Paul RC, Smith AB. The early radiation and phylogeny of echinoderms. Biol Rev. 1984;59:443–81.
Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011;334:1091–7.
CAS
PubMed
Article
Google Scholar
Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, Santos SR, et al. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol. 2014;24:2827–32.
CAS
PubMed
Article
Google Scholar
Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, et al. Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc R Soc Lond B Biol Sci. 2014;281:20140479.
Article
Google Scholar
Reich A, Dunn C, Akasaka K, Wessel G. Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One. 2015;10:e0119627.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kroh A, Mooi R. World Echinoidea. Database. 2018; http://www.marinespecies.org/echinoidea. Accessed 19 Apr 2018.
Thompson JR, Petsios E, Davidson EH, Erkenbrack EM, Gao F, Bottjer DJ. Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci Rep. 2015;5:15541.
CAS
PubMed
PubMed Central
Article
Google Scholar
Thompson JR, Erkenbrack EM, Hinman VF, McCauley BS, Petsios E, Bottjer DJ. Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proc Natl Acad Sci U S A. 2017;114:5870–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Smith AB. Echinoid palaeobiology. London: Allen & Unwin; 1984.
Google Scholar
Smith AB, Kroh A. Phylogeny of sea urchins. In: Lawrence JM, editor. Sea urchins: biology and ecology. 3rd ed. Cambridge (MA): Academic Press; 2013. p. 1–14.
Google Scholar
Durham JW. Phylogeny and evolution. In: Moore RC, editor. Treatise on Invertebrate Paleontology, part U, Echinodermata 3. Echinozoa, Echinoidea. Boulder (CO): Geological Society of America and Lawrence (KS): the University of Kansas Press; 1966. p. 266–9.
Kroh A, Smith AB. The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeontol. 2010;8:147–212.
Article
Google Scholar
Emlet R. Ecology of adult sea urchins. In: Yokota Y, Matranga V, Smolenicka Z, editors. Sea urchin: from basic biology to aquaculture. Rotterdam: AA Balkema; 2002. p. 111–4.
Google Scholar
Harrold C, Pearse JS. The ecological role of echinoderms in kelp forests. In: Jangoux M, Lawrence JM, editors. Echinoderm studies, vol. 2. Rotterdam: A. A. Balkema; 1987. p. 137–233.
Hughes TP. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science. 1994;265:1547–51.
CAS
PubMed
Article
Google Scholar
Edmunds PJ, Carpenter RC. Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci U S A. 2001;98:5067–71.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lohrer AM, Thrush SF, Gibbs MM. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature. 2004;431:1092–5.
CAS
PubMed
Article
Google Scholar
Gilbert F, Hulth S, Grossi V, Poggiale J-C, Desrosiers G, Rosenberg R, et al. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. J Exp Mar Bio Ecol. 2007;348:133–44.
Article
Google Scholar
Briggs E, Wessel GM. In the beginning… animal fertilization and sea urchin development. Dev Biol. 2006;300:15–26.
CAS
PubMed
Article
Google Scholar
Pederson T. The sea urchin’s siren. Dev Biol. 2006;300:9–14.
CAS
PubMed
Article
Google Scholar
Davidson EH. The sea urchin genome: where will it lead us? Science. 2006;314:939–40.
CAS
PubMed
Article
Google Scholar
Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, et al. A genomic regulatory network for development. Science. 2002;295:1669–78.
CAS
PubMed
Article
Google Scholar
Durham JW. Classification. Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Echinozoa, Echinoidea. Boulder (CO): Geological Society of America and Lawrence (KS): The University of Kansas Press; 1966. p. 270–96.
Google Scholar
Smith AB, Jeffery CH. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature. 1998;392:69.
Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DTJ. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol. 2006;23:1832–51.
CAS
PubMed
Article
Google Scholar
Coppard SE, Zigler KS, Lessios HA. Phylogeography of the sand dollar genus Mellita: cryptic speciation along the coasts of the Americas. Mol Phylogenet Evol. 2013;69:1033–42.
PubMed
Article
Google Scholar
Coppard SE, Lessios HA. Phylogeography of the sand dollar genus Encope: implications regarding the central American isthmus and rates of molecular evolution. Sci Rep. 2017;7:11520.
PubMed
PubMed Central
Article
CAS
Google Scholar
Boivin S, Saucède T, Laffont R, Steimetz E, Neige P. Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna. PLoS One. 2018;13:e0194575.
PubMed
PubMed Central
Article
CAS
Google Scholar
Smith AB. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology. 1981;24:779–801.
Google Scholar
Littlewood D, Smith A. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos Trans R Soc Lond Ser B Biol Sci. 1995;347:213–34.
CAS
Article
Google Scholar
Saucède T, Mooi R, David B. Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea). Geol Mag. 2007;144:333–59.
Article
Google Scholar
Coppard SE, Kroh A, Smith AB. The evolution of pedicellariae in echinoids: an arms race against pests and parasites. Acta Zool. 2012;93:125–48.
Article
Google Scholar
Saucède T, Mooi R, David B. Combining embryology and paleontology: origins of the anterior-posterior axis in echinoids. Comptes Rendus Palevol. 2003;2:399–412.
Article
Google Scholar
Kober KM, Bernardi G. Phylogenomics of strongylocentrotid sea urchins. BMC Evol Biol. 2013;13:88.
PubMed
PubMed Central
Article
Google Scholar
Bronstein O, Kroh A. The first mitochondrial genome of the model echinoid Lytechinus variegatus and insights into Odontophoran phylogenetics. Genomics. 2018. https://doi.org/10.1016/j.ygeno.2018.04.008.
Smith AB, Littlewood D, Wray G. Comparing patterns of evolution: larval and adult life history stages and ribosomal RNA of post-Palaeozoic echinoids. Phil Trans R Soc Lond B. 1995;349:11–8.
Article
Google Scholar
Bronstein O, Kroh A, Haring E. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids. BMC Evol Biol. 2018;18:80.
PubMed
PubMed Central
Article
Google Scholar
Mooi R. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology. 1990;16:25–48.
Article
Google Scholar
Smith AB. Probing the cassiduloid origins of clypeasteroid echinoids using stratigraphically restricted parsimony analysis. Paleobiology. 2001;27:392–404.
Article
Google Scholar
Smith AB. Sea urchins (Echinoidea). In: Hedges SB, Kumar S, editors. The timetree of life. Oxford: Oxford University Press; 2009. p. 302–6.
Google Scholar
Mortensen T. A monograph of the Echinoidea. III (1) Aulodonta. With additions to vol. II (Lepidocentra and Stirodonta). C.A. Reitzel: Copenhagen; 1940.
Google Scholar
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol. 2017;427:203–11.
CAS
PubMed
Article
Google Scholar
Hopkins MJ, Smith AB. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc Natl Acad Sci U S A. 2015;112:3758–63.
CAS
PubMed
PubMed Central
Article
Google Scholar
Janies DA, Witter Z, Linchangco GV, Foltz DW, Miller AK, Kerr AM, et al. EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. BMC Bioinformatics. 2016;17:17–48.
Article
CAS
Google Scholar
Kudtarkar P, Cameron RA. Echinobase: an expanding resource for echinoderm genomic information. Database. 2017. https://doi.org/10.1093/database/bax074.
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314:941–52.
PubMed
Article
Google Scholar
Jeffroy O, Brinkmann H, Delsuc F, Philippe H. Phylogenomics: the beginning of incongruence? Trends Genet. 2006;22:225–31.
CAS
PubMed
Article
Google Scholar
Kelchner SA, Thomas MA. Model use in phylogenetics: nine key questions. Trends Ecol Evol. 2007;22:87–94.
PubMed
Article
Google Scholar
Marshall CR, Swift H. DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values. J Mol Evol. 1992;34:31–44.
CAS
PubMed
Article
Google Scholar
Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics. 2015;31:44–52.
Article
CAS
Google Scholar
Swofford D, Olsen G, Waddell P, Hillis D. Molecular systematics. Sunderland (MA): Sinauer Associates; 1996.
Edwards SV. Is a new and general theory of molecular systematics emerging? Evolution. 2009;63:1–19.
CAS
PubMed
Article
Google Scholar
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol. 2014;80:231–66.
PubMed
Article
Google Scholar
Scornavacca C, Galtier N. Incomplete lineage sorting in mammalian phylogenomics. Syst Biol. 2017;66:112–20.
PubMed
Google Scholar
Xi Z, Liu L, Davis CC. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. Mol Phylogenet Evol. 2015;92:63–71.
PubMed
Article
Google Scholar
Molloy EK, Warnow T. To include or not to include: the impact of gene filtering on species tree estimation methods. Syst Biol. 2017;67:285–303.
Article
Google Scholar
McLean BS, Bell KC, Allen JM, Helgen KM, Cook JA. Impacts of inference method and dataset filtering on phylogenomic resolution in a rapid radiation of ground squirrels (Xerinae: Marmotini). Syst Biol. 2018;syy064 https://doi.org/10.1093/sysbio/syy064.
Durham JW, Melville R. A classification of echinoids. J Paleontol. 1957;31:242–72.
Google Scholar
Philip G. Classification of echinoids. J Paleontol. 1965;39:45–62.
Google Scholar
Melville R, Durham J. Skeletal morphology. In: Moore RC, editor. Treatise on Invertebrate Paleontology, part U, Echinodermata 3. Echinozoa, Echinoidea. Boulder (CO): Geological Society of America and Lawrence (KS): the University of Kansas press; 1966. p. 220–51.
Kier PM. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Paleontol Soc Mem. 1974;5:1–95.
Google Scholar
Jensen M. Morphology and classification of Euechinoidea Bronn, 1860—a cladistic analysis. Videnskabelige Meddelelsar Dansk Naturhistoriske Forening i Kjobenhavn. 1981;143:7–99.
Google Scholar
Barras CG. British Jurassic irregular echinoids. Palaeontogr Soc Monogr. 2006;159:1–168.
Google Scholar
Barras CG. Phylogeny of the Jurassic to early Cretaceous ‘disasteroid’ echinoids (Echinoidea; Echinodermata) and the origins of spatangoids and holasteroids. J Syst Palaeontol. 2007;5:133–61.
Arcila D, Ortí G, Vari R, Armbruster JW, Stiassny ML, Ko KD, et al. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat Ecol Evol. 2017;1:0020.
Article
Google Scholar
King N, Rokas A. Embracing uncertainty in reconstructing early animal evolution. Curr Biol. 2017;27:1081–8.
Article
CAS
Google Scholar
Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6:361–75.
CAS
PubMed
Article
Google Scholar
Rodríguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 2007;56:389–99.
PubMed
Article
CAS
Google Scholar
Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, et al. New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol. 2013;13:253.
PubMed
PubMed Central
Article
Google Scholar
Brown JM, Thomson RC. Bayes factors unmask highly variable information content, bias, and extreme influence in phylogenomic analyses. Syst Biol. 2017;66:517–30.
PubMed
Google Scholar
Shen X-X, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol. 2017;1:0126.
Article
Google Scholar
Smith AB, Wright CW. British cretaceous echinoids. Part 2. Echinothurioida, Diadematoida and Stirodonta (1, Calycina). Paleontogr Soc Monogr. 1990;143:101–98.
Google Scholar
David B, Mooi R, Telford M. The ontogenetic basis of Lovén's rule clarifies homologies of the echinoid peristome. In: Emson RH, Smith AB, Campbell A, editors. Echinoderm research 1995: Proceedings of the 4th European echinoderms colloquium. Rotterdam: A.A. Balkema; 1995. p. 155–64.
Kier PM. Triassic echinoids. Smithson Contrib Paleobiol. 1977;30:1–88.
Article
Google Scholar
Mooi R, Constable H, Lockhart S, Pearse J. Echinothurioid phylogeny and the phylogenetic significance of Kamptosoma (Echinoidea: Echinodermata) Deep Sea Res Part 2 Top Stud Oceanogr 2004;51:1903–19.
Jackson RT. Phylogeny of the echini with a revision of Palaeozoic species. Mem Bost Soc. 1912;7:1–491.
Märkel K. Experimental morphology of coronar growth in regular echinoids. Zoomorphology. 1981;97:31–52.
Article
Google Scholar
Coppard SE, Campbell AC. Taxonomic significance of spine morphology in the echinoid genera Diadema and Echinothrix. Invertebr Biol. 2004;123:357–71.
Article
Google Scholar
Mortensen TA. Monograph of the Echinoidea. II. Bothriocidaroida, Melonechinoida, Lepidocentroida, and Stirodonta. Copenhagen: C.A. Reitzel; 1935.
Google Scholar
Durham JW. Classification of clypeasteroid echinoids. Oakland (CA): University of California Press; 1955.
Google Scholar
Durham JW. Clypeasteroids. Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Echinozoa, Echinoidea. Boulder (CO): Geological Society of America and Lawrence (KS): The University of Kansas Press; 1966. p. 450–91.
Kier PM. Lantern support structures in the clypeasteroid echinoids. J Paleontol. 1970;44:98–109.
Google Scholar
Kier PM. Revision of the oligopygoid echinoids. Smithson Misc Collect. 1967;152:1–147.
Google Scholar
Kier PM. Rapid evolution in echinoids. Palaeontology. 1982;25:1–9.
Google Scholar
Gladfelter W. General ecology of the cassiduloid urchin Cassidulus caribbearum. Mar Biol. 1978;47:149–60.
Article
Google Scholar
Ziegler A, Stock SR, Menze BH, Smith AB. Macro- and microstructural diversity of sea urchin teeth revealed by large-scale mircro-computed tomography survey. In: Stock SR, editor. Developments in X-ray Tomography VIII. Bellingham (WA): SPIE; 2012. https://doi.org/10.1117/12.930832.
Mooi R. Living and fossil genera of the Clypeasteroida (Echinoidea, Echinodermata): an illustrated key and annotated checklist. Washington, DC: Smithsonian Institution Press; 1989.
Telford M, Mooi R. Resource partitioning by sand dollars in carbonate and siliceous sediments: evidence from podial and particle dimensions. Biol Bull. 1986;171:197–207.
Article
Google Scholar
Telford M, Mooi R, Harold AS. Feeding activities of two species of Clypeaster (Echinoidea, Clypeasteroida): further evidence of clypeasteroid resource partitioning. Biol Bull. 1987;172:324–36.
Article
Google Scholar
Telford M. Computer simulation of deposit-feeding by sand dollars and sea biscuits (Echinoidea: Clypeasteroida). J Exp Mar Bio Ecol. 1990;142:75–90.
Article
Google Scholar
Seilacher A. Constructional morphology of sand dollars. Paleobiology. 1979;5:191–221.
Article
Google Scholar
David B, Mooi R, Néraudeau D, Saucède T, Villier L. Evolution et radiations adaptatives chez les échinides. Comptes Rendus Palevol. 2009;8:189–207.
Article
Google Scholar
Wagner C, Durham J. Holectypoids. In: Moore RC, editor. Treatise on Invertebrate Paleontology, part U, Echinodermata 3. Echinozoa, Echinoidea. Boulder (CO): Geological Society of America and Lawrence (KS): the University of Kansas Press; 1966. p. 440–50.
Faircloth BC, Glenn TC. Not all sequence tags are created equal: designing and validating sequence identification tags robust to indels. PLoS One. 2012;7:e42543.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dunn CW, Howison M, Zapata F. Agalma: an automated phylogenomics workflow. BMC Bioinformatics. 2013;14:330.
PubMed
PubMed Central
Article
Google Scholar
Guang A, Howison M, Zapata F, Lawrence CE, Dunn C. Revising transcriptome assemblies with phylogenetic information in Agalma 1.0. bioRxiv. 2017. https://doi.org/10.1101/202416.
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
CAS
Article
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
CAS
PubMed
Article
Google Scholar
Gladyshev EA, Meselson M, Arkhipova IR. Massive horizontal gene transfer in bdelloid rotifers. Science. 2008;320(5880):1210–3.
CAS
PubMed
Article
Google Scholar
Ryan JF. Alien Index: identify potential non-animal transcripts or horizontally transferred genes in animal transcriptomes. 2014. https://doi.org/10.5281/zenodo.21029.
Kozlov A, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv. 2018;447110. https://doi.org/10.1101/447110.
Le SQ, Dang CC, Gascuel O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012;29:2921–36.
CAS
PubMed
Article
Google Scholar
Wang HC, Minh BQ, Susko E, Roger AJ. Modeling sire heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2017;67(2):216–35.
Article
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TRE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32(1):268–74.
PubMed
PubMed Central
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35(2):518–22.
PubMed Central
Article
CAS
Google Scholar
Aberer AJ, Kobert K, Stamatakis A. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Mol Biol Evol. 2014;31:2553–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI. Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5.
CAS
PubMed
Article
Google Scholar
Lartillot N, Philippe H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004;21:1095–109.
CAS
PubMed
Article
Google Scholar
Whelan NV, Halanych KM. Who let the CAT out of the bag? Accurately dealing with substitutional heterogeneity in phylogenomic analyses. Syst Biol. 2016;66:232–55.
Google Scholar
Mongiardino Koch N, Coppard SE, Lessios HA, Briggs DEG, Mooi R, Rouse GW. 2018 Data from: A phylogenomic resolution of the sea urchin tree of life. https://doi.org/10.5061/dryad.s11f216.
Rambaut A, Suchard M, Xie D, Drummond A. Tracer v1.6. 2014. Available from http://beast.community/tracer.
Sayyari E, Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol Biol Evol. 2016;33:1654–68.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, et al. Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol. 2013;67:223–33.
PubMed
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna; 2017. https://www.R-project.org/.
Jombart T, Dray S. adephylo: exploratory analyses for the phylogenetic comparative method. Bioinformatics. 2010;26:1–21.
Article
CAS
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
CAS
Article
PubMed
Google Scholar
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592.
CAS
Article
PubMed
Google Scholar
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Grunewald S, Spillner A, Bastkowski S, Bogershausen A, Moulton V. SuperQ: computing supernetworks from quartets. IEEE/ACM Trans Comput Biol Bioinform. 2013;10:151–60.
PubMed
Article
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
CAS
PubMed
Article
Google Scholar
Mai U, Mirarab S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics. 2018;19(5):272.
PubMed
PubMed Central
Article
Google Scholar
Church SH, Ryan JF, Dunn CW. Automation and evaluation of the SOWH test with SOWHAT. Syst Biol. 2015;64:1048–58.
PubMed
PubMed Central
Article
Google Scholar
Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B. Compositional heterogeneity and phylogenomic inference of metazoan relationships. Mol Biol Evol. 2010;27:2095–104.
CAS
PubMed
Article
Google Scholar
Kück P, Struck TH. BaCoCa–A heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol Phylogenet Evol. 2014;70:94–8.
PubMed
Article
CAS
Google Scholar
Gillard GB, Garama DJ, Brown CM. The transcriptome of the NZ endemic sea urchin Kina (Evechinus chloroticus). BMC Genomics. 2014;15:45.
Wygoda JA, Yang Y, Byrne M, Wray GA. Transcriptomic analysis of the highly derived radial body plan of a sea urchin. Genome Biol Evol. 2014;6:964–73.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jia Z, Wang Q, Wu K, Wei Z, Zhou Z, Liu X. De novo transcriptome sequencing and comparative analysis to discover genes involved in ovarian maturity in Strongylocentrotus nudus. Comp Biochem Physiol Part D Genomics Proteomics. 2017;23:27–38.
CAS
PubMed
Article
Google Scholar
Malik A, Gildor T, Sher N, Layous M, de-Leon SB-T. Parallel embryonic transcriptional programs evolve under distinct constraints and may enable morphological conservation amidst adaptation. Dev Biol. 2017;430:202–13.
CAS
PubMed
Article
Google Scholar
Demeuldre M, Hennebert E, Bonneel M, Lengerer B, Van Dyck S, Wattiez R, et al. Mechanical adaptability of sea cucumber Cuvierian tubules involves a mutable collagenous tissue. J Exp Biol. 2017;220:2108–19.
PubMed
Article
Google Scholar
Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier ME, Hatleberg WL, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature. 2017;544:231–4.
CAS
PubMed
Google Scholar
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. Hemichordate genomes and deuterostome origins. Nature. 2015;527:459.
CAS
PubMed
PubMed Central
Article
Google Scholar