Smith, B. L., & Venkatanarayana, R. (2005). Realizing the promise of intelligent transportation systems (ITS) data archives. Journal of Intelligent Transportation Systems, 9(4), 175–185.
MATH
Google Scholar
Chapleau, R., Trépanier, M., & Chu, K. K. (2008). The ultimate survey for transit planning: Complete information with smart card data and GIS. In Proceedings of the 8th international conference on survey methods in transport: Harmonisation and data comparability (pp. 25–31).
Google Scholar
Pelletier, M.-P., Trépanier, M., & Morency, C. (2011). Smart card data use in public transit: A literature review. Transportation Research Part C: Emerging Technologies, 19(4), 557–568.
Google Scholar
Moreira-Matias, L., Mendes-Moreira, J., Sousa, J. F., & de Gama, J. (2015). Improving mass transit operations by using AVL-based systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1636–1653. https://doi.org/10.1109/TITS.2014.2376772.
Article
Google Scholar
Ma, X., & Wang, Y. (2014). Development of a data-driven platform for transit performance measures using smart card and GPS data. Journal of Transportation Engineering, 140(12), 04014063.
Google Scholar
Crainic, T. G., Gendreau, M., & Potvin, J. Y. (2009). Intelligent freight-transportation systems: Assessment and the contribution of operations research. Transportation Research Part C: Emerging Technologies, 17(6), 541–557.
Google Scholar
Desaulniers, G., & Hickman, M. D. (2007). Public transit. Handbooks in Operations Research and Management Science, 14, 69–127.
Google Scholar
Furth, P. G., Hemily, B., Muller, T. H., & Strathman, J. G. (2006). Using archived AVL-APC data to improve transit performance and management. Washington: Transit Cooperative Res program (TCRP) Report 113, Transp Res Board.
Google Scholar
Chen, P. W., & Nie, Y. M. (2015). Optimal transit routing with partial online information. Transportation Research Part B: Methodological, 72, 40–58.
Google Scholar
Schmöcker, J.-D., Shimamoto, H., & Kurauchi, F. (2013). Generation and calibration of transit hyperpaths. Procedia - Social and Behavioral Sciences, 80, 211–230.
Google Scholar
Li, Q., Chen, P. W., & Nie, Y. M. (2015). Finding optimal hyperpaths in large transit networks with realistic headway distributions. European Journal of Operational Research, 240(1), 98–108.
MathSciNet
MATH
Google Scholar
Zhu, W., Hu, H., & Huang, Z. (2014). Calibrating rail transit assignment models with genetic algorithm and automated fare collection data. Computer-Aided Civil and Infrastructure Engineering, 29(7), 518–530.
Google Scholar
Poon, M. H., Tong, C. O., & Wong, S. C. (2004). Validation of a schedule-based capacity restraint transit assignment model for a large-scale network. Journal of Advanced Transportation, 38(1), 5–26.
Google Scholar
Fung, S., Tong, C., & Wong, S. (2005). Validation of a conventional metro network model using real data. Journal of Intelligent Transportation Systems, 9(2), 69–79.
Google Scholar
Vuk, G., & Hansen, C. O. (2006). Validating the passenger traffic model for Copenhagen. Transportation, 33(4), 371–392.
Google Scholar
Tavassoli, A., Mesbah, M., & Hickman, M. (2018). Application of smart card data in validating a large-scale multi-modal transit assignment model. Public Transport, 10(1), 1–21.
Google Scholar
Fourie, P. J., Erath, A., Ordonez, S., Chakirov, A., & Axhausen, K. W. (2016). Using Smartcard Data for Agent-Based Transport Simulation. In J.-D. S. a. F. Kurauchi (Ed.), Pub Transp Planning with Smart Card Data. London: Taylor & FranciS.
Google Scholar
Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., & Nagel, K. (2009). MATSim-T: Architecture and simulation times. In Multi-agent systems for traffic and transportation engineering (pp. 57–78). Hershey, PA: IGI Global.
Ali, A., Kim, J., & Lee, S. (2016). Travel behavior analysis using smart card data. KSCE Journal of Civil Engineering, 20(4), 1532–1539.
Google Scholar
Ordóñez Medina, S. A., & Erath, A. (2013). Estimating dynamic workplace capacities by means of public transport smart card data and household travel survey in Singapore. Transportation Research Record, 2344(1), 20–30.
Google Scholar
Bouman P, Van der Hurk E, Kroon L, Li T, Vervest P (2013) Detecting activity patterns from smart card data, paper presented at the BNAIC 2013: Proceedings of the 25th Benelux conference on artificial intelligence, Delft, The Netherlands, 7-8, 2013.
Lovrić, M., Li, T., & Verves, P. (2013). Sustainable revenue management: A smart card enabled agent-based modeling approach. Decision Support Systems, 54(4), 1587–1601.
Google Scholar
Yan, S., Chi, C.-J., & Tang, C.-H. (2006). Inter-city bus routing and timetable setting under stochastic demands. Transportation Research Part A: Policy and Practice, 40(7), 572–586.
Google Scholar
Kepaptsoglou, K., & Karlaftis, M. (2009). Transit route network design problem:Review. Journal of Transportation Engineering, 135(8), 491–505.
Google Scholar
Li, H., & Bertini, R. L. (2008). Optimal bus stop spacing for minimizing transit operation cost. In Traffic and transportation studies (pp. 553–564). https://doi.org/10.1061/40995(322)51.
Chapter
Google Scholar
Liu, Y., Liu, C., Yuan, N. J., Duan, L., Fu, Y., Xiong, H., Xu, S., & Wu, J. (2017). Intelligent bus routing with heterogeneous human mobility patterns. Knowledge and Information Systems, 50(2), 383–415.
Google Scholar
Ibarra-Rojas, O. J., Delgado, F., Giesen, R., & Muñoz, J. C. (2015). Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological, 77, 38–75.
Google Scholar
Patnaik, J., Chien, S., & Bladikas, A. (2006). Using data mining techniques on APC data to develop effective bus scheduling plans. Journal of Systemics, Cybernetics and Informatics, 4(1), 86–90.
Google Scholar
Mazloumi, E., Mesbah, M., Ceder, A., Moridpour, S., & Currie, G. (2012). Efficient transit schedule design of timing points: A comparison of ant colony and genetic algorithms. Transportation Research Part B: Methodological, 46(1), 217–234.
Google Scholar
Hadas, Y., & Shnaiderman, M. (2012). Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time. Transportation Research Part B: Methodological, 46(8), 1068–1084.
Google Scholar
Yan, Y., Meng, Q., Wang, S., & Guo, X. (2012). Robust optimization model of schedule design for a fixed bus route. Transportation Research Part C: Emerging Technologies, 25, 113–121.
Google Scholar
Wang, Y., Zhang, D., Hu, L., Yang, Y., & Lee, L. H. (2017). A data-driven and optimal bus scheduling model with time-dependent traffic and demand. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2443–2452.
Google Scholar
Gkiotsalitis, K., & Cats, O. (2018). Reliable frequency determination: Incorporating information on service uncertainty when setting dispatching headways. Transportation Research Part C: Emerging Technologies, 88, 187–207.
Google Scholar
Sun, L., Jin, J. G., Lee, D.-H., Axhausen, K. W., & Erath, A. (2014). Demand-driven timetable design for metro services. Transportation Research Part C: Emerging Technologies, 46, 284–299.
Google Scholar
Guo, X., Sun, H., Wu, J., Jin, J., Zhou, J., & Gao, Z. (2017). Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B: Methodological, 96, 46–67.
Google Scholar
Nassir, N., Khani, A., Lee, S., Noh, H., & Hickman, M. (2011). Transit stop-level origin-destination estimation through use of transit schedule and automated data collection system. Transportation research record, 2263, 140–150. https://doi.org/10.3141/2263-16.
Article
Google Scholar
Zou, Q., Yao, X., Zhao, P., Wei, H., & Ren, H. (2018). Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway. Transportation, 45(3), 919–944.
Google Scholar
Trépanier, M., Tranchant, N., & Chapleau, R. (2007). Individual trip destination estimation in a transit smart card automated fare collection system. Journal of Intelligent Transportation Systems, 11(1), 1–14.
Google Scholar
Munizaga, M. A., & Palma, C. (2012). Estimation of a disaggregate multimodal public transport origin–destination matrix from passive smartcard data from Santiago, Chile. Transportation Research Part C: Emerging Technologies, 24, 9–18.
Google Scholar
Ben-Akiva, M. E., Macke, P. P., & Hsu, P. S. (1985). Alternative methods to estimate route-level trip tables and expand on-board surveys. Transportation Research Record, 1037, 1–11 http://onlinepubs.trb.org/Onlinepubs/trr/1985/1037/1037-001.pdf.
McCord, M., Mishalani, R., Goel, P., & Strohl, B. (2010). Iterative proportional fitting procedure to determine bus route passenger origin-destination flows. Transportation Research Record, 2145, 59–65. https://doi.org/10.3141/2145-07.
Article
Google Scholar
Ji, Y., Mishalani, R. G., & McCord, M. R. (2014). Estimating transit route OD flow matrices from APC data on multiple bus trips using the IPF method with an iteratively improved base: Method and empirical evaluation. Journal of Transportation Engineering, 140(5), 04014008.
Google Scholar
Ji, Y., Mishalani, R. G., & McCord, M. R. (2015). Transit passenger origin–destination flow estimation: Efficiently combining onboard survey and large automatic passenger count datasets. Transportation Research Part C: Emerging Technologies, 58, 178–192. https://doi.org/10.1016/j.trc.2015.04.021.
Article
Google Scholar
Nassir, N., Hickman, M., & Ma, Z.-L. (2015). Activity detection and transfer identification for public transit fare card data. Transportation, 42(4), 683–705. https://doi.org/10.1007/s11116-015-9601-6.
Article
Google Scholar
Gordon, J., Koutsopoulos, H., Wilson, N., & Attanucci, J. (2013). Automated inference of linked transit journeys in London using fare-transaction and vehicle location data. Transportation Research Record, 2343, 17–24.
Google Scholar
Gordon, J. B., Koutsopoulos, H. N., & Wilson, N. H. (2018). Estimation of population origin–interchange–destination flows on multimodal transit networks. Transportation Research Part C: Emerging Technologies, 90, 350–365.
Google Scholar
Sánchez-Martínez, G. E. (2017). Inference of public transportation trip destinations by using fare transaction and vehicle location data: Dynamic programming approach. Transportation Research Record, 2652, 1–7.
Google Scholar
Kusakabe, T., Iryo, T., & Asakura, Y. (2010). Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation, 37(5), 731–749. https://doi.org/10.1007/s11116-010-9290-0.
Article
Google Scholar
Van der Hurk v E, Kroon L, Maroti G, Vervest P. (2014). Deduction of Passengers' route choices from smart card data. IEEE Transactions on Intelligent Transportation Systems, 16(1), 430–440.
Google Scholar
Zhou, F., & Xu, R. H. (2012). Model of passenger flow assignment for urban rail transit based on entry and exit time constraints. Transportation Research Record, 2284(1), 57–61.
Google Scholar
Hofmann, M., Wilson, S. P., & White, P. (2009). Automated identification of linked trips at trip level using electronic fare collection data. In Presented at the transportation res board 88th annual meeting transportation res board https://trid.trb.org/view.aspx?id=881728.
Google Scholar
Hong, S. P., Min, Y. H., Park, M. J., Kim, K. M., & Oh, S. M. (2016). Precise estimation of connections of metro passengers from smart card data. Transportation, 43(5), 749–769.
Google Scholar
Yap, M. D., Cats, O., van Oort, N., & Hoogendoorn, S. P. (2017). A robust transfer inference algorithm for public transport journeys during disruptions. Transportation Research Procedia, 27, 1042–1049.
Google Scholar
Xu, X., Liu, J., Li, H., & Jiang, M. (2016). Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study. Transportation Research Part E-Logistics & Transportation Review, 87, 130–148.
Google Scholar
Han, G., & Sohn, K. (2016). Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model. Transportation Research Part B: Methodological, 83, 121–135. https://doi.org/10.1016/j.trb.2015.11.015.
Article
Google Scholar
Ji, Y., Mishalani, R., McCord, M., & Goel, P. (2011). Identifying homogeneous periods in bus route origin-destination passenger flow patterns from automatic passenger counter data. Transportation Research Record, 2216, 42–50. https://doi.org/10.3141/2216-05.
Article
Google Scholar
Ghaemi, M. S., Agard, B., Trépanier, M., & Partovi, N. V. (2017). A visual segmentation method for temporal smart card data. Transportmetrica A: Transport Science, 13(5), 381–404.
Google Scholar
Goulet-Langlois G, Koutsopoulos HN, , Zhao J (2016) Inferring patterns in the multi-week activity sequences of public transport users. Transportation Research Part C: Emerging Technologies, 64:1–16.
Google Scholar
Agard, B., Morency, C., & Trépanier, M. (2006). Mining public transport user behaviour from smart card data. IFAC Proceedings Volumes, 39(3), 399–404.
Google Scholar
Morency, C., Trépanier, M., & Agard, B. (2007). Measuring transit use variability with smart-card data. Transport Policy, 14(3), 193–203.
Google Scholar
Agard, B. (2009). Mining smart card data from an urban transit network. In Encyclopedia of data warehousing and mining (2nd ed., pp. 1292–1302). Hershey, PA: IGI Global.
Zhao, J., Qu, Q., Zhang, F., Xu, C., & Liu, S. (2017). Spatio-temporal analysis of passenger travel patterns in massive smart card data. IEEE Transactions on Intelligent Transportation Systems, 18(11), 3135–3146.
Google Scholar
Sun, L., Axhausen, K. W., Lee, D. H., & Huang. (2013). Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110(34), 13774–13779.
Google Scholar
Ma, X., Wu, Y.-J., Wang, Y., Chen, F., & Liu, J. (2013). Mining smart card data for transit riders’ travel patterns. Transportation Research Part C: Emerging Technologies, 36, 1–12.
Google Scholar
Kieu, L. M., Bhaskar, A., & Chung, E. (2015). Passenger segmentation using smart card data. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1537–1548.
Google Scholar
Kieu, L. M., Bhaskar, A., & Chung, E. (2015). A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card AFC data. Transportation Research Part C: Emerging Technologies, 58, 193–207.
Google Scholar
Ma, X., Liu, C., Wen, H., Wang, Y., & Wu, Y. J. (2017). Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 58, 135–145.
Google Scholar
Qi, G., Huang, A., Guan, W., & Fan, L. (2018). Analysis and prediction of regional mobility patterns of bus Travellers using smart card data and points of interest data. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1197–1214.
El Mahrsi, M. K., Côme, E., Oukhellou, L., & Verleysen, M. (2017). Clustering smart card data for urban mobility analysis. IEEE Transactions on Intelligent Transportation Systems, 18(3), 712–728.
Kieu, L. M., Ou, Y., & Cai, C. (2018). Large-scale transit market segmentation with spatial-behavioural features. Transportation Research Part C: Emerging Technologies, 90, 97–113.
Ceder, A. (2007). Public transit planning and operation: Modeling, practice and behavior. Boca Raton: CRC press.
Shen, Y., Xu, J., & Zeng, Z. (2016). Public transit planning and scheduling based on AVL data in China. International Transactions in Operational Research, 23(6), 1089–1111.
MATH
Google Scholar
Shen, Y., Xu, J., & Li, J. (2016). A probabilistic model for vehicle scheduling based on stochastic trip times. Transportation Research Part B: Methodological, 85, 19–31.
Google Scholar
Shen, Y., Xu, J., & Wu, X. (2017). Vehicle scheduling based on variable trip times with expected on-time performance. International Transactions in Operational Research, 24(1–2), 99–113.
MathSciNet
MATH
Google Scholar
Chen, Y., Yang, S., Hu, M., & Wu, Y. J. (2016). A reliability-based transit trip planning model under transit network uncertainty. Public Transport, 8(3), 477–496.
Google Scholar
Hickman, M. (2003). Robust passenger itinerary planning using transit AVL data. In: The IEEE 5th International Conference on Intelligent Transportation Systems, Singapore (pp. 840–845). IEEE. https://doi.org/10.1109/ITSC.2002.1041329.
Tien DN, MacDonald T, Xu Z (2011) TDplanner: Public transport planning system with real-time route updates based on service delays and location tracking. In: Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd (pp. 1–5). IEEE. http://ieeexplore.ieee.org/abstract/document/5956479/
Li, J.-Q., Zhou, K., Zhang, L., & Zhang, W.-B. (2012). A multimodal trip planning system with real-time traffic and transit information. Journal of Intelligent Transportation Systems, 16(2), 60–69. https://doi.org/10.1080/15472450.2012.671708.
Article
Google Scholar
Zhang, L., Li, J. Q., Zhou, K., Gupta, S. D., Li, M., Zhang, W. B., Miller, M. A., & Misener, J. A. (2011). Traveler information tool with integrated real-time transit information and multimodal trip planning: Design and implementation. Transportation Research Record, 2215(1), 1–10.
Google Scholar
Gavriilidou, A., & Cats, O. (2018). Reconciling transfer synchronization and service regularity: Real-time control strategies using passenger data. Transportmetrica A: Transport Science, 15(2), 215–243. https://doi.org/10.1080/23249935.2018.1458757.
Google Scholar
Sáez, D., Cortés, C. E., Milla, F., Núñez, A., Tirachini, A., & Riquelme, M. (2012). Hybrid predictive control strategy for a public transport system with uncertain demand. Transportmetrica, 8(1), 61–86.
Google Scholar
Sun, A., & Hickman, M. (2008). The holding problem at multiple holding stations. In Computer-aided systems in public transport (pp. 339–359). Berlin, Heidelberg: Springer. http://link.springer.com/chapter/10.1007/978-3-540-73312-6_17.
Berrebi, S. J., Watkins, K. E., & Laval, J. A. (2015). A real-time bus dispatching policy to minimize passenger wait on a high frequency route. Transportation Research Part B: Methodological, 81, 377–389.
Google Scholar
Hickman, M. D. (2001). An analytic stochastic model for the transit vehicle holding problem. Transportation Science, 35(3), 215–237.
MATH
Google Scholar
Hadas Y, Ceder A (Avi) (2010) Optimal coordination of public-transit vehicles using operational tactics examined by simulation. Transportation Research Part C: Emerging Technologies, 18(6) : 879–895. https://doi.org/10.1016/j.trc.2010.04.002
Google Scholar
Cortés, C. E., Sáez, D., Milla, F., Núñez, A., & Riquelme, M. (2010). Hybrid predictive control for real-time optimization of public transport systems’ operations based on evolutionary multi-objective optimization. Transportation Research Part C: Emerging Technologies, 18(5), 757–769.
Google Scholar
Sánchez-Martínez, G. E., Koutsopoulos, H. N., & Wilson, N. H. M. (2016). Real-time holding control for high-frequency transit with dynamics. Transportation Research Part B: Methodological, 83, 1–19.
Google Scholar
Andres, M., & Nair, R. (2017). A predictive-control framework to address bus bunching. Transportation Research Part B: Methodological, 104, 123–148.
Google Scholar
Zolfaghari, S., Azizi, N., & Jaber, M. Y. (2004). A model for holding strategy in public transit systems with real-time information. International Journal of Transport Management, 2(2), 99–110.
Google Scholar
Eberlein, X. J., Wilson, N. H., & Bernstein, D. (2001). The holding problem with real–time information available. Transportation Science, 35(1), 1–18.
MATH
Google Scholar
Yu, B., & Yang, Z. (2009). A dynamic holding strategy in public transit systems with real-time information. Applied Intelligence, 31(1), 69–80.
Google Scholar
Chen, Q., Adida, E., & Lin, J. (2013). Implementation of an iterative headway-based bus holding strategy with real-time information. Public Transport, 4(3), 165–186. https://doi.org/10.1007/s12469-012-0057-1.
Article
Google Scholar
Luo, X., Liu, S., Jin, P. J., Jiang, X., & Ding, H. (2017). A connected-vehicle-based dynamic control model for managing the bus bunching problem with capacity constraints. Transportation Planning and Technology, 40(6), 722–740.
Google Scholar
Asgharzadeh, M., & Shafahi, Y. (2017). Real-time bus-holding control strategy to reduce passenger waiting time. Transportation Research Record, 2647, 9–16.
Google Scholar
Berrebi, S. J., Hans, E., Chiabaut, N., Laval, J. A., Leclercq, L., & Watkins, K. E. (2018). Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies, 87, 197–211.
Google Scholar
Berrebi, S. J., Crudden, S. Ó., & Watkins, K. E. (2018). Translating research to practice: Implementing real-time control on high-frequency transit routes. Transportation Research Part A: Policy and Practice, 111, 213–226.
Google Scholar
Fan, W., & Machemehl, R. (2011). Bi-level optimization model for public transportationnetwork redesign problem: Accounting for equity issues. Transportation Research Record, 2263, 151–162.
Google Scholar
Chen, B., & Cheng, H. H. (2010). A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions on Intelligent Transportation Systems, 11(2), 485–497.
Google Scholar
Barry, J., Newhouser, R., Rahbee, A., & Sayeda, S. (2002). Origin and destination estimation in new York City with automated fare system data. Transportation Research Record, 1817, 183–187.
Google Scholar
Wang, W., Attanucci, J., & Wilson, N. (2011). Bus passenger origin-destination estimation and related analyses using automated data collection systems. Journal of Public Transportation, 14(4), 131–150. https://doi.org/10.5038/2375-0901.14.4.7.
Google Scholar
Zhao, J., Rahbee, A., & Wilson, N. H. M. (2007). Estimating a rail passenger trip origin-destination matrix using automatic data collection systems. Computer-Aided Civil and Infrastructure Engineering, 22(5), 376–387. https://doi.org/10.1111/j.1467-8667.2007.00494.x.
Article
Google Scholar
Seaborn, C., Attanucci, J., & Wilson, N. (2009). Analyzing multimodal public transport journeys in London with smart card fare payment data. Transportation research record, 2121, 55–62.
Google Scholar
Sánchez-Martínez, G. E. (2017). Estimating Fare Noninteraction and Evasion with Disaggregate Fare Transaction Data. Transportation Research Record, 2652, 98–105.
Google Scholar
Ectors, W., Reumers, S., Lee, W. D., Choi, K., Kochan, B., Janssens, D., Bellemans, T., & Wets, G. (2017). Developing an optimised activity type annotation method based on classification accuracy and entropy indices. Transportmetrica A: Transport Science, 13(8), 742–766.
Google Scholar
Devillaine, F., Munizaga, M., & Trépanier, M. (2012). Detection of activities of public transport users by analyzing smart card data. Transportation Research Record, 2276, 48–55.
Google Scholar
Ghiani, G., Guerriero, F., Laporte, G., & Musmanno, R. (2003). Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research, 151(1), 1–11.
MATH
Google Scholar
Okunieff, P. E. (1997). AVL systems for bus transit: A synthesis of transit practice.
Google Scholar
Munizaga, M., Devillaine, F., Navarrete, C., & Silva, D. (2014). Validating travel behavior estimated from smartcard data. Transportation Research Part C: Emerging Technologies, 44, 70–79.
Google Scholar
Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., Jr., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301–313.
Google Scholar
Wang, F., & Chen, C. (2018). On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging Technologies, 87, 58–74.
Google Scholar
Alexander, L., Jiang, S., Murga, M., & González, M. C. (2015). Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240–250.
Google Scholar
Ma, J., Li, H., Yuan, F., & Bauer, T. (2013). Deriving operational origin-destination matrices from large scale mobile phone data. International Journal of Transportation Science and Technology, 2(3), 183–204.
Google Scholar
Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X., & Yang, L. (2016). Big data for social transportation. IEEE Transactions on Intelligent Transportation Systems, 17(3), 620–630.
Google Scholar
Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C. (2014). Development of origin-destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63–74.
Google Scholar
Järv, O., Ahas, R., & Witlox, F. (2014). Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transportation Research Part C: Emerging Technologies, 38, 122–135.
Google Scholar
Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A., & González, M. C. (2015). The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies, 58, 162–177.
Google Scholar
Kelen, C., Vilarino, P., & Christou, G. (2017). Advanced demand data collection technologies for multi modal strategic modelling. Transportation Research Procedia, 27, 1058–1065.
Google Scholar
Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285–299.
Google Scholar
Ge, Q., & Fukuda, D. (2016). Updating origin–destination matrices with aggregated data of GPS traces. Transportation Research Part C: Emerging Technologies, 69, 291–312.
Google Scholar
Pinelli, F., Nair, R., Calabrese, F., Berlingerio, M., Di Lorenzo, G., & Sbodio, M. L. (2016). Data-driven transit network design from mobile phone trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1724–1733.
Google Scholar
Berlingerio, M., Calabrese, F., Di Lorenzo, G., Nair, R., Pinelli, F., & Sbodio, M. L. (2013). AllAboard: a system for exploring urban mobility and optimizing public transport using cellphone data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 663–666). Berlin Heidelberg: Springer.
Google Scholar
Wang, Z., He, S. Y., & Leung, Y. (2018). Applying mobile phone data to travel behaviour research: A literature review. Travel Behaviour and Society, 11, 141–155.
Google Scholar
Pereira, F. C., Rodrigues, F., & Ben-Akiva, M. (2015). Using data from the web to predict public transport arrivals under special events scenarios. Journal of Intelligent Transportation Systems, 19(3), 273–288.
Google Scholar
Othman, N. B., Legara, E. F., Selvam, V., & Monterola, C. (2015). A data-driven agent-based model of congestion and scaling dynamics of rapid transit systems. Journal of Computer Science, 10, 338–350.
Google Scholar