Li ZK, Zhang F. Rice breeding in the post-genomics era from concept to practice. Curr Opin Plant Biol. 2013;16:261–9.
Article
PubMed
Google Scholar
Song G, Jia M, Chen K, Kong X, Khattak B, Xie C, Li A, Mao L. CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 2016;4:75–82.
Article
Google Scholar
Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, et al. The map-based sequence of the rice genome. Nature. 2015;436:793–800.
Google Scholar
Goicoechea JL, Ammiraju JSS, Marri PR, Chen M, Jackson S, Yu Y, Rounsley S, Wing RA. The future of rice genomics: sequencing the collective Oryza genome. Rice. 2010;3:89–97.
Article
Google Scholar
Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol. 2012;30:105–11.
CAS
Article
Google Scholar
Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, et al. The genome sequence of African rice (Oryza Glaberrima) and evidence for independent domestication. Nat Genet. 2014;46:982–8.
CAS
Article
PubMed
Google Scholar
The 3, 000 Rice Genomes Project. The 3, 000 Rice Genomes Project. GigaScience. 2014;3:7.
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961–7.
CAS
Article
PubMed
Google Scholar
Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun. 2015;6:6258.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W. RiceVarMap: a comprehensive database of rice genomic variations. Nucl Acids Res. 2015;43:D1018–22.
CAS
Article
PubMed
Google Scholar
Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, et al. Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice. Science. 2003;301:376–9.
Article
PubMed
Google Scholar
Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, et al. The Rice annotation project database (RAP-DB): hub for Oryza Sativa Ssp. Japonica genome information. Nucl Acids Res. 2006;34:D741–4.
CAS
Article
PubMed
Google Scholar
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 2010;20:1238–49.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 2010;20:646–54.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hakim MA, Juraimi AS, Hanafi MM. The effect of salinity on growth, ion accumulation and yield of rice varieties. J Anim Plant Sci. 2014;24:874–85.
CAS
Google Scholar
Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci. 2000;78:162–4.
Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, et al. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice. 2010;3:148–60.
Article
Google Scholar
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet. 2005;37:1141–6.
CAS
Article
PubMed
Google Scholar
Deng P, Shi X, Zhou J, Wang F, Dong Y, Jing W, Zhang W. Identification and fine mapping of a mutation conferring salt-sensitivity in rice (Oryza Sativa L.). Crop Sci. 2015;55:219–28.
CAS
Article
Google Scholar
Emon RM, Islamb MM, Halderb J, Fana Y. Genetic diversity and association mapping for salinity tolerance in Bangladeshi rice landraces. Crop J. 2015;3:440–4.
Article
Google Scholar
Tiwari S, SL K, Kumar V, Singh B, Rao AR, Mithra SV A, Rai V, Singh AK, Singh NK. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS One. 2016;11:e0153610.
Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, et al. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 2005;139:822–35.
CAS
Article
PubMed
PubMed Central
Google Scholar
Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. 2007;63:609–23.
CAS
Article
PubMed
Google Scholar
Hossain MR, Bassel GW, Pritchard J, Sharma GP, Ford-Lloyd BV. Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified significance analysis of microarrays. Front Plant Sci. 2016;7:567.
PubMed
PubMed Central
Google Scholar
Shankar R, Bhattacharjee A, Jain M. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep. 2016;6:23719.
CAS
Article
PubMed
PubMed Central
Google Scholar
Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M. Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res. 2014;21:69–84.
CAS
Article
PubMed
Google Scholar
Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza Rufipogon Griff.). PLoS One. 2016;11:e0146242.
Article
PubMed
PubMed Central
Google Scholar
Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus Virginicus. Front Plant Sci. 2015;6:241.
Article
PubMed
PubMed Central
Google Scholar
Das P, Nutan KK, Singla-Pareek SL, Pareek A. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Frontiers Plant Sci. 2015;6:712.
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci. 2006;103:12987–92.
CAS
Article
PubMed
PubMed Central
Google Scholar
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San SB. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol. 2014;165:688–704.
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol. 2014;84:19–36.
CAS
Article
PubMed
Google Scholar
Chen M, Zhao Y, Zhuo C, Lu S, Guo Z. Overexpression of a NF-YC transcription factor from Bermuda grass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J. 2015;13:482–91.
CAS
Article
PubMed
Google Scholar
Hoang TM, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG. Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci. 2015;6:175.
Article
PubMed
PubMed Central
Google Scholar
Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive nac transcription factor gene onac022 improves drought and salt tolerance in rice. Front Plant Sci. 2016;7:4.
Article
PubMed
PubMed Central
Google Scholar
Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442:705–8.
CAS
Article
PubMed
Google Scholar
Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460:1026–30.
CAS
Article
PubMed
Google Scholar
Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, et al. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot. 2009;103:151–60.
CAS
Article
PubMed
Google Scholar
Li K. Feeding China with sea-rice 86. ISIS Report. 2014; http://www.i-sis.org.uk/Feeding_China_with_Sea-Rice.php. Accessed 14 Jan 2014
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic acids research. 2010 Apr 30:gkq310.
O'toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I. On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol. 2008 Jun 1;25(6):1120–8.
Article
PubMed
Google Scholar
Laluk K, Abuqamar S, Mengiste T. The Arabidopsis mitochondrialocalized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 2011;156:2053–68.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol Biol. 2015;88:369–85.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sancho MA. Milrad de Forchetii S, Pliego F, Valpuesta V. Quesada MA Total peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells Plant Cell Tiss Org Cult. 1996;44:161–7.
CAS
Google Scholar
Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C. Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci. 1999;141:1–9.
CAS
Article
Google Scholar
Davin LB, Lewis NG. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000;123:453–62.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jin-long G, Li-ping X, Jing-ping F, Ya-chun S, Hua-ying F, You-xiong Q, Jing-sheng X. A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep. 2012 Oct 1;31(10):1801–12.
Article
PubMed
Google Scholar
Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, et al. Using membrane transporters to improve crops for sustainable food production. Nature. 2013;497:60–6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep. 2014;4:3964.
Article
PubMed
PubMed Central
Google Scholar
Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012;158:340–51.
CAS
Article
PubMed
PubMed Central
Google Scholar
Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I. Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem Biochem. 2014;78:15–26.
Article
Google Scholar
van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL. Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot. 2008;59:1383–97.
Article
PubMed
Google Scholar
De Leon TB, Linscombe S, Subudhi PK. Molecular Dissection of Seedling Salinity Tolerance in Rice (Oryza sativa L.) Using a High-Density GBS-Based SNP Linkage Map. Rice. 2016 Oct 1;9(1):52.
Li J, Xu YY, Chong K. The novel functions of kinesin motor proteins in plants. Protoplasma. 2012;249(Suppl 2):95–100.
CAS
Article
Google Scholar
Khatri N, Mudgil Y. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization. Front Plant Sci. 2015;6:947.
Article
PubMed
PubMed Central
Google Scholar