Eden T. Aetiology of childhood leukaemia. Cancer Treat Rev. 2010;36(4):286–97.
CAS
PubMed
Article
Google Scholar
Terracini B. Epidemiology of childhood cancer. Environ Health 2011; 10 Suppl 1(Suppl 1):S8.
Karathanasis NV, Choumerianou DM, Kalmanti M. Gene polymorphisms in childhood ALL. Pediatr Blood Cancer. 2008;52(3):318–23.
Article
Google Scholar
Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin N Am. 2015;62(1):47–60.
Article
Google Scholar
Schuz J, Erdmann F. Environmental exposure and risk of childhood leukemia: an overview. Arch Med Res. 2016;47(8):607–14.
PubMed
Article
Google Scholar
Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10.
CAS
PubMed
PubMed Central
Article
Google Scholar
TrevnO LR, Yang W, French D, Hunger SP, Carroll WL, Devidas M, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5.
Article
Google Scholar
Orsi L, Rudant J, Bonaventure A, Goujon-Bellec S, Corda E, Evans TJ, et al. Genetic polymorphisms and childhood acute lymphoblastic leukemia: GWAS of the ESCALE study (SFCE). Leukemia. 2012;26(12):2561–4.
CAS
PubMed
Article
Google Scholar
Walsh KM, Chokkalingam AP, Hsu LI, Metayer C, de Smith AJ, Jacobs DI, et al. Associations between genome-wide native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia. 2013;27(12):2416–9.
CAS
PubMed
Article
Google Scholar
Akagi T, Thoennissen NH, George A, Crooks G, Song JH, Okamoto R, et al. In vivo deficiency of both C/EBPbeta and C/EBPepsilon results in highly defective myeloid differentiation and lack of cytokine response. PLoS One. 2010;5(11):e15419.
PubMed
PubMed Central
Article
Google Scholar
Gharbi H, Ben Hassine I, Soltani I, Safra I, Ouerhani S, Bel Haj Othmen H, et al. Association of genetic variation in IKZF1, ARID5B, CDKN2A, and CEBPE with the risk of acute lymphoblastic leukemia in Tunisian children and their contribution to racial differences in leukemia incidence. Pediatr Hematol Oncol. 2016;33(3):157–67.
CAS
PubMed
Article
Google Scholar
Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R, et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2007;109(8):3451–61.
CAS
PubMed
Article
Google Scholar
Wang C, Chen J, Sun H, Sun L, Liu Y. CEBPE polymorphism confers an increased risk of childhood acute lymphoblastic leukemia: a meta-analysis of 11 case-control studies with 5,639 cases and 10,036 controls. Ann Hematol. 2015;94(2):181–5.
CAS
PubMed
Article
Google Scholar
Sun J, Zheng J, Tang L, Healy J, Sinnett D, Dai YE. Association between CEBPE variant and childhood acute leukemia risk: evidence from a meta-analysis of 22 studies. PLoS One. 2015;10(5):e0125657.
PubMed
PubMed Central
Article
Google Scholar
Al-Absi B, Razif MFM, Noor SM, Saif-Ali R, Aqlan M, Salem SD, et al. Contributions of IKZF1, DDC, CDKN2A, CEBPE, and LMO1 gene polymorphisms to acute lymphoblastic leukemia in a Yemeni population. Genetic Test Mol Biomark. 2017;21(10):592–9.
CAS
Article
Google Scholar
Bekker-Mendez VC, Nunez-Enriquez JC, Torres Escalante JL, Alvarez-Olmos E, Gonzalez-Montalvoc PM, Jimenez-Hernandez E, et al. ARID5B, CEBPE and PIP4K2A germline genetic polymorphisms and risk of childhood acute lymphoblastic leukemia in Mexican patients: a MIGICCL study. Arch Med Res. 2016;47(8):623–8.
CAS
PubMed
Article
Google Scholar
Bhandari P, Ahmad F, Mandava S, Das BR. Association of genetic variants in ARID5B, IKZF1 and CEBPE with risk of childhood de novo B-lineage acute lymphoblastic leukemia in India. Asian Pac J Cancer Prev. 2016;17(8):3989–95.
PubMed
Google Scholar
Urayama KY, Takagi M, Kawaguchi T, Matsuo K, Tanaka Y, Ayukawa Y, et al. Regional evaluation of childhood acute lymphoblastic leukemia genetic susceptibility loci among Japanese. Sci Rep. 2018;8(1):789.
PubMed
PubMed Central
Article
Google Scholar
Kreile M, Piekuse L, Rots D, Dobele Z, Kovalova Z, Lace B. Analysis of possible genetic risk factors contributing to development of childhood acute lymphoblastic leukaemia in the Latvian population. Arch Med Sci. 2016;12(3):479–85.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 w264.
Article
PubMed
Google Scholar
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.
Article
PubMed
Google Scholar
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 21(11):1539–58.
Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol. 2008;61(7):634–45.
PubMed
Article
Google Scholar
DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(Pt A):139–45.
PubMed
PubMed Central
Article
Google Scholar
Copas J. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics. 2000;1(3):247–62.
CAS
PubMed
Article
Google Scholar
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed). 1997;315(7109):629–34.
CAS
Article
Google Scholar
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.
CAS
Article
PubMed
Google Scholar
Wada T, Akagi T. Role of the leucine zipper domain of CCAAT/enhancer binding protein-epsilon (C/EBPepsilon) in neutrophil-specific granule deficiency. Crit Rev Immunol. 2016;36(4):349–58.
PubMed
Article
Google Scholar
Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, et al. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia. 2012;26(5):902–9.
CAS
PubMed
Article
Google Scholar
Prasad RB, Hosking FJ, Jayaram V, Elli P, Rolf K, Mel G, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7.
CAS
PubMed
Article
Google Scholar
Vijayakrishnan J, Sherborne AL, Sawangpanich R, Hongeng S, Houlston RS, Pakakasama S. Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. Leukemia Lymphoma. 2010;51(10):1870–4.
CAS
PubMed
Article
Google Scholar
Pastorczak A, Górniak P, Sherborne A, Hosking F, Trelińska J, Lejman M, et al. Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the polish population. Leuk Res. 2011;35(11):1534–6.
CAS
PubMed
Article
Google Scholar
Lautner-Csorba O, Gezsi A, Semsei AF, Antal P, Erdelyi DJ, Schermann G, et al. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance. BMC Med Genet. 2012;5:42.
CAS
Google Scholar
Chokkalingam AP, Hsu LI, Metayer C, Hansen HM, Month SR, Barcellos LF, et al. Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics. Cancer Causes Control. 2013;24(10):1789–95.
PubMed
PubMed Central
Article
Google Scholar
Ross JA, Linabery AM, Blommer CN, Langer EK, Spector LG, Hilden JM, et al. Genetic variants modify susceptibility to leukemia in infants: a Children’s oncology group report. Pediatr Blood Cancer. 2013;60(1):31–4.
PubMed
Article
Google Scholar
Wang Y, Chen J, Li J, Deng J, Rui Y, Lu Q, et al. Association of three polymorphisms in ARID5B, IKZF1 and CEBPE with the risk of childhood acute lymphoblastic leukemia in a Chinese population. Gene. 2013;524(2):203–7.
CAS
PubMed
Article
Google Scholar
Emerenciano M, Barbosa TC, Lopes BA, Blunck CB, Faro A, Andrade C, et al. ARID5B polymorphism confers an increased risk to acquire specific MLL rearrangements in early childhood leukemia. BMC Cancer. 2014;14:127.
PubMed
PubMed Central
Article
Google Scholar