Identified studies
The eligible studies are described in Table 1 and their main characteristics are outlined in Table 2. The most frequently examined biases were racial/ethnic and gender, but ten other biases were investigated (Table 2). Four of the assumption studies compared results from two or more countries to explore effects of differences in healthcare systems.
Table 1 Studies included in the systematic review
Table 2 Main characteristics of studies
The 14 assumption method studies examining multiple biases investigated interactions between biases. They recorded the socio-demographic characteristics of the participants to reveal complex interactions between physician characteristics and the characteristics of the imaginary ‘patient’ in the vignette.
All IAT studies measured implicit prejudice; five also measured implicit stereotypes. When implicit prejudice is measured, words or images from one category are matched with positive or negative words (e.g., black faces with ‘pleasant’). When implicit stereotypes are measured, words or images from one category are matched with words from a conceptual category (e.g. female faces and ‘home’).
Nine IAT studies combined the IAT with a measure of physician behaviour or treatment decision to see if there were correlations between these and levels of implicit bias.
The subliminal priming studies were dissimilar: one was an exploratory study to see if certain diseases were stereotypically associated with African Americans, using faces as primes and reaction times to the names of diseases as the measure of implicit association; the other study used race words as primes and tested the effect of time pressure on responses to a clinical vignette.
A variety of media were used for the clinical vignette and the method of questioning participants within the assumption method. One unusual study used simulations of actual encounters with patients, hiring actors and using a set for the physicians to role-play. Physicians’ treatment decisions were recorded by observers, and the physician recorded his own diagnosis, prognosis and perceptions after the encounter.
Limitations
Of specific studies
Limitations are detailed in Table 3. Some studies failed to report response rates, or to provide full information on statistical methods or participant characteristics. Some had very small sample sizes and the majority did not mention calculating the power of their sample. Some authors explicitly informed participants of the purpose of the study, or gave participants questionnaires or other tests that indicated the subject of the study before presenting them with the vignette. For optimal results, participants should not be alerted to the particular patient characteristic(s) under study, particularly in an assumption study where knowing the characteristic(s) may influence the interpretation of the vignette. In IAT studies, this is less worrying because IAT effects are to some extent uncontrollable.
Table 3 Limitations of specific studies
Of the field
Implicit bias in healthcare is an emerging field of research with no established methodology. This is to be expected and is not a problem in itself, but it does present an obstacle when conducting a review of this kind. The range of methods used and the variety of journals with differing standards and protocols for describing experiments made it difficult to compare the results. In addition, authors focusing on a particular bias (e.g. gender), often in combination with a particular health issue (e.g. heart disease), frequently did not appear to be familiar with one another’s research. This lack of familiarity meant that often used different terms to describe the same phenomenon, which also made conducting the review more difficult.
Few of the existing results can be described as ‘real world’ treatment outcomes. The two priming studies involved very small samples and were more exploratory than result-seeking [20, 21]. The IAT and assumption studies were conducted under laboratory conditions. The only three studies conducted in naturalistic settings combined the IAT with measures of physician-patient interaction [22,23,24]. However, many of the assumption studies attempted to make their vignettes as realistic as possible by having them validated by clinicians [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41] and also by having participants view/read the vignettes as part of a normal day at work [27,28,29,30,31,32,33,34,35,36, 39, 41].
Because the studies of interest used psychological techniques, but were mainly to be found in a medical database (PubMed), the classification of the studies was not always optimal. There is no heading in Medline for ‘implicit bias’ and studies using similar methods were sometimes categorized under different subject headings, some of which were introduced during the last ten years, which increased the risk of missing eligible studies.
Existence of implicit biases/stereotypes in healthcare professionals and influence on quality of care
Healthcare professionals have implicit biases
Almost all studies found evidence for implicit biases among physicians and nurses. Based on the available evidence, physicians and nurses manifest implicit biases to a similar degree as the general population. The following characteristics are at issue: race/ethnicity, gender, socio-economic status (SES), age, mental illness, weight, having AIDS, brain injured patients perceived to have contributed to their injury,Footnote 3 intravenous drug users, disability, and social circumstances.
Of the seven studies that did not find evidence of bias, one compared the mentally ill with another potentially unfavourable category, welfare recipients; this study did find a positive correlation between levels of implicit bias and over-diagnosis of the mentally ill patient in the vignette [42]. Another used simulated interactions with actors, which may result in participants being on ‘best behaviour’ in the role-play [41]. The two studies that reported no evidence of bias in diagnosis of depression found that physicians’ estimates of SES were influenced by race (lower SES estimated for black patients); [37, 38] one reported that estimates of SES in turn were significantly related to estimates of patient demeanour (lower SES associated with hostile patient demeanour) [37]. A further study failed to find differences due to patient race in the prescription of opioids, but found an interaction whereby black patients who exhibited ‘challenging’ behaviour (such as belligerence and asking for a specific opioid) were more likely to be prescribed opioids than those who did not, an effect possibly due to a racial stereotype [43]. Another study that failed to find implicit race bias suggested that this was due to the setting of the study in an inner-city clinic with high levels of black patients and the fact that many physicians were born outside the US [24]. Finally, one study that found no evidence of racial bias in prescription of opioid analgesics presented each participant with three vignettes depicting patients of three different ethnicities, thus probably alerting them to the objective of the study [40].
The interaction effects between different patient characteristics in assumption studies are varied and a few are surprising. The authors of one study expected that physicians would be less likely to prescribe a higher dose of opioids to black patients who exhibited challenging behaviours; in fact, physicians were more likely to prescribe higher doses of opioids to challenging black patients, yet slightly less likely to do so to white patients exhibiting the same behaviour. Sometimes significant effects on the responses to the vignette of a patient characteristic, e.g. race, are only found when the interaction between gender and race or SES and race is examined. For example, physicians in one study were less certain of the diagnosis of coronary heart disease for middle-aged women, who were thus twice as likely to receive a mental health diagnosis than their male counterparts [34]. In another, low SES Latinas and blacks were more likely to have intrauterine contraception recommended than low SES whites, but there was no effect of race for high SES patients [39].
Implicit bias affects clinical judgement and behaviour
Three studies found a significant correlation between high levels of physicians’ implicit bias against blacks on IAT scores and interaction that was negatively rated by black patients [23, 24, 44] and, in one study, also negatively rated by external observers [23]. Four studies examining the correlation between IAT scores and responses to clinical vignettes found a significant correlation between high levels of pro-white implicit bias and treatment responses that favoured patients specified as white [42, 45,46,47]. In one study, implicit prejudice of nurses towards injecting drug users significantly mediated the relationship between job stress and their intention to change jobs [48].
Twenty out of 25 assumption studies found that some kind of bias was evident either in the diagnosis, the treatment recommendations, the number of questions asked of the patient, the number of tests ordered, or other responses indicating bias against the characteristic of the patient under examination.
Determinants of bias
Socio-demographic characteristics of physicians and nurses (e.g. gender, race, type of healthcare setting, years of experience, country where medical training received) are correlated with level of bias. In one study, male staff were significantly less sympathetic and more frustrated than female staff with self-harming patients presenting in A&E [26]. Black patients in the US –but not the UK- were significantly more likely to be questioned about smoking than white [28]. In another study, international medical graduates rated the African-American male patient in the vignette as being of significantly lower SES than did US graduates [38]. One study found that paediatricians held less implicit race bias compared with other MDs [47].
Correlations between explicit and implicit attitudes varied depending on the type of bias and on the kind of explicit questions asked. For instance, implicit anti-fat bias tends to correlate more with an explicit anti-fat bias than racial bias, where explicit and implicit attitudes often diverge significantly. Because physicians’ and nurses’ implicit attitudes diverged frequently from their explicit attitudes, explicit measures cannot be used alone to measure the presence of bias among healthcare professionals.