Mabberley DJ. The typification of Murraya, M. exotica, and M. paniculata (Rutaceae): its significance for the world citrus industry. Taxon. 2016;65(2):366–71.
Article
Google Scholar
Mabberley DJ. (2433) proposal to conserve the name Chalcas paniculata (Murraya paniculata) (Rutaceae) with a conserved type. Taxon. 2016;65(2):394–5.
Article
Google Scholar
Swingle WT, Reece CR. The botany of Citrus and its wild relatives. In: Reuther W, Webber HJ, Batchelor LD, editors. The Citrus Industry. Berkeley: Division of Agricultural Sciences, University of California; 1967. p. 190–430.
Google Scholar
Rumphius GE. Herbarium Amboinense, vol. 5. Amsterdam: M. Uytwerf after Amsterdam; 1747.
Jack W. Descriptions of Malayan plants. Malayan Miscellanies. 1820;1:31–3.
Google Scholar
Burkill IH. A dictionary of economic products of the Malay peninsula. London: Crown Agent for the Colonies; 1935.
Google Scholar
Aziz S, Sukari M, Rahmani M, Kitajima M, Aimi N, Ahpandi N. Coumarins from Murraya paniculata (Rutaceae). Malaysian J Analytical Sci. 2010;14(1):1–5.
Google Scholar
Kong YC, Cheng KF, Ng KH, But PPH. Qianli, Yu SX, Chang HT, Cambie RC, Kinoshita T, Kan WS et al: a chemotaxonomic division of Murraya based on the distribution of the alkaloids yuehchukene and girinimbine. Biochem Syst Ecol. 1986;14(5):491–7.
CAS
Article
Google Scholar
Bitters W, Brusca J, Cole D. The search for new citrus rootstocks. California Citrograph. 1964;49:443–8.
Google Scholar
Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006;88(1):7–37.
Google Scholar
Halbert SE, Manjunath KL. Asian citrus psyllids (Sternorrhyncha : Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla Entomol. 2004;87(3):330–53.
Article
Google Scholar
Li T, Ke C. Detection detection of the bearing rate of Liberobacter asiaticum in the citrus psylla and its host plant Murraya paniculata by nested PCR. Acta Phytophylacica Sinica. 2002;29:31–5.
Lopes SA. Huanglongbing in Brazil. In: International Workshop for the Prevention of Citrus Greening Disease in Severely Infected Areas, Ishigaki, Japan, 6–7 December 2006. Tokyo: Multilateral Research Network for Food and Agricultural Safety. Japanese Ministry of Agriculture, Forestry and Fisheries; 2006. p. 11-9.
Zhou LJ, Gabriel DW, Duan YP, Halbert SE, Dixon WN. First report of dodder transmission of Huanglongbing from naturally infected Murraya paniculata to Citrus. Plant Dis. 2007;91(2):227.
CAS
PubMed
Article
Google Scholar
Walter AJ, Duan Y, Hall DG. Titers of ‘Ca. Liberibacter asiaticus’ in Murraya paniculata and Murraya-reared Diaphorina citri are much lower than in Citrus and Citrus-reared psyllids. HortScience. 2012;47(10):1449–52.
Article
Google Scholar
Miyakawa T. Experimentally-induced symptoms and host range of citrus likubin (greening disease). Ann Phytopathol Soc Jpn. 1980;46:224–30.
Article
Google Scholar
Garnier M, Bové JM. Citrus greening disease and the greening bacterium. In: Moreno P, da Graça JV, Timmer LW, editors. Proceedings of the Twelfth Conference of the International Organization of Citrus Virologists, New Delhi, India, 23-27 November 1992. Riverside: International Organization of Citrus Virologists, University of California, Riverside; 1993. p. 212-9.
Dai K, Ikeshiri T, Matsuura T, Kimura S, Hamagami A, Fujiwara Y, Kobashigawa Y, Miyakuni S. Investigation of host range of Candidatus Liberibacter asiaticum—is Murraya paniculata a host plant of Candidatus L. asiaticum? Res Bull Plant Protection Serv(Japan). 2005;41:53–7.
Cifuentes-Arenas JC, Beattie GAC, Pena L, Lopes SA. Murraya paniculata and Swinglea glutinosa as short-term transient hosts of 'Candidatus Liberibacter asiaticus' and implications for spread of huanglongbing. Phytopathology. 2019;109(12):2067-73. https://doi.org/10.1094/PHYTO-06-19-0216-R.
Article
Google Scholar
de Araújo EF, de Queiroz LP, Machado MA. What is Citrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae subfamily Aurantioideae). Org Divers Evol. 2003;3:55–62.
Morton CM, Grant M, Blackmore S. Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data. Am J Bot. 2003;90(10):1463–9.
CAS
PubMed
Article
Google Scholar
Pfeil BE, Crisp MD. The age and biogeography of Citrus and the orange subfamily (Rutaceae: Aurantioideae) in Australasia and New Caledonia. Am J Bot. 2008;95(12):1621–31.
PubMed
Article
Google Scholar
Morton CM. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF. Org Diver Evol. 2009;9(1):52–68.
Article
Google Scholar
Bayer RJ, Mabberley DJ, Morton C, Miller CH, Sharma IK, Pfeil BE, Rich S, Hitchcock R, Sykes S. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpdna sequences. Am J Bot. 2009;96(3):668–85.
CAS
PubMed
Article
Google Scholar
Penjor T, Anai T, Nagano Y, Matsumoto R, Yamamoto M. Phylogenetic relationships of Citrus and its relatives based on rbcL gene sequences. Tree Gen Genom. 2010;6(6):931–9.
Article
Google Scholar
Samuel R, Ehrendorfer F, Chase MW, Greger H. Phylogenetic analyses of Aurantioideae (Rutaceae) based on non-coding plastid DNA sequences and phytochemical features. Plant Biol. 2001;3(1):77–87.
CAS
Article
Google Scholar
Linnaeus C. Mantissa Plantarum. Generum editionis VI. Et Specierum editionis II. Stockholm, Sweden: Salvius; 1767.
Google Scholar
Linnaeus C. Mantissa Plantarum. Altera. Generum editionis VI. Et Specierum editionis II. Regni animalis appendix. Stockholm: Salvius; 1771.
Google Scholar
Jarvis C. Order out of Chaos: Linnaean plant names and their types. London: Linnean Society of London and Natural History Museum; 2007.
Google Scholar
Hooker JD. The Flora of British India, vol. 1. London: L Reeve; 1875.
Briquet J. Règles internationales de la nomenclature botaniques adoptées par le Congrès International de Botanique de Vienne 1905. Jena: Gustav Fischer; 1906.
Zhang DX, Hartley TG, Mabberley DJ. Rutaceae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China, vol. 11 (Oxalidaceae through Aceraceae). St. Louis, USA, Beijing, China: Science Press and Missouri Botanical Garden Press; 2008.
Google Scholar
Li Q, Zhu LF, But PPH, Kong YC, Chang HT, Waterman PG. Monoterpene and sesquiterpene rich oils from the leaves of Murraya species - chemotaxonomic significance. Biochem Syst Ecol. 1988;16(5):491–4.
CAS
Article
Google Scholar
Ito Y, Tanaka N, Barford AS, Bogner J, Li J, Yano O, Gale SW. Molecular phylogenetic species deliminitation in the aquatic genus Ottelia (Hydrocharitaceae) reveals cryptic diversity within a widespread species. J Plant Res. 2019;132:335–44.
CAS
PubMed
Article
Google Scholar
But PPH, Kong YC, Ng KH, Chang HT, Li Q, Yu SX, Waterman PG. A chemotaxonomic study of Murraya (Rutaceae) in China. Acta Phytotaxonomica Sinica. 1986;24:186–92.
Google Scholar
Mou FJ. Systematics of Clauseninae (Rutaceae). Beijing: Graduate School of the Chinese Academy of Sciences; 2009.
Nguyen CH. Circumscription of Murraya and Merrillia (Sapindales: Rutaceae: Aurantioideae) and susceptibility of species and forms to huanglongbing. Richmond, NSW: Western Sydney University; 2011.
Google Scholar
Tanaka T. Chalcas, a Linnean genus which includes many new types of Asiatic plants. J Soc Trop Agric. 1929;1:23–44.
Google Scholar
Wendel JF, Doyle J. Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ, editors. Molecular systematics of plants. Boston, USA: Kluwer Academic Publishers; 1998.
Chapter
Google Scholar
Seelanan T, Schnabel A, Wendel JF. Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot. 1997;22(2):259–90.
Article
Google Scholar
Barber JC, Finch CC, Francisco-Ortega J, Santos-Guerra A, Jansen RK. Hybridization in Macaronesian Sideritis (Lamiaceae): evidence from incongruence of multiple independent nuclear and chloroplast sequence datasets. Taxon. 2007;56(1):74–88.
Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ. Phylogenetic analysis of Zieria (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA shows species polyphyly, divergent paralogues and incongruence with chloroplast DNA. Aust Syst Bot. 2018;31(1):16–47.
Article
Google Scholar
Galtier N, Daubin V. Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc B Biol Sci. 2008;363(1512):4023–9.
Article
Google Scholar
Joly S, Starr JR, Lewis WH, Bruneau A. Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot. 2006;93(3):412–25.
PubMed
Article
Google Scholar
Arnold ML, Hodges SA. Are natural hybrids fit or unfit relative to their parents. Trends Ecol Evol. 1995;10(2):67–71.
CAS
PubMed
Article
Google Scholar
Arnold ML. Natural hybridization and evolution. New York, USA: Oxford University Press; 1997.
Google Scholar
Raven P. Hybridization and the nature of species in higher plants. Can Bot Assoc Bull. 1980;13:3–10.
Google Scholar
Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20(5):229–37.
PubMed
Article
Google Scholar
Rieseberg LH, Whitton J, Linder CR. Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Botanica Neerlandica. 1996;45(3):243–62.
CAS
Article
Google Scholar
Tippery NP, Les DH. Evidence for the hybrid origin of Nymphoides montana Aston (Menyanthaceae). Telopea. 2011;13(1–2):285–94.
Article
Google Scholar
Appelhans MS, Kessler PJA, Smets E, Razafimandimbison SG, Janssens SB. Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales). J Biogeogr. 2012;39(7):1235–50.
Article
Google Scholar
Pigram CJ. Terranes and the accretion history of the Papua New Guinea orogen. AGSO J Aust Geol Geophys. 1987;10:193–211.
Google Scholar
Hall R. Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson ID, editors. Faunal and floral migrations and evolution in SE Asia–Australasia. Lisse, Netherlands: Swets and Zeitlinger; 2001. p. 35–56.
Google Scholar
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci. 2002;20(4):353–431.
Article
Google Scholar
Sanmartin I, Ronquist F. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol. 2004;53(2):216–43.
PubMed
Article
Google Scholar
Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hal R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T. Biogeography of the Indo-Australian archipelago. Ann Rev Ecol Evol Syst. 2011;42:205–26.
Article
Google Scholar
Stone BC, Jones DT. New and noteworthy Rutaceae: Aurantioideae from northern Borneo. Studies in Malesian Rutaceae, V. Proc Acad Natl Sci Phila. 1988;140(2):267–74.
Google Scholar
Lim TK. Merrillia caloxylon, Edible and Non-Medicinal Plants, vol. 4, Fruits. Dordrecht: Springer; 2012. p. 890–2.
Book
Google Scholar
Carlquist S. Plant dispersal and the origin of Pacific island floras. In: Keast A, Miller SE, editors. The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns and processes. Amsterdam: SPB Academic Publishing; 1996. p. 153–64.
Google Scholar
Muellner AN, Pannell CM, Coleman A, Chase MW. The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales). J Biogeogr. 2008;35(10):1769–89.
Article
Google Scholar
Crayn DM, Costion C, Harrington MG. The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J Biogeogr. 2015;42:11–24.
Article
Google Scholar
Sniderman JMK, Jordan GJ. Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr. 2011;38(8):1445–55.
Article
Google Scholar
Burman NL. Flora Indica: cui accedit series zoophytorum indecorum, nec non Prodromus Florae Capensis. Amsterdam: Haek; 1768.
Book
Google Scholar
Florijn PJ. Geschiedenis van de errste hortus medicus in Indië. Tijdschrift voor de Geschiedenis der Geneeskunde, Natuurwetenschappen, Wiskunde en Techniek, vol. 8; 1985. p. 209–21.
Google Scholar
Florijn PJ. Biographical notes about four plant collectors in Asia mentioned by NL Burman in his Flora Indica (1768). Taxon. 1987;36:34–8.
Google Scholar
Mabberley DJ. Mabberley's plant-book: a portable dictionary of plants, their classification and uses. 4th ed. Cambridge: Cambridge University Press; 2017.
Book
Google Scholar
Forster G. Florulae insularum australium prodromus. Dieterich: Göttingen, Germany; 1786.
Book
Google Scholar
Hockings D. Mock orange Murraya paniculata var. ovatifoliolata ‘Min–A–Min’. Plant Var J. 1998;11:27.
Google Scholar
Lindley J. Edwards’s botanical register: consisting of coloured figures of exotic plants, cultivated in British gardens; with their history and mode of treatment, vol. 5. James Ridgeway: London; 1819.
Google Scholar
Burkill IH. William Jack’s letters to Nathaniel Wallich, 1819-1821. J Straits Branch R Asian Soc. 1916;73:147–268.
Google Scholar
Beattie G, Holford P, Mabberley D, Haigh A, Bayer R, Broadbent P. Aspects and insights of Australia-Asia collaborative research on huanglongbing. In: Proceedings of the international workshop for the prevention of citrus greening disease in severely infected areas. Tokyo: Ministry of Agriculture, Forestry and Fisheries Tokyo; 2006. p. 7–9.
Google Scholar
Merrill ED. William Jack's genera and species of Malaysian plants. J Arnold Arboretum. 1952;33:199–251.
Google Scholar
Hunter W. Plants of Prince of Wales Island. J Straits Branch R Asiatic Soc. 1909;53:49–127.
Google Scholar
Jones DT. Rutaceae. In: Soepadmo E, Wong K, editors. Tree Flora of Sabah and Sarawak, vol. 1. Malaysia: Forest Research Institute Malaysia, Sabah Forestry Department and Sarawak Forestry Department; 1995. p. 1351–419.
Google Scholar
Kurz S. Contributions towards a knowledge of the Burmese flora. J Asiatic Soc Bengal. 1874;44:128–90.
Google Scholar
Kurz S. Forest Flora of British Burma, vol. 1. Calcutta, India: Office of the Superintendent of Government Printing; 1877.
Book
Google Scholar
Gamble JS. A manual of Indian timbers; an account of the growth, distribution, and uses of the trees and shrubs of India and Ceylon with descriptions of their wood-structure. London: Sampson Low; 1902.
Book
Google Scholar
Brandis D. Indian trees: an account of trees, shrubs, woody climbers, bamboos and palms indigenous or commonly cultivated in the British Indian empire. London: Constable; 1906.
Google Scholar
Huang CC. Flora Reipublicae Popularis Sinicae. Beijing: Science Press; 1997. p. 43(2).
Google Scholar
Om N. The roles of psyllids, host plants and environment in the aetiology of huanglongbing in Bhutan. Richmond: Western Sydney University; 2017.
Google Scholar
Hollis D. A new citrus-feeding psyllid from the Comoro Islands, with a review of the Diaphorina amoena species group (Homoptera). Syst Entomol. 1987;12(1):47–61.
Article
Google Scholar
Lopes SA, Frare GF, Camargo LEA, Wulff NA, Teixeira DC, Bassanezi RB, Beattie GAC, Ayres AJ. Liberibacters associated with orange jasmine in Brazil: incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol. 2010;59(6):1044–53.
CAS
Article
Google Scholar
Doyle JJ, Doyle LL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
Google Scholar
Warude D, Chavan P, Joshi K, Patwardhan B. DNA isolation from fresh, dry plant samples with highly acidic tissue extracts. Plant Mol Biol Report. 2012;21(4):467.
Article
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17(5):1105–9.
CAS
PubMed
Article
Google Scholar
Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot. 2005;92(1):142–66.
CAS
Article
Google Scholar
Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995;4(1):129–31.
CAS
PubMed
Article
Google Scholar
Oxelman B, Liden M, Berglund D. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol. 1997;206(1–4):393–410.
Article
Google Scholar
Johnson LA, Soltis DE. matk DNA-sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot. 1994;19(1):143–56.
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. Clustal-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Swofford DL. PAUP*—phylogenetic analysis using parsimony * and other methods beta version 40b10. Sunderland: Sinauer Associates; 2002.
Google Scholar
Simmons MP, Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst Biol. 2000;49(2):369–81.
CAS
PubMed
Article
Google Scholar
Kumar S, Strecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2019;33(7):1870–4.
Article
CAS
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes, v. 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:539–42.
Article
CAS
Google Scholar
Nylander JAA. MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University; 2004.
Google Scholar
Lanfear R, Calcott B, Ho S, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29(6):1695–701.
CAS
PubMed
Article
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67(5):901–4.
CAS
PubMed
PubMed Central
Article
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.
PubMed
PubMed Central
Article
CAS
Google Scholar
Martin DP, Williamson C, Posada D. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics. 2005;21(2):260–2.
CAS
PubMed
Article
Google Scholar
Drummond AJ, Ho SY, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88.
PubMed
PubMed Central
Article
CAS
Google Scholar
Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos Trans R Soc B Biol Sci. 1925;213(402–410):21–87.
Article
Google Scholar
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–78.
PubMed
Article
Google Scholar
Rambaut A, Drummong AJ, Xie W, Baele G, Suchard MA: Tracer: MCMC trace analysis tool v. 1.7.1 2003–2018.