Whitacre MM, SR. Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol. 1993;38(1):1–30. https://doi.org/10.1016/0039-6257(93)90053-A.
CAS
Article
PubMed
Google Scholar
Shimmyo M, Ross AJ, Moy A, Mostafavi R. Intraocular pressure, Goldmann applanation tension, corneal thickness, and corneal curvature in Caucasians, Asians, Hispanics, and African Americans. Am J Ophthalmol. 2003;136(4):603–13. https://doi.org/10.1016/S0002-9394(03)00424-0.
Article
PubMed
Google Scholar
Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–20; discussion 829-730. https://doi.org/10.1001/archopht.120.6.714.
Article
PubMed
Google Scholar
European Glaucoma Prevention Study G, Miglior S, Pfeiffer N, Torri V, Zeyen T, Cunha-Vaz J, Adamsons I. Predictive factors for open-angle glaucoma among patients with ocular hypertension in the European Glaucoma prevention study. Ophthalmology. 2007;114(1):3–9.
Article
Google Scholar
Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, Group BES. Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology. 2008;115(1):85–93. https://doi.org/10.1016/j.ophtha.2007.03.017.
Article
PubMed
Google Scholar
Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004;122(1):17–21. https://doi.org/10.1001/archopht.122.1.17.
Article
PubMed
Google Scholar
Danias J, Podos SM. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1999;127(5):623–5. https://doi.org/10.1016/s0002-9394(99)00088-4.
CAS
Article
PubMed
Google Scholar
Erb C. Early manifest Glaucoma trial update 2004. Ophthalmologe. 2005;102(3):219–21.
CAS
Article
Google Scholar
Leske MC, Heijl A, Hyman L, Bengtsson B. Early manifest Glaucoma trial: design and baseline data. Ophthalmology. 1999;106(11):2144–53. https://doi.org/10.1016/S0161-6420(99)90497-9.
CAS
Article
PubMed
Google Scholar
Broman AT, Congdon NG, Bandeen-Roche K, Quigley HA. Influence of corneal structure, corneal responsiveness, and other ocular parameters on tonometric measurement of intraocular pressure. J Glaucoma. 2007;16(7):581–8. https://doi.org/10.1097/IJG.0b013e3180640f40.
Article
PubMed
Google Scholar
Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52(6):S109–14. https://doi.org/10.1016/j.survophthal.2007.08.004.
Article
PubMed
Google Scholar
Hager A, Loge K, Schroeder B, Fullhas MO, Wiegand W. Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dynamic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes. J Glaucoma. 2008;17(5):361–5. https://doi.org/10.1097/IJG.0b013e31815c3ad3.
Article
PubMed
Google Scholar
Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol. 2009;87(8):901–5. https://doi.org/10.1111/j.1755-3768.2008.01370.x.
Article
PubMed
Google Scholar
Lam AK, Chen D, Tse J. The usefulness of waveform score from the ocular response analyzer. Optom Vis Sci. 2010;87(3):195–9. https://doi.org/10.1097/OPX.0b013e3181d1d940.
Article
PubMed
Google Scholar
Narayanaswamy A, Su DH, Baskaran M, Tan AC, Nongpiur ME, Htoon HM, Wong TY, Aung T. Comparison of ocular response analyzer parameters in chinese subjects with primary angle-closure and primary open-angle glaucoma. Arch Ophthalmol. 2011;129(4):429–34. https://doi.org/10.1001/archophthalmol.2011.60.
Article
PubMed
Google Scholar
Pensyl D, Sullivan-Mee M, Torres-Monte M, Halverson K, Qualls C. Combining corneal hysteresis with central corneal thickness and intraocular pressure for glaucoma risk assessment. Eye (Lond). 2012;26(10):1349–56. https://doi.org/10.1038/eye.2012.164.
CAS
Article
Google Scholar
Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533–40. https://doi.org/10.1016/j.ophtha.2013.01.032.
Article
PubMed
PubMed Central
Google Scholar
Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26(2):96–102. https://doi.org/10.1097/ICU.0000000000000130.
Article
PubMed
PubMed Central
Google Scholar
Zhang C, Tatham AJ, Abe RY, Diniz-Filho A, Zangwill LM, Weinreb RN, Medeiros FA. Corneal hysteresis and progressive retinal nerve Fiber layer loss in Glaucoma. Am J Ophthalmol. 2016;166:29–36. https://doi.org/10.1016/j.ajo.2016.02.034.
Article
PubMed
PubMed Central
Google Scholar
Susanna CN, Diniz-Filho A, Daga FB, Susanna BN, Zhu F, Ogata NG, Medeiros FA. A prospective longitudinal study to investigate corneal hysteresis as a risk factor for predicting development of Glaucoma. Am J Ophthalmol. 2018;187:148–52. https://doi.org/10.1016/j.ajo.2017.12.018.
Article
PubMed
PubMed Central
Google Scholar
Lee KM, Kim TW, Lee EJ, Girard MJA, Mari JM, Weinreb RN. Association of Corneal Hysteresis with Lamina Cribrosa Curvature in primary open angle Glaucoma. Invest Ophthalmol Vis Sci. 2019;60(13):4171–7. https://doi.org/10.1167/iovs.19-27087.
Article
PubMed
Google Scholar
Brandt JD, Gordon MO, Beiser JA, Lin SC, Alexander MY, Kass MA. Ocular Hypertension Treatment Study G: Changes in central corneal thickness over time: the ocular hypertension treatment study. Ophthalmology. 2008;115(9):1550–6 1556 e1551.
Article
Google Scholar
World Medical A. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4.
Article
Google Scholar
Sihota R. Classification of primary angle closure disease. Curr Opin Ophthalmol. 2011;22(2):87–95. https://doi.org/10.1097/ICU.0b013e328343729f.
Article
PubMed
Google Scholar
Fogagnolo P, Capizzi F, Orzalesi N, Figus M, Ferreras A, Rossetti L. Can mean central corneal thickness and its 24-hour fluctuation influence fluctuation of intraocular pressure? J Glaucoma. 2010;19(6):418–23. https://doi.org/10.1097/IJG.0b013e3181aff432.
Article
PubMed
Google Scholar
Choudhari NS, George R, Sathyamangalam RV, Raju P, Asokan R, Velumuri L, Vijaya L. Long-term change in central corneal thickness from a glaucoma perspective. Indian J Ophthalmol. 2013;61(10):580–4. https://doi.org/10.4103/0301-4738.119338.
Article
PubMed
PubMed Central
Google Scholar
Hashemi H, Asgari S, Emamian MH, Mehravaran S, Fotouhi A. Five year changes in central and peripheral corneal thickness: the Shahroud eye cohort study. Cont Lens Anterior Eye. 2016;39(5):331–5. https://doi.org/10.1016/j.clae.2016.05.004.
Article
PubMed
Google Scholar
Mwanza JC, Tulenko SE, Budenz DL, Mathenge E, Herndon LH, Kim HY, Hall A, Hay-Smith G, Spratt A, Barton K. Longitudinal change in central corneal thickness in the Tema eye survey. Am J Ophthalmol. 2018;186:10–8. https://doi.org/10.1016/j.ajo.2017.11.002.
Article
PubMed
Google Scholar
Weizer JS, Stinnett SS, Herndon LW. Longitudinal changes in central corneal thickness and their relation to glaucoma status: an 8 year follow up study. Br J Ophthalmol. 2006;90(6):732–6. https://doi.org/10.1136/bjo.2005.087155.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aghaian E, Choe JE, Lin S, Stamper RL. Central corneal thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a glaucoma clinic. Ophthalmology. 2004;111(12):2211–9. https://doi.org/10.1016/j.ophtha.2004.06.013.
Article
PubMed
Google Scholar
Foster P. Central corneal thickness and intraocular pressure in a Mongolian population. Ophthalmology. 1998;105(6):969–73. https://doi.org/10.1016/S0161-6420(98)96021-3.
CAS
Article
PubMed
Google Scholar
Chang IB, Chae MB, Park JH, Kim TJ, Kim JS. Central Corneal Thickness in Korean Subjects with Primary Angle-Closure Glaucoma. J Korean Ophthalmol Soc. 2014;55(3):402–7.
Hwang YH, Kim HK, Sohn YH. Namil study group KGS: central corneal thickness in a Korean population: the Namil study. Invest Ophthalmol Vis Sci. 2012;53(11):6851–5. https://doi.org/10.1167/iovs.12-10173.
Article
PubMed
Google Scholar
Lee ES, Kim CY, Ha SJ, Seong GJ, Hong YJ. Central corneal thickness of Korean patients with glaucoma. Ophthalmology. 2007;114(5):927–30. https://doi.org/10.1016/j.ophtha.2006.09.036.
Article
PubMed
Google Scholar
Lowe RF. Central corneal thickness. Ocular correlations in normal eyes and those with primary angle-closure glaucoma. Br J Ophthalmol. 1969;53(12):824–6. https://doi.org/10.1136/bjo.53.12.824.
CAS
Article
PubMed
PubMed Central
Google Scholar
Day AC, Machin D, Aung T, Gazzard G, Husain R, Chew PT, Khaw PT, Seah SK, Foster PJ. Central corneal thickness and glaucoma in east Asian people. Invest Ophthalmol Vis Sci. 2011;52(11):8407–12. https://doi.org/10.1167/iovs.11-7927.
Article
PubMed
Google Scholar
Pang CE, Lee KY, Su DH, Htoon HM, Ng JY, Kumar RS, Aung T. Central corneal thickness in Chinese subjects with primary angle closure glaucoma. J Glaucoma. 2011;20(7):401–4. https://doi.org/10.1097/IJG.0b013e3181f3e5d9.
Article
PubMed
Google Scholar
Xu L, Zhang H, Wang YX, Jonas JB. Central corneal thickness and glaucoma in adult Chinese: the Beijing eye study. J Glaucoma. 2008;17(8):647–53. https://doi.org/10.1097/IJG.0b013e3181666582.
Article
PubMed
Google Scholar
Chen MJ, Liu CJ, Cheng CY, Lee SM. Corneal status in primary angle-closure glaucoma with a history of acute attack. J Glaucoma. 2012;21(1):12–6. https://doi.org/10.1097/IJG.0b013e3181fc800a.
CAS
Article
PubMed
Google Scholar
Pillunat KR, Spoerl E, Terai N, Pillunat LE. Corneal biomechanical changes after trabeculectomy and the impact on intraocular pressure measurement. J Glaucoma. 2017;26(3):278–82. https://doi.org/10.1097/IJG.0000000000000595.
Article
PubMed
Google Scholar
Theinert C, Wiedemann P, Unterlauft JD. Laser peripheral iridotomy changes anterior chamber architecture. Eur J Ophthalmol. 2017;27(1):49–54. https://doi.org/10.5301/ejo.5000804.
Article
PubMed
Google Scholar
Lopez-Caballero C, Puerto-Hernandez B, Munoz-Negrete FJ, Rebolleda G, Contreras I, Cabarga C, Corral A. Quantitative evaluation of anterior chamber changes after iridotomy using Pentacam anterior segment analyzer. Eur J Ophthalmol. 2010;20(2):327–32. https://doi.org/10.1177/112067211002000211.
Article
PubMed
Google Scholar
Schrems WA, Schrems-Hoesl LM, Mardin CY, Horn FK, Juenemann AG, Kruse FE, Braun JM, Laemmer R. The effect of long-term Antiglaucomatous drug administration on central corneal thickness. J Glaucoma. 2016;25(3):274–80. https://doi.org/10.1097/IJG.0000000000000190.
Article
PubMed
Google Scholar
Wu N, Chen Y, Yang Y, Sun X. The changes of corneal biomechanical properties with long-term treatment of prostaglandin analogue measured by Corvis ST. BMC Ophthalmol. 2020;20(1):422. https://doi.org/10.1186/s12886-020-01693-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ. The heritability of corneal hysteresis and ocular pulse amplitude: a twin study. Ophthalmology. 2008;115(9):1545–9. https://doi.org/10.1016/j.ophtha.2008.02.011.
Article
PubMed
Google Scholar
Touboul D, Roberts C, Kerautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J. Correlation between corneal hysteresis intraocular pressure, and corneal central pachymetry. J Cataract Refr Surg. 2008;34(4):616–22. https://doi.org/10.1016/j.jcrs.2007.11.051.
Article
Google Scholar
Jamali H, Jahanian S, Gharebaghi R. Effects of laser peripheral Iridotomy on corneal endothelial cell density and cell morphology in primary angle closure suspect subjects. J Ophthalmic Vis Res. 2016;11(3):258–62. https://doi.org/10.4103/2008-322X.188395.
Article
PubMed
PubMed Central
Google Scholar
Kim HJ, Cho BJ. Long-term effect of latanoprost on central corneal thickness in normal tension glaucoma. J Ocul Pharmacol Ther. 2011;27(1):73–6. https://doi.org/10.1089/jop.2010.0071.
CAS
Article
PubMed
Google Scholar
Lee H, Cho BJ. Long-term effect of latanoprost on central corneal thickness in normal-tension glaucoma: five-year follow-up results. J Ocul Pharmacol Ther. 2015;31(3):152–5. https://doi.org/10.1089/jop.2014.0109.
CAS
Article
PubMed
Google Scholar
You JY, Cho BJ. Effect of latanoprost on central corneal thickness in unilateral normal-tension glaucoma. J Ocul Pharmacol Ther. 2013;29(3):335–8. https://doi.org/10.1089/jop.2012.0080.
CAS
Article
PubMed
Google Scholar
Sihota R, Lakshmaiah NC, Titiyal JS, Dada T, Agarwal HC. Corneal endothelial status in the subtypes of primary angle closure glaucoma. Clin Exp Ophthalmol. 2003;31(6):492–5. https://doi.org/10.1046/j.1442-9071.2003.00710.x.
Article
PubMed
Google Scholar
Varadaraj V, Ramulu PY, Srinivasan K, Venkatesh R. Evaluation of angle closure as a risk factor for reduced corneal endothelial cell density. J Glaucoma. 2018;27(1):e31–2. https://doi.org/10.1097/IJG.0000000000000824.
Article
PubMed
Google Scholar
Verma S, Nongpiur ME, Husain R, Wong TT, Boey PY, Quek D, Perera SA, Aung T. Characteristics of the corneal endothelium across the primary angle closure disease Spectrum. Invest Ophthalmol Vis Sci. 2018;59(11):4525–30. https://doi.org/10.1167/iovs.18-24939.
CAS
Article
PubMed
Google Scholar
Li X, Zhang Z, Ye L, Meng J, Zhao Z, Liu Z, Hu J. Acute ocular hypertension disrupts barrier integrity and pump function in rat corneal endothelial cells. Sci Rep. 2017;7(1):6951. https://doi.org/10.1038/s41598-017-07534-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kotecha A, Crabb DP, Spratt A, Garway-Heath DF. The relationship between diurnal variations in intraocular pressure measurements and central corneal thickness and corneal hysteresis. Invest Ophthalmol Vis Sci. 2009;50(9):4229–36. https://doi.org/10.1167/iovs.08-2955.
Article
PubMed
Google Scholar
Vitalyos G, Kolozsvari BL, Nemeth G, Losonczy G, Hassan Z, Pasztor D, Fodor M. Effects of aging on corneal parameters measured with Pentacam in healthy subjects. Sci Rep. 2019;9(1):3419. https://doi.org/10.1038/s41598-019-39234-x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoo R, Choi YA, Cho BJ. Change in central corneal thickness after the discontinuation of Latanoprost in Normal tension Glaucoma-change in central corneal thickness after stop of Latanoprost. J Ocul Pharmacol Ther. 2017;33(1):57–61. https://doi.org/10.1089/jop.2016.0036.
CAS
Article
PubMed
Google Scholar
Su DH, Wong TY, Wong WL, Saw SM, Tan DT, Shen SY, Loon SC, Foster PJ, Aung T. Singapore Malay eye study G: diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay eye study. Ophthalmology. 2008;115(6):964–8 e961. https://doi.org/10.1016/j.ophtha.2007.08.021.
Article
PubMed
Google Scholar