It is known that single-layer graphene produces a complex CARS response. In addition to the CARS photon with energy of 2ωp − ωs, in the sample, a broadband two-photon-excited fluorescence (TPEF) originating from both Stokes and pump excitation beams is also generated (see Fig. 2a). Note that the presence of the TPEF reduces the ability of the CARS spectroscopy for graphene characterization. However, it is easy to show that the contribution of the TPEF to the total detected signal can be substantially reduced (up to 40%) by varying the intensities of the Stokes and the pump beams. The CARS spectrum of SLG is presented in Fig. 2a. One can see that a small “dip” at the G-band frequency is clearly observed, and it indicates that the contribution of the nonresonant component to the CARS response is dominant [17, 21]. Figure 2c demonstrates the CARS image of graphene obtained at the frequency of the G-band. In fact, the nature of the bright spots and the dark areas is not completely clear. Most probably, such spots are the defect-induced luminescence centers. On the other hand, due to the linear polarization of both excitation beams, the efficiency of the CARS generation should depend on the roughness of the graphene surface. Moreover, since the contribution of the TPEF and CARS to the total signal is almost equal, both mechanisms may be responsible for the variable brightness of the graphene sheet in the image.
Multi-layer graphene (~ 10 layers) showed the same “island” structure (Fig. 2d). Despite the fact that an increase of the number of graphene layers smoothes the total signal and as a result leads to uniform picture, the interpretation of the bright spots in the case of MLG is at the moment unclear. It is also worth noting that increasing the number of graphene layers leads to improvement of the signal-to-noise ratio and as a result improves “dip” contrast (CARS contribution to total signal grows faster than TPEF). However, at present, the dependence of the “dip” depth on the number of graphene layers as well as the absence of the quadratic dependence of the observed CARS signal vs the amount of graphene layers [14] is still unclear and should be investigated separately which is beyond the framework of this work.
It is known that the CARS signal is a product of the interference of resonant and nonresonant processes. In other words, a vibrational discrete resonant signal interferes with an electronic continuous nonresonant signal. The overlap of discrete and continuous spectra appears as asymmetric profile in the spectral band and is well described by Fano formalism [17, 23, 24]. The Fano formula (1) contains an asymmetry parameter q describing the relationship of the resonance and nonresonance contributions. In expression (1), E is a difference between the photon energies of the pump and the Stokes beams, Ω is the vibrational resonance energy, and Γ is the width of the resonance line.
$$ {I}_{\mathrm{CARS}}=A\frac{{\left[\left(\Omega -E\right)+\Gamma q\right]}^2}{{\left(\Omega -E\right)}^2+{\Gamma}^2} $$
(1)
When nonresonance prevails over resonance, then |q| ≪ 1 and the lineshape is a symmetric “dip” [17]. In CARS, the q parameter is defined as the ratio of the resonant and nonresonant parts of the third-order susceptibility. For graphene, we have a limiting case of Fano resonance, where the nonresonant contribution (continuous spectrum) is much larger than the resonant contribution (discrete spectrum). Thus, the “dip” obtained in the graphene spectrum at the resonance frequency indicates the electronic nature of its CARS response.
At the same time, as it was previously shown in [20], the remarkable “peak” is observed in the CARS spectrum of the CNTs at the frequency of the G-band. Moreover, in the case of semiconducting CNTs with 1.1 nm diameter, due to the triple resonance, the CARS signal can be significantly enhanced, which allows to detect the CARS response from individual CNTs or their small agglomerates. It is worth noting that CARS enhancement and the appearance of the Raman-like profile occur only for SWCNTs of a certain diameter, for which the arrangement of the discrete energy levels is in resonance with the energy of the incoming excitation photons.
With the diameter of the probed CNTs in our experimental setup, the resonance conditions were fulfilled showing both a strong CARS response and a Raman-like profile of the G-band (Fig. 3). In context of the Fano formalism, it means that the asymmetry parameter |q| ≫ 1, and hence, the shape of the G-band is close to Lorentzian [17].
To exploit the observed difference in the shape of the G-band resonance, the study of the graphene/CNT system by the CARS technique requires a suitable criterion for the separation of these carbon components. The imaging of such a composite system at the frequency of the G-band is not selective and associated analysis is problematic.
Figure 4a shows the image of the CNT/graphene composite system recorded at 1585 cm−1. Some bright spots could be assigned to graphene forming a pattern similar to that shown in Fig. 2. At the same time, other bright spots were attributed to CNTs. The CARS spectra collected from two different points of similar brightness, point no. 1 and point no. 2, are presented in Fig. 4b. As can be seen, at the frequency of the G-mode, there is a “peak” for point no. 1 and a “dip” for point no. 2. However, the maximum amplitude of “peak” is approximately equal to the minimum of the “dip” (Fig. 4b). This means that, in practice, because both of those objects have the same brightness, the additional information is required for their separation. Figure 4c shows the imaging of the same area recorded at 1610 cm−1. As can be seen, some bright spots are not present, including the point no. 1. Because in the case of the CNTs the shift from 1585 to 1610 cm−1 should lead to the decrease of the signal, it is reasonable to assume that the spots that disappeared at 1610 cm−1 correspond to the tubes. Consequently, the objects remaining in the image at 1610 cm−1 correspond to the graphene. In other words, graphene can be efficiently separated from CNTs by mapping at any frequency away from the resonance (1585 ± 15 cm−1). According to our observations, to obtain the spatial distribution of the CNTs, it is useful to generate a pseudo-image based on the difference between the images acquired at 1585 and 1610 cm−1. Figure 4d demonstrates the image obtained by pixel-to-pixel subtraction of the data presented in Fig. 4a and c. One can see the CNTs appear as bright spots (point no. 1, the difference between the CARS signal at 1585 cm−1 and 1610 cm−1 has positive sing) while the signal from graphene is absent (point no. 2, the difference between the CARS signal at 1585 cm−1 and at 1610 cm−1 has a negative value). In general, the sign of difference between the CARS signal at 1585 cm−1 and at 1610 cm−1 can be used as one of the criteria to generate the images representing CNT (Fig. 4f) distribution and pure graphene area (Fig. 4e), respectively.
It is worth noting that there are other possibilities for the separation of graphene from CNTs by imaging. For example, it is possible to use the difference in fluorescence. Graphene has a noticeable TPEF, while the CNTs do not fluoresce. However, for CNTs of other diameters, which have not been studied in this work, the TPEF may arise, and then the use of fluorescence, as a contrasting mechanism, becomes more complicated. The study of other contrast mechanisms or their combination is beyond the scope of this article.