size and adult survival). However, the current study fails to assess the predation impact on fecundity. Therefore, rigorous and robust experiments should be done to assess the impacts of predators on the fitness parameters of adult mosquitoes including the fecundity. Another potential limitation of this study is the lack of assessment of the interaction of multiple predators on An. funestus larvae. In the natural aquatic environments, it is common for multiple predator species to coexist, and their combined effect on prey populations can differ from the individual effects of each predator. This study did not consider the potential interactions between different predator species; thus, this study may have overlooked important factors that could influence the population dynamics of An. funestus larvae. Also, in the semi-field system, the 5 L artificial habitat which is different from the large habitat, sand, grass and stones were added to mimic the natural aquatic habitat of An. funestus and predators. It is recognized that larger aquatic habitats might offer An. funestus larvae greater opportunities to avoid predation due to increased space and potentially diverse habitat structures.
The current study focused solely on third instar larvae and small aquatic habitats, this might not represent the full range of the larval stages of An. funestus and their natural habitats. Since the predation dynamics can vary with different instars, and size of the habitats larvae’s ability to escape or hide from predators. Future research may investigate a broader range of larval instars and consider using larger water bodies to better represent natural conditions. This would provide a more comprehensive understanding of predator–prey relationships across different life stages in a natural environment. Additionally, the study did not assess the impacts of predators throughout different seasons. Environmental conditions, such as temperature, precipitation, and resource availability, can vary significantly throughout the year, affecting both predator and prey populations. Predators may exhibit different behaviour and prey preferences in different seasons, which could impact the population dynamics of An. funestus larvae. It is important for further studies to consider these seasonal variations so as to draw comprehensive conclusions about the long-term effects of predators on An. funestus larvae.
Conclusion
This study shows that overall predation impact of the evaluated predators was high, and all three predators were able to reduce the larval and adult density of An. funestus mosquitoes. Additionally, these predators significantly reduced the emergence rate and affected the fitness traits of emerged An. funestus mosquitoes, including the survival and wings size. Furthermore, the findings of this study provide valuable insights relevant for understanding the effectiveness of these predators against An. funestus larvae and can be used as baseline for future studies in the natural aquatic environments in rural-Tanzania and other regions with comparable eco-epidemiological conditions.
Availability of data and materials
All data for this study will be available upon request.
References
Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt M, Phiri KS. Prevention efforts for malaria. Curr Trop Med Rep. 2018;5:41–50.
WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
Loha E, Deressa W, Gari T, Balkew M, Kenea O, Solomon T, et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia. Malar J. 2019;18:141.
WHO. Malaria fact sheet. Geneva: World Health Organization; 2021. https://www.who.int/news-room/fact-sheets.
Eba K, Duchateau L, Olkeba BK, Boets P, Bedada D, Goethals PLM, et al. Bio-control of anopheles mosquito larvae using invertebrate predators to support human health programs in Ethiopia. Int J Environ Res Public Health. 2021;18:1810.
Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J. 2014;13:97.
Barreaux AMG, Oumbouke WA, Brou N, Tia IZ, Ahoua Alou LP, Doudou DT, et al. The role of human and mosquito behaviour in the efficacy of a house-based intervention: lethal house lure for malaria mosquitoes. Philos Trans R Soc B Biol Sci. 2021;376:20190815.
Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14: e0217414.
Kelly GC, Tanner M, Vallely A, Clements A. Malaria elimination: moving forward with spatial decision support systems. Trends Parasitol. 2012;28:297–304.
Kamareddine L. The biological control of the malaria vector. Toxins. 2012;4:748–67.
Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: past, present, and future. Insects. 2016;7:52.
Mandal SK, Ghosh A, Bhattacharjee I, Chandra G. Biocontrol efficiency of odonate nymphs against larvae of the mosquito, Culex quinquefasciatus Say, 1823. Acta Trop. 2008;106:109–14.
Onen H, Odong R, Chemurot M, Tripet F, Kayondo JK. Predatory and competitive interaction in Anopheles gambiae sensu lato larval breeding habitats in selected villages of central Uganda. Parasit Vectors. 2021;14:420.
Mahenge HH, Muyaga LL, Nkya JD, Kifungo KS, Kahamba NF, Ngowo HS, et al. Common predators and factors influencing their abundance in Anopheles funestus aquatic habitats in rural south-eastern Tanzania. PLoS ONE. 2023;18: e0287655.
Chandra G, Mandal SK, Ghosh AK, Das D, Banerjee SS, Chakraborty S. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae). BMC Infect Dis. 2008;8:138.
Kweka EJ, Zhou G, Gilbreath TM, Afrane Y, Nyindo M, Githeko AK, et al. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasit Vectors. 2011;4:128.
Sivagnaname N. A novel method of controlling a dengue mosquito vector, Aedes aegypti (Diptera: Culicidae) using an aquatic mosquito predator, Diplonychus indicus (Hemiptera: Belostomatidae) in tyres. Dengue Bull. 2009;33:148–60.
Saha N, Aditya G, Bal A, Saha GK. A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae. Limnology. 2007;8:73–80.
Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania. PLoS ONE. 2017;12: e0177807.
Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.
Mapua SA, Hape EE, Kihonda J, Bwanary H, Kifungo K, Kilalangongono M, et al. Persistently high proportions of Plasmodium-infected Anopheles funestus mosquitoes in two villages in the Kilombero valley, South-Eastern Tanzania. Parasite Epidemiol Control. 2022;18: e00264.
Ferguson HM, Ng’habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, et al. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008;7:158.
Pamungkas FZ, Sunarko BS, Trihartono A. The past is the future: learning from Tanzania in securitizing and combating malaria endemic as a national security issue. IOP Conf Ser Earth Environ Sci. 2019;243: 012148. https://doi.org/10.1088/1755-1315/243/1/012148.
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 2020;19:219.
Lyimo EO, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.
R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2022. p. 409. https://doi.org/10.1007/978-3-540-74686-7.
Bates D. lme4: linear mixed-effects models using S4 classes. https://cran.r-project.org/web/packages/lme4/index.html. 2010.
Wickham H. Data analysis BT—ggplot2: elegant graphics for data analysis. In: Wickham H, editor. Elegant Graphics for Data Analysis. Cham: Springer International Publishing; 2016. p. 189–201.
Therneau T. A package for survival analysis in R; version 3.2-11. 2022. https://CRAN.R-project.org/package=survival.
Kassambara A, Kosinski M, Biecek P, Fabian S. survminer: drawing survival curves using ‘ggplot2.’ R Packag version 03. 2017;1.
Ohba S-Y, Kawada H, Dida GO, Juma D, Sonye G, Minakawa N, et al. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in Wetlands, western Kenya: confirmation by polymerase chain reaction method. J Med Entomol. 2010;47:783–7.
Munga S, Minakawa N, Zhou G, Barrack O-OJ, Githeko AK, Yan G. Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. J Med Entomol. 2006;43:221–4.
Roux O, Vantaux A, Roche B, Yameogo KB, Dabiré KR, Diabaté A, et al. Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proc Biol Sci. 2015;282:20152430.
Roux O, Robert V. Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service? Parasit Vectors. 2019;12:217.
Ong’Wen F, Onyango PO, Bukhari T. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Parasit Vectors. 2020;13:43.
Gouagna LC, Rakotondranary M, Boyer S, Lempérière G, Dehecq JS, Fontenille D. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats. Parasit Vectors. 2012;5:96.
Samanmali C, Udayanga L, Ranathunge T, Perera SJ, Hapugoda M, Weliwitiya C. Larvicidal potential of five selected dragonfly nymphs in Sri Lanka over Aedes aegypti (Linnaeus) larvae under laboratory settings. Biomed Res Int. 2018;2018:8759459.
Kesavaraju B, Alto BW, Lounibos LP, Juliano SA. Behavioural responses of larval container mosquitoes to a size-selective predator. Ecol Entomol. 2007;32:262–72.
Kesavaraju B, Juliano SA. Behavioral responses of Aedes albopictus to a predator are correlated with size-dependent risk of predation. Ann Entomol Soc Am. 2008;101:1150–3.
Walker K, Lynch M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007;21:2–21.
Acknowledgements
We would like to give a great appreciation to local leader and community member of Ulanga and Kilombero villages for their cooperation during data collection period. Our sincere gratitude and great appreciation go to Outdoor Mosquito Control (OMC) research team members for providing technical and logistical assistance during the study period and Semi-field activities. Special thanks to Dr. Jacques Derek Charlwood for reviewing and providing comments on this manuscript. We thank Mr. Lameck Simba for their assistance in setting up the experiment and data collection in the semi field system. Also, thanks to Mr. Gerald Tamayamali, Mr. Sharifu Mpandule, Mr. Isack Moshi, Mr. Richard Lumuli, Mr. Karimu Mchwembo, Mr. Godian Seleman, Mr. Swedi Ngajuma, and Mr. Athuman Ngayambwa for their assistance in predators and mosquitoes larvae collection from their natural aquatic habitats.
Funding
The study was financially supported by the Ifakara Health Institute Training Unit awarded to HHM as a part of the MSc studentship award (Ref.# IHI/TC/BAG/2021/146), together with Consortium for Advanced Research Training in Africa (CARTA) awarded to EWK. CARTA is jointly led by the African by the Carnegie Corporation of New York (Grant No. G-19-57145), Sida (Grant No. 54100113), Uppsala Monitoring Center, Norwegian Agency for Development Cooperation (Norad), and by the Wellcome Trust [reference no. 107768/Z/15/Z] and the UK Foreign, Commonwealth & Development Office, with support from the Developing Excellence in Leadership, Training and Science in Africa (DELTAS Africa) programme. EWK was also funded by National Institute for Health Research: NIHR–Wellcome Trust Partnership for Global Health Research International Training Fellowship (Grant Number: 216448/Z/19/Z). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
HHM, HSN and EWK conceived the study. HHM, NFK, HSN and EWK organized the field work. HHM, JDK and ADK performed data collection. HHM, LLM and HSN analysed the data. HHM wrote the first draft of the manuscript. JDK, LLM, YAM, NFK, HSN and EWK reviewed the manuscript. HHM, HSN and EWK reviewed the manuscripts and provided supervision throughout. All authors reviewed and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Ethical approval for this study was obtained from the institutional review board of Ifakara Health Institute (Ref: IHI/IRB/No: 13-2022) and from the Medical Research Coordinating Committee (MRCC) at the National Institute for Medical Research (NIMR) (Ref: NIMR/HQ/R.8a/Vol. IX/3353). The consent of publication this manuscript was obtained from the National Institute for Medical Research (NIMR) (Ref. No. BD.242/437/01/23). Written permission to conduct study was obtained from local leaders in each village whereby the purpose, procedure and benefits of the study were clearly explained. Verbal and written informed consents were obtained from community members who assisted to sample aquatic predators and mosquito larvae.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mahenge, H.H., Muyaga, L.L., Nkya, J.D. et al. Semi-field evaluation of aquatic predators for the control of Anopheles funestus in rural south-eastern Tanzania. Malar J 23, 228 (2024). https://doi.org/10.1186/s12936-024-05055-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s12936-024-05055-1