Barmada S, Piccardo P, Yamaguchi K, Ghetti B, Harris DA. GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol Dis. 2004;16(3):527–37. https://doi.org/10.1016/j.nbd.2004.05.005.
CAS
Article
PubMed
Google Scholar
Moser M, Colello RJ, Pott U, Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron. 1995;14(3):509–17. https://doi.org/10.1016/0896-6273(95)90307-0.
CAS
Article
PubMed
Google Scholar
Adle-Biassette H, Verney C, Peoc'h K, Dauge MC, Razavi F, Choudat L, et al. Immunohistochemical expression of prion protein (PrPC) in the human forebrain during development. J Neuropathol Exp Neurol. 2006;65(7):698–706. https://doi.org/10.1097/01.jnen.0000228137.10531.72.
CAS
Article
PubMed
Google Scholar
Tremblay P, Bouzamondo-Bernstein E, Heinrich C, Prusiner SB, DeArmond SJ. Developmental expression of PrP in the post-implantation embryo. Brain Res. 2007;1139:60–7. https://doi.org/10.1016/j.brainres.2006.12.055.
CAS
Article
PubMed
Google Scholar
Bailly Y, Haeberle AM, Blanquet-Grossard F, Chasserot-Golaz S, Grant N, Schulze T, et al. Prion protein (PrPc) immunocytochemistry and expression of the green fluorescent protein reporter gene under control of the bovine PrP gene promoter in the mouse brain. J Comp Neurol. 2004;473(2):244–69. https://doi.org/10.1002/cne.20117.
CAS
Article
PubMed
Google Scholar
Prusiner SB, DeArmond SJ. Prion diseases and neurodegeneration. Ann Rev Neurosci. 1994;17(1):311–39. https://doi.org/10.1146/annurev.ne.17.030194.001523.
CAS
Article
PubMed
Google Scholar
Aguzzi A. Molecular pathology of prion diseases. Vox Sang. 2000;78(Suppl 2):25.
PubMed
Google Scholar
Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008;88(2):673–728. https://doi.org/10.1152/physrev.00007.2007.
CAS
Article
PubMed
Google Scholar
Wulf MA, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol. 2017;15(1):34. https://doi.org/10.1186/s12915-017-0375-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Legname G. Elucidating the function of the prion protein. PLoS Pathog. 2017;13(8):e1006458. https://doi.org/10.1371/journal.ppat.1006458.
CAS
Article
PubMed
PubMed Central
Google Scholar
del Rio JA, Gavin R. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory. Prion. 2016;10(1):25–40. https://doi.org/10.1080/19336896.2015.1126038.
CAS
Article
PubMed
PubMed Central
Google Scholar
Steele AD, Lindquist S, Aguzzi A. The prion protein knockout mouse: a phenotype under challenge. Prion. 2007;1(2):83–93. https://doi.org/10.4161/pri.1.2.4346.
Article
PubMed
PubMed Central
Google Scholar
Watts JC, Bourkas MEC, Arshad H. The function of the cellular prion protein in health and disease. Acta Neuropathol. 2018;135(2):159–78. https://doi.org/10.1007/s00401-017-1790-y.
CAS
Article
PubMed
Google Scholar
Roucou X, Gains M, LeBlanc AC. Neuroprotective functions of prion protein. J Neurosci Res. 2004;75(2):153–61. https://doi.org/10.1002/jnr.10864.
CAS
Article
PubMed
Google Scholar
Gavin R, Lidon L, Ferrer I, Del Rio JA. The quest for cellular prion protein functions in the aged and neurodegenerating brain. Cells. 2020;9(3). https://doi.org/10.3390/cells9030591.
Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R. Cellular prion protein transduces neuroprotective signals. EMBO J. 2002;21(13):3317–26. https://doi.org/10.1093/emboj/cdf324.
CAS
Article
PubMed
PubMed Central
Google Scholar
Paitel E, Sunyach C, Alves da Costa C, Bourdon JC, Vincent B, Checler F. Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem. 2004;279(1):612–8. https://doi.org/10.1074/jbc.M310453200.
CAS
Article
PubMed
Google Scholar
Paitel E, Fahraeus R, Checler F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J Biol Chem. 2003;278(12):10061–6. https://doi.org/10.1074/jbc.M211580200.
CAS
Article
PubMed
Google Scholar
Rangel A, Madronal N, Gruart A, Gavin R, Llorens F, Sumoy L, et al. Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PloS one. 2009;4(10):e7592. https://doi.org/10.1371/journal.pone.0007592.
CAS
Article
PubMed
PubMed Central
Google Scholar
Goetzl EJ, Peltz CB, Mustapic M, Kapogiannis D, Yaffe K. Neuron-derived plasma exosome proteins after remote traumatic brain injury. J Neurotrauma. 2020;37(2):382–8. https://doi.org/10.1089/neu.2019.6711.
Article
PubMed
Google Scholar
Leng B, Sun H, Zhao J, Liu Y, Shen T, Liu W, et al. Plasma exosomal prion protein levels are correlated with cognitive decline in PD patients. Neurosci Lett. 2020;723:134866. https://doi.org/10.1016/j.neulet.2020.134866.
CAS
Article
PubMed
Google Scholar
Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, Lopez-Gonzalez I, et al. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion. 2013;7(5):383–93. https://doi.org/10.4161/pri.26416.
CAS
Article
PubMed
PubMed Central
Google Scholar
Scalabrino G, Veber D, De Giuseppe R, Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience. 2015;298:293–301. https://doi.org/10.1016/j.neuroscience.2015.04.020.
CAS
Article
PubMed
Google Scholar
Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992;356(6370):577–82. https://doi.org/10.1038/356577a0.
Article
PubMed
Google Scholar
Lledo PM, Tremblay P, DeArmond SJ, Prusiner SB, Nicoll RA. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci U S A. 1996;93(6):2403–7. https://doi.org/10.1073/pnas.93.6.2403.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, et al. SIRPalpha polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exper Med. 2013;210(12):2539–52. https://doi.org/10.1084/jem.20131274.
CAS
Article
Google Scholar
de Almeida CJ, Chiarini LB, da Silva JP, ES PM, Martins MA, Linden R. The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol. 2005;77(2):238–46. https://doi.org/10.1189/jlb.1103531.
CAS
Article
PubMed
Google Scholar
Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavin R, et al. Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep. 2015;5(1):11971. https://doi.org/10.1038/srep11971.
Article
PubMed
PubMed Central
Google Scholar
Sparkes RS, Simon M, Cohn VH, Fournier RE, Lem J, Klisak I, et al. Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci U S A. 1986;83(19):7358–62. https://doi.org/10.1073/pnas.83.19.7358.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rangel A, Burgaya F, Gavin R, Soriano E, Aguzzi A, Del Rio JA. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res. 2007;85(12):2741–55. https://doi.org/10.1002/jnr.21215.
CAS
Article
PubMed
Google Scholar
Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia. 1999;40(12):1679–82. https://doi.org/10.1111/j.1528-1157.1999.tb01583.x.
CAS
Article
PubMed
Google Scholar
Striebel JF, Race B, Pathmajeyan M, Rangel A, Chesebro B. Lack of influence of prion protein gene expression on kainate-induced seizures in mice: studies using congenic, coisogenic and transgenic strains. Neuroscience. 2013;238:11–8. https://doi.org/10.1016/j.neuroscience.2013.02.004.
CAS
Article
PubMed
Google Scholar
Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 2001;11(3):130–5. https://doi.org/10.1016/S0962-8924(00)01906-1.
CAS
Article
PubMed
Google Scholar
Nuvolone M, Paolucci M, Sorce S, Kana V, Moos R, Matozaki T, et al. Prion pathogenesis is unaltered in the absence of SIRPalpha-mediated "don't-eat-me" signaling. PloS One. 2017;12(5):e0177876. https://doi.org/10.1371/journal.pone.0177876.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adao-Novaes J, Valverde RHF, Landemberger MC, Silveira MS, Simoes-Pires EN, Lowe J, et al. Substrain-related dependence of Cu(I)-ATPase activity among prion protein-null mice. Brain Res. 2020;1727:146550. https://doi.org/10.1016/j.brainres.2019.146550.
CAS
Article
PubMed
Google Scholar
Encalada SE, Szpankowski L, Xia CH, Goldstein LS. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell. 2011;144(4):551–65. https://doi.org/10.1016/j.cell.2011.01.021.
CAS
Article
PubMed
PubMed Central
Google Scholar
Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 2008;181(3):551–65. https://doi.org/10.1083/jcb.200711002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, et al. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell. 2011;22(17):3041–54. https://doi.org/10.1091/mbc.e11-04-0321.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferreira DG, Temido-Ferreira M, Vicente Miranda H, Batalha VL, Coelho JE, Szego EM, et al. Alpha-synuclein interacts with PrP(C) to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. 2017;20(11):1569–79. https://doi.org/10.1038/nn.4648.
CAS
Article
PubMed
Google Scholar
Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, et al. Prion protein is necessary for normal synaptic function. Nature. 1994;370(6487):295–7. https://doi.org/10.1038/370295a0.
CAS
Article
PubMed
Google Scholar
Manson JC, Hope J, Clarke AR, Johnston A, Black C, MacLeod N. PrP gene dosage and long term potentiation. Neurodegeneration. 1995;4(1):113–4.
CAS
Article
Google Scholar
Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis. 2005;19(1-2):255–65. https://doi.org/10.1016/j.nbd.2005.01.001.
CAS
Article
PubMed
Google Scholar
Curtis J, Errington M, Bliss T, Voss K, MacLeod N. Age-dependent loss of PTP and LTP in the hippocampus of PrP-null mice. Neurobiol Dis. 2003;13(1):55–62. https://doi.org/10.1016/S0969-9961(03)00017-2.
Article
PubMed
Google Scholar
Maglio LE, Martins VR, Izquierdo I, Ramirez OA. Role of cellular prion protein on LTP expression in aged mice. Brain Res. 2006;1097(1):11–8. https://doi.org/10.1016/j.brainres.2006.04.056.
CAS
Article
PubMed
Google Scholar
Schmitz M, Greis C, Ottis P, Silva CJ, Schulz-Schaeffer WJ, Wrede A, et al. Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression. Mol Neurobiol. 2014;50(3):923–36. https://doi.org/10.1007/s12035-014-8655-3.
CAS
Article
PubMed
Google Scholar
Lipp HP, Stagliar-Bozicevic M, Fischer M, Wolfer DP. A 2-year longitudinal study of swimming navigation in mice devoid of the prion protein: no evidence for neurological anomalies or spatial learning impairments. Behav Brain Res. 1998;95(1):47–54. https://doi.org/10.1016/S0166-4328(97)00209-X.
CAS
Article
PubMed
Google Scholar
Coitinho AS, Roesler R, Martins VR, Brentani RR, Izquierdo I. Cellular prion protein ablation impairs behavior as a function of age. Neuroreport. 2003;14(10):1375–9. https://doi.org/10.1097/00001756-200307180-00019.
Article
PubMed
Google Scholar
Fainstein N, Dori D, Frid K, Fritz AT, Shapiro I, Gabizon R, et al. Chronic progressive neurodegeneration in a transgenic mouse model of prion disease. Front Neurosci. 2016;10:510. https://doi.org/10.3389/fnins.2016.00510.
Article
PubMed
PubMed Central
Google Scholar
Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol. 1994;8(2-3):121–7. https://doi.org/10.1007/BF02780662.
CAS
Article
PubMed
Google Scholar
Nuvolone M, Hermann M, Sorce S, Russo G, Tiberi C, Schwarz P, et al. Strictly co-isogenic C57BL/6 J-Prnp-/- mice: A rigorous resource for prion science. J Exper Med. 2016;213(3):313–27. https://doi.org/10.1084/jem.20151610.
CAS
Article
Google Scholar
Nuvolone M, Sorce S, Paolucci M, Aguzzi A. Extended characterization of the novel co-isogenic C57BL/6 J Prnp(-/-) mouse line. Amyloid. 2017;24(sup1):36–7.
Article
Google Scholar
Gadotti VM, Bonfield SP, Zamponi GW. Depressive-like behaviour of mice lacking cellular prion protein. Behav Brain Res. 2012;227(2):319–23. https://doi.org/10.1016/j.bbr.2011.03.012.
CAS
Article
PubMed
Google Scholar
Salazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S, et al. Conditional deletion of Prnp rescues behavioral and synaptic deficits after disease onset in transgenic Alzheimer's disease. J Neurosci. 2017;37(38):9207–21. https://doi.org/10.1523/JNEUROSCI.0722-17.2017.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmitz M, Zafar S, Silva CJ, Zerr I. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381–6. https://doi.org/10.4161/19336896.2014.983746.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods. 2014;234:139–46. https://doi.org/10.1016/j.jneumeth.2014.02.001.
Article
PubMed
Google Scholar
Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;96(96):e52434. https://doi.org/10.3791/52434.
Article
Google Scholar
Steinert JR. Prion protein as a mediator of synaptic transmission. Commun Integr Biol. 2015;8(4):e1063753. https://doi.org/10.1080/19420889.2015.1063753.
Article
PubMed
PubMed Central
Google Scholar
Madroñal N, Gruart A, Delgado-García JM. Differing presynaptic contributions to LTP and associative learning in behaving mice. Front Behav Neurosci. 2009;3:7. https://doi.org/10.3389/neuro.08.007.2009.
Article
PubMed
PubMed Central
Google Scholar
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. In: Cold Spring Harbor perspectives in medicine. vol. 5. New York: Cold Spring Harbor Laboratory Press; 2015.
Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300. https://doi.org/10.1038/nature12354.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nazor KE, Seward T, Telling GC. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta. 2007;1772(6):645–53. https://doi.org/10.1016/j.bbadis.2007.04.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bult A, Lynch CB. Nesting and fitness: lifetime reproductive success in house mice bidirectionally selected for thermoregulatory nest-building behavior. Behav Genet. 1997;27(3):231–40. https://doi.org/10.1023/A:1025610130282.
CAS
Article
PubMed
Google Scholar
Gaskill BN, Karas AZ, Garner JP, Pritchett-Corning KR. Nest building as an indicator of health and welfare in laboratory mice. J Vis Exp. 2013;82(82):51012. https://doi.org/10.3791/51012.
Article
Google Scholar
Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61(1):59–64. https://doi.org/10.1016/0166-4328(94)90008-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lobao-Soares B, Walz R, Carlotti CG Jr, Sakamoto AC, Calvo F, Terzian AL, et al. Cellular prion protein regulates the motor behaviour performance and anxiety-induced responses in genetically modified mice. Behav Brain Res. 2007;183(1):87–94. https://doi.org/10.1016/j.bbr.2007.05.027.
CAS
Article
PubMed
Google Scholar
Nico PB, de-Paris F, Vinade ER, Amaral OB, Rockenbach I, Soares BL, et al. Altered behavioural response to acute stress in mice lacking cellular prion protein. Behav Brain Res. 2005;162(2):173–81. https://doi.org/10.1016/j.bbr.2005.02.003.
CAS
Article
PubMed
Google Scholar
Janner DR, de Lima EV, da Silva RT, Clarke JR, Linden R. Dissociation of genotype-dependent cognitive and motor behavior in a strain of aging mice devoid of the prion protein. Behav Brain Res. 2021;411:113386. https://doi.org/10.1016/j.bbr.2021.113386.
CAS
Article
PubMed
Google Scholar
Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafre AL, Figueiredo CP, et al. Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience. 2009;164(3):896–907. https://doi.org/10.1016/j.neuroscience.2009.09.005.
CAS
Article
PubMed
Google Scholar
Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25. https://doi.org/10.1038/nrn3381.
CAS
Article
PubMed
Google Scholar
Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nat Rev Neurosci. 2017;18(6):335–46. https://doi.org/10.1038/nrn.2017.45.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jackman SL, Regehr WG. The mechanisms and functions of synaptic facilitation. Neuron. 2017;94(3):447–64. https://doi.org/10.1016/j.neuron.2017.02.047.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kanner AM. Anxiety disorders in epilepsy: the forgotten psychiatric comorbidity. Epilepsy Currents. 2011;11(3):90–1. https://doi.org/10.5698/1535-7511-11.3.90.
Article
PubMed
PubMed Central
Google Scholar
Medel-Matus JS, Shin D, Sankar R, Mazarati A. Kindling epileptogenesis and panic-like behavior: their bidirectional connection and contribution to epilepsy-associated depression. Epilepsy Behav E&B. 2017;77:33–8. https://doi.org/10.1016/j.yebeh.2017.10.001.
Article
Google Scholar
Ratte S, Vreugdenhil M, Boult JK, Patel A, Asante EA, Collinge J, et al. Threshold for epileptiform activity is elevated in prion knockout mice. Neuroscience. 2011;179:56–61. https://doi.org/10.1016/j.neuroscience.2011.01.053.
CAS
Article
PubMed
Google Scholar
McKhann GM 2nd, Wenzel HJ, Robbins CA, Sosunov AA, Schwartzkroin PA. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience. 2003;122(2):551–61. https://doi.org/10.1016/S0306-4522(03)00562-1.
CAS
Article
PubMed
Google Scholar
Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R. Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res. 1999;816(2):337–49. https://doi.org/10.1016/S0006-8993(98)01122-6.
CAS
Article
PubMed
Google Scholar
Meador KJ. The basic science of memory as it applies to epilepsy. Epilepsia. 2007;48(Suppl 9):23–5. https://doi.org/10.1111/j.1528-1167.2007.01396.x.
Article
PubMed
Google Scholar
Reid IC, Stewart CA. Seizures, memory and synaptic plasticity. Seizure. 1997;6(5):351–9. https://doi.org/10.1016/S1059-1311(97)80034-9.
CAS
Article
PubMed
Google Scholar
You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, et al. Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A. 2012;109(5):1737–42. https://doi.org/10.1073/pnas.1110789109.
Article
PubMed
PubMed Central
Google Scholar
Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, et al. Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun. 2012;3(1):1134. https://doi.org/10.1038/ncomms2135.
CAS
Article
PubMed
Google Scholar
Gavin R, Urena J, Rangel A, Pastrana MA, Requena JR, Soriano E, et al. Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Neurobiol Dis. 2008;30(2):243–54. https://doi.org/10.1016/j.nbd.2008.02.001.
CAS
Article
PubMed
Google Scholar
Pantera B, Bini C, Cirri P, Paoli P, Camici G, Manao G, et al. PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem. 2009;110(1):194–207. https://doi.org/10.1111/j.1471-4159.2009.06123.x.
CAS
Article
PubMed
Google Scholar
Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, et al. Neuritogenesis: the prion protein controls beta1 integrin signaling activity. FASEB J. 2012;26(2):678–90. https://doi.org/10.1096/fj.11-185579.
CAS
Article
PubMed
Google Scholar
Amin L, Nguyen XT, Rolle IG, D'Este E, Giachin G, Tran TH, et al. Characterization of prion protein function by focal neurite stimulation. J Cell Sci. 2016;129(20):3878–91. https://doi.org/10.1242/jcs.183137.
CAS
Article
PubMed
Google Scholar
Benvegnu S, Roncaglia P, Agostini F, Casalone C, Corona C, Gustincich S, et al. Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiol Genom. 2011;43(12):711–25. https://doi.org/10.1152/physiolgenomics.00205.2010.
CAS
Article
Google Scholar
Platzer K, Yuan H, Schutz H, Winschel A, Chen W, Hu C, et al. GRIN2B encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J Med Genet. 2017;54(7):460–70. https://doi.org/10.1136/jmedgenet-2016-104509.
CAS
Article
PubMed
Google Scholar
Platzer K, Lemke JR. GRIN2B-related neurodevelopmental disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews((R)). Seattle (WA): University of Washington; 1993.
Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci. 2006;7(6):477–84. https://doi.org/10.1038/nrn1909.
CAS
Article
PubMed
Google Scholar
Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1(3):1117–9. https://doi.org/10.1038/nprot.2006.170.
Article
PubMed
Google Scholar
Madronal N, Lopez-Aracil C, Rangel A, del Rio JA, Delgado-Garcia JM, Gruart A. Effects of enriched physical and social environments on motor performance, associative learning, and hippocampal neurogenesis in mice. PloS One. 2010;5(6):e11130. https://doi.org/10.1371/journal.pone.0011130.
CAS
Article
PubMed
PubMed Central
Google Scholar
Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-García JM. Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A. 2010;107(6):2652–7. https://doi.org/10.1073/pnas.0915059107.
Article
PubMed
PubMed Central
Google Scholar
Medrano-Fernandez A, Delgado-Garcia JM, Del Blanco B, Llinares M, Sanchez-Campusano R, Olivares R, et al. The epigenetic factor CBP is required for the differentiation and function of medial ganglionic eminence-derived interneurons. Mol Neurobiol. 2018;56(6):4440–54. https://doi.org/10.1007/s12035-018-1382-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012;28(3):433–5. https://doi.org/10.1093/bioinformatics/btr669.
CAS
Article
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
CAS
Article
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–21. https://doi.org/10.1038/nmeth.3252.
CAS
Article
PubMed
PubMed Central
Google Scholar
Matamoros-Angles A, Gayosso LM, Richaud-Patin Y, di Domenico A, Vergara C, Hervera A, et al. iPS cell cultures from a Gerstmann-Straussler-Scheinker patient with the Y218N PRNP mutation recapitulate tau pathology. Mol Neurobiol. 2018;55(4):3033–48. https://doi.org/10.1007/s12035-017-0506-6.
CAS
Article
PubMed
Google Scholar
Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, Garcia Aznar JM, et al. Involvement of cellular prion protein in alpha-synuclein transport in neurons. Mol Neurobiol. 2018;55(3):1847–60. https://doi.org/10.1007/s12035-017-0451-4.
CAS
Article
PubMed
Google Scholar
Nishimura T, Sakudo A, Hashiyama Y, Yachi A, Saeki K, Matsumoto Y, et al. Serum withdrawal-induced apoptosis in ZrchI prion protein (PrP) gene-deficient neuronal cell line is suppressed by PrP, independent of Doppel. Microbiol Immunol. 2007;51(4):457–66. https://doi.org/10.1111/j.1348-0421.2007.tb03920.x.
CAS
Article
PubMed
Google Scholar
Teller S, Tahirbegi IB, Mir M, Samitier J, Soriano J. Magnetite-amyloid-beta deteriorates activity and functional organization in an in vitro model for Alzheimer's disease. Sci Rep. 2015;5(1):17261. https://doi.org/10.1038/srep17261.
CAS
Article
PubMed
PubMed Central
Google Scholar
Orlandi JG, Stetter O, Soriano J, Geisel T, Battaglia D. Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PloS One. 2014;9(6):e98842. https://doi.org/10.1371/journal.pone.0098842.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jang MJ, Nam Y. NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data. Neurophotonics. 2015;2(3):035003. https://doi.org/10.1117/1.NPh.2.3.035003.
Article
PubMed
PubMed Central
Google Scholar