Abstract
Understanding and manipulation of surface impedance in graphene hybrid structure is a significant issue for applications of graphenebased optoelectronics devices. In order to achieve this purpose in the terahertz region, analytical expressions for the impedances of metasurface were derived, which allows us to easily understand the relationship between physical dimensions and impedance. Simulation results show an excellent agreement with the analytical predictions. In addition, we focus on the synthetic impedance when square patch and graphene sheet joined together, discuss the influence of the size of metasurface as well as chemical potentiality as for graphene on the synthetic impedance. Based on these results, a number of absorbers as well as optical devices can be designed that utilize impedance metasurfaces.
Introduction
In recent years, new artificial impedance metasurfaces, exhibiting anomalous electromagnetic properties, were proposed and investigated in the previous literatures [1,2,3,4,5,6]. Meanwhile, many kinds of metasurface applications have been introduced, such as holography [1], highresolution imaging [2], carpet cloak [3], and absorbers [4, 5]. Metasurfaces can play a significant role in realizing the thin terahertz and optical devices. Nevertheless, due to the dispersive response by metasurfaces, many devices can only work in a single frequency band and the narrow spectrum cannot be tunable. Very recently, by varying the applied voltage at a broad range frequency such as terahertz or even optical frequencies, the conductivity can be controlled dynamically [7,8,9,10], that is why graphene proved that it is the best candidate for tuning the characteristics of plasmonic and metasurfaces structures [11]. Therefore, many devices designed by metasurface and graphene have been proposed [12,13,14].
In the meantime, several analytical models for calculating the equivalent impedance of metasurfaces or graphene sheet have been employed to explain the physical mechanism [8, 15,16,17,18,19,20]. Plane waves used for the excitation of graphene or metasurfaces models that can be divided into two different methods that are analytical and computational. Computational method is work on the Floquet expression [21, 22]. The advantage of using this method is that they are not restricted to the geometry of structures, and one of the most important merits is that it can provide accurate results. Nevertheless, commercial software using this method consumes considerable time and computational resources. On the other hand, a more precise and accurate analytical method is developed [23,24,25,26,27], it is easy to use and provide a better analysis of physical phenomena. In spite of the abovementioned advantages, the challenges of achieving a highprecision analytical model for a specific metasurface unit are also prominent. Fortunately, considerable efforts and work have been made to predict the equivalent surface impedance and produced many excellent results [16, 28]. However, to the authors’ knowledge, the analytical model able to predict surface impedance of this hybrid combination is not yet known.
In this paper, a 3D artificial absorber was utilized to analyze and predict the impedance of metasurfaces/graphene hybrid structures, which takes into account the relationship between metasurfaces and graphene. For fast calculation of the surface impedance of metasurfaces, the analytical formulas were firstly developed. These simple and precise analytical formulas can allow a complete elucidation and basic requirement about impedance design. Then, the impedances of the graphene sheets are calculated. Finally, we focus on the relationship between the size of the metasurface, chemical potential μ_{c}, and the impedance of the composite structure. Here, the surface impedance of metasurfaces/grapheme hybrid structure is discussed by calculating its real and imaginary components. To the best of our knowledge, there is almost no literature reported this mechanism comprehensively.
Methods
Impedances for Square Patches and Graphene Sheets
A common structure of a metasurfacegraphene absorber is presented in Fig. 1a. This simple structure absorber can be easily fabricated by surface micromachining. In this configuration, a thin conductive metasurfacegraphene hybrid layer and the metallic ground plane are separated by a dielectric substrate as a spacer. The distance to the ground is h. For a small size square patch in comparison with the wavelength (period of array D ≪ λ) and patches are separated by a narrow slots (width of slot D − w ≪ D), the present model is valid. According to the transmission line theory, an equivalent circuit model of the absorptive structure can be constructed (shown in Fig. 1b), which can model the metasurfacegraphene. A transmission line, short circuit, and the grid impedance Z_{mg}, respectively, model the dielectric substrate section, ground plane, and the surface impedance of top patterned hybrid layered. According to the transmission line theory, the input impedance Z_{in} of this absorber can be established as follows:
Where Z_{h} and k_{zh} are the impedance of the substrate layers and propagation constant in this region, respectively. Then, the absorptivity at the normal incidence can be calculated by
It is obvious that the impedance of metasurfacegraphene sheet can be extracted from the simulated reflection coefficient. The relationship between the size of the conductive patch and the chemical potential μ_{c} can be found.
Impedance for Square Patches
When the planewave is perpendicular to the metasurface, the array of planar patches acts as a capacitive grid (as shown in Fig. 1a). Surface impedance Z_{m} can be illustrated as the electromagnetic properties of square patches that relate the average current intensity 〈J〉 and the averaged electric field strength 〈E〉 in the plane of patch:
In the case of a lossy pure resistive sheet impedance Z_{s} (im Z_{s}=0), at normal incidence the equivalent impedance of the patch is represented by Z_{m}, and can be expressed as follows [9, 18]:
Where \( {\eta}_{\mathrm{eff}=}\sqrt{\mu_0/{\varepsilon}_0{\varepsilon}_{\mathrm{eff}}} \) represents the wave impedance of the uniform host medium, and D/w is the geometric element. The effective relative permittivity can be approximated as
Furthermore, the grid parameter α for an electrically dense array of ideally conducting patches can be written as
\( {k}_{\mathrm{eff}}={k}_0\sqrt{\varepsilon_{\mathrm{eff}}} \) is the wavenumber in the effective host medium. In free space, μ_{0}, ε_{0}, and k_{0} are the permeability, permittivity, and the wave number, respectively. Furthermore, it is worth to point out that relation (4) is valid when the wavelength λ is much greater than D.
According to the equation (2), we can find that the equivalent impedance is not only determined by the material sheet resistivity, but also by the array period D and width w of the structure parameters. To verify the certainty of such analytical formulas, the results obtained by fullwave simulations are presented and compared against the analytical solutions. The simulation discussed here was performed by using commercially available software Ansoft HFSS. For obtaining the reflection characteristics of the metasurfacegraphene absorber unit cell, the periodic boundary conditions and Floquet ports were implemented. During its simulation, the pure resistive sheet impedance with Z_{s} = 35 Ω/sq is deposited on the substrate with thickness h = 20 μm, length D = 20 μm, and the relative permittivity of ε_{r} = 3.2(1 − j0.045). In order to extract the patch impedance Z_{m}, according to the relationship between the simulated input impedance Z_{in} and the surface impedance of the grounded dielectric slab Z_{gd}, the impedance of the metasurface patch can be expressed as follows:
Where Z_{gd} = jZ_{d} tan(k_{d}h), \( {Z}_d=\sqrt{\mu_0/{\varepsilon}_0{\varepsilon}_r} \) is the characteristic impedance of the slab, \( {k}_d=\omega \sqrt{\mu_0{\varepsilon}_0{\varepsilon}_r} \) is the propagation constant orthogonal to the surface of the substrate for the TEM mode.
Analytical results are verified by comparison with the simulated ones based on the extracted reflection coefficient, as shown in Fig. 2. The black curves show the simulated results while the red curves are computed by using the proposed analytical expression. Although there exists a small difference between the simulated results and the theoretical predictions, this is due to Eq. (3) is an approximate equation. The overall trend is the same. Thus, confirming the validity and accuracy of our analytical expression for this model.
In order to investigate the effect of the patch sizes on the impedance Z_{m} and validate the effectiveness of the formula (2), we performed the additional numerical simulation. Figure 3 plots the real and imaginary parts of the grid impedance Z_{m} for various geometrical parameters of the unit cell. From Fig. 3a, it can be observed that the real parts of the impedance Z_{m} decreases as the parameter w increases from 17 to 19.5 μm. According to Eq.2, we can find that the real parts of Z_{m} are inversely proportional to the patch length w. However, the imaginary parts show the opposite trend as shown in dotted lines (shown in Fig. 3b). Taking into account the Eqs. (2) and (3), the imaginary parts can be given by
From the relation (8), we know that when w increases from 17 to 19.5 μm, the imaginary parts of the impedance Z_{m} will increase.
Impedance for Graphene Sheets
Graphene can be seen as an infinitesimally thin surface. When there is no external magnetostatic bias and spatial dispersion, the surface conductivity σ_{g}, can be computed by [29]
Where ℏ is the reduced Planck constant, e is the charge of an electron, k_{B} is the Boltzmann constant, while μ_{c}, ω, τ and T are the chemical potential, angular frequency, relaxation time, and temperature, respectively. Here, we assume T = 300 K and τ = 0.1 ps throughout this study. The sheet impedance of graphene can be calculated as
Where R_{g} and X_{g} are the surface resistance and reactance.
The sheet impedance of graphene is calculated according to Eqs. (9) and (10). Figure 4 indicates the real and imaginary components of the surface impedance versus chemical μ_{c}. We can find that the surface resistance and reactance continuously decrease with increasing μ_{c}. Moreover, the real parts of the graphene sheet surface resistance keep almost unchanged in the range of 0.2−6 THz when the chemical potential is fixed at a certain value.
Results and Discussion
In the case of a square patch on a graphene sheet, the surface impedance for this hybrid structure should be determined. In the prior literatures [8, 30,31,32,33,34,35,36,37], the total impedance at the surface of this hybrid structure Z_{mg} is equal to the parallel combination of the square patch impedance Z_{m} and the graphene sheet impedance Z_{g}, i.e., Z_{mg} = Z_{m} ∥ Z_{g}. However, through our simulation and calculation, it is found that this relationship is not valid. In order to verify the authenticity, we simulated a metasurfacegraphene absorber unit shown in Fig. 1a, then retrieved the surface impedance of the film according to the Eq (1). Figure 5 shows the analytical and simulated values of the real and imaginary part of Z_{mg} at different chemical potentials with w = 19 μm.
From Fig. 5a, b, one can see that there exists great differences between the analytical and simulated results. Figure 5a shows that the real part of the analytical results was mainly concentrated between 40 and 500 Ω, and the imaginary part of the effective impedance ranges from − 210 to 0 Ω. Nevertheless, according to Fig. 5b, we can find that the values of the real part of impedance from 20 to 140 Ω, and the imaginary part is close to 0 by increasing μ_{c} from 0 to 0.8 ev. However, the analytical and simulated results show the same trend that the impedance will tend to be stable with increasing frequency. The reason is that the impedances of the graphene sheet and square patch become smaller when the frequency increases. It is noteworthy that, compared the impedance of metasurfacegraphene film at 0 ev with the other results, the impedance Z_{mg} is quite different. This is due to the values of the graphene sheet impedance at 0 ev is quite different from the higher chemical potential (seen in Fig. 4).
Thus, we can make the following conclusions from the calculated and simulated impedance in Fig. 5. First, the surface impedance of the metasurfacegraphene film Z_{mg} is not strictly equal to the parallel combination of Z_{m} and Z_{g}. However, second, there exists a certain relationship between them. In order to demonstrate these conclusions, we first simulate the structure of the absorber shown in Fig. 1 with varied patch sizes. The reflection coefficient of the metasurfacegraphene absorber with the chemical potential μ_{c} = 0.4 ev is displayed in Fig. 6. According to the transmission line theory and model, the impedance Z_{mg} can be obtained. Figure 7 shows the real and imaginary components of the retrieved impedance Z_{mg} with different patch sizes. According to Fig. 7a, one can see that the real part of the metasurfacegraphene film decreases in the beginning as the patch length w increases from 17 μm to 19.5 μm. However, the opposite trend is found when the frequency is higher than 0.31 THz. On the other hand, Fig. 7b indicates that the trend of the imaginary part is the same as the first half of Fig. 7a. Furthermore, comparing Figs. 4 and 5a, we found that there was a similar situation in Figs. 3 and 7. It also directly proves the above conclusions.
To further explore the physical origins of surface resistance as a function of patch size, the surface current distributions of the metasurfacegraphene film in normal incidence are investigated at 3 THz. Figure 8 shows the variation in current intensity for w = 17, 18, and 19 μm with the chemical potential μ_{c} = 0.4ev. The color represents the intensity of the field. Obviously, as the size increases, the magnitude of surface current decreases. Taking into account Eq. 3 and Fig. 7a, when the electric field intensity is a fixed value at 3 THz, the film impedance of metasurfacegraphene can be given by
From relation (11), we can find that the length of the patch is inversely proportional to the magnitude of surface current J. The qualitative agreement between the simulated and the theoretical results can be clearly observed. To quantificationally analyze this physical phenomenon, the integral value of the surface current distribution on the metasurfacegraphene film is calculated by using the HFSS Fields Calculator, and the values are 1.10e6, 1.07e6, and 1.04e6 A, respectively. These results are consistent with Fig. 8.
Conclusions
In summary, for metasurfacegraphene thin film in THz frequency, the fundamental and effective surface impedances were investigated. Analytical formulas were derived and verified for calculating the impedance of a square patch. As for the metasurfacegraphene hybrid structure, the simulated results based on the extracted reflection coefficient were compared with the analytical results obtained from the parallel combination of the square patch and the graphene sheet impedances. Additional analysis was performed on discussing the effect of patch size on effective impedance. Furthermore, the relationships between patch size and film impedance were qualitatively and quantificationally explained by plotting and integrated the surface current. This analysis method can be extended to study the impedance problem with two other different conductive layers. In addition, extensive numerical simulation as well as analytically optimize composite layers for specially applied to antenna and absorber can be avoided by our analysis that made in this work.
Abbreviations
 HFSS:

Highfrequency structure simulation
 TEM:

Transverse electromagnetic
 THz:

Terahertz
References
Ye W, Zeuner F, Li X, Reineke B, He S, Qiu CW, Liu J, Wang Y, Zhang S, Zentgraf T (2016) Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7:11930
Lee K, Choi HJ, Son J, Park HS, Ahn J, Min B (2015) THz nearfield spectral encoding imaging using a rainbow metasurface. Sci Rep 5:14403
Tao H, Zhao M, Xu Y, Wang S, Yang Z (2018) Broadband metasurface carpet cloak in the near infrared region. IEEE Photonic Tech L 30(14):1281–1284
Wang J, Jiang Y (2018) Gradient metasurface for fourdirection anomalous reflection in terahertz. Opt Commun 416:125–129. https://doi.org/10.1016/j.optcom.2018.01.045
Xiong H, Wu YB, Dong J, Tang MC, Jiang YN, Zeng XP (2018) Ultrathin and broadband tunable metamaterial graphene absorber. Opt Express 26(2):1681–1688
Dai L, Zhang Y, Guo X, Zhao Y, Liu S, Zhang H (2018) Dynamically tunable broadband lineartocircular polarization converter based on Dirac semimetals. Opt Mater Express 8(10):3238–3249
Xiong H, Jiang YN, Yang C, Zeng XP (2017) Frequencytunable terahertz absorber with wirebased metamaterial and graphene. J Phys D: Appl Phys 51:015102
Wang XC, Zhao WS, Hu J, Yin WY (2015) Reconfigurable terahertz leakywave antenna using graphenebased highimpedance surface. IEEE T Nanotechnol 14(1):62–69
Wang XC, DíazRubio A, Sneck A, Alastalo A, Mäkelä T, AlaLaurinaho J, Zheng JF, Räisänen AV, Tretyakov SA (2018) Systematic design of printable metasurfaces: validation through reverseoffset printed millimeterwave absorbers. IEEE T Antenn Propag 66(3):1340–1351
Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294
Vasic B, Gajic R (2013) Graphene induced spectral tuning of metamaterial absorbers at midinfrared frequencies. Appl Phys Lett 103(26):207403
Shi SF, Zeng B, Han HL, Hong X, Tsai HZ, Jung HS, Zettl A, Crommie MF, Wang F (2015) Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett 15(1):372–377
Su Z, Chen X, Yin J, Zhao X (2016) Graphenebased terahertz metasurface with tunable spectrum splitting. Opt Lett 41(16):3799–3802
Huidobro PA, Maier SA, Pendry JB (2017) Tunable plasmonic metasurface for perfect absorption. EPJ Appl Metamat 4:6
Costa F, Monorchio A, Manara G (2010) Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE T Antenn Propag 58(5):1551–1558
Hyde MW, Havrilla MJ, Crittenden PE (2009) A novel method for determining the Rcard sheet impedance using the transmission coefficient measured in freespace or waveguide systems. IEEE T Instrum Meas 58(7):2228–2233
Costa F, Monorchio A (2012) Closedform analysis of reflection losses in microstrip reflectarray antennas. IEEE T Antenn Propag 60(10):4650–4660
Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen AV, Tretyakov SA (2008) Simple and accurate analytical model of planar grids and highimpedance surfaces comprising metal strips or patches. IEEE T Antenn Propag 56(6):1624–1632
Tretyakov SA, Simovski CR (2003) Dynamic model of artificial reactive impedance surfaces. J Electromagnet Waves Appl 17(1):131–145
Fan Y, Shen NH, Koschny T, Soukoulis CM (2015) Tunable terahertz metasurface with graphene cutwires. ACS Photonics 2(1):151–156
Wang Z, Zhou M, Lin X, Liu H, Wang H, Yu F, Lin S, Li E, Chen H (2014) A circuit method to integrate metamaterial and graphene in absorber design. Opt Commun 329(20):76–80
Whites KW, Miura R (1996) An equivalent boundarycondition model for lossy planar periodic structures at low frequencies. IEEE T Antenn Propag 44(12):1617–1629
Hosseinipanah M, Wu Q (2009) Equivalent circuit model for designing of Jerusalem crossbased artificial magnetic conductors. Radioengineering 18(4):544–550
Arik K, Abdollahramezani S, Farajollahi S, Khavasi A, Rejaei B (2016) Design of midinfrared ultrawideband metallic absorber based on circuit theory. Opt Commun 381:309–313
Ghosh S, Srivastava KV (2015) An equivalent circuit model of FSSbased metamaterial absorber using coupled line theory. IEEE Antennas Wireless Prop Lett 14:511–514
Huang X, Zhang X, Hu Z, Aqeeli M, Alburaikan A (2015) Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach. IET Microw Antenna P 9(4):307–312
Zhu BO (2017) Surface impedance synthesis using parallel planar electric metasurfaces. Prog Electromagn Res 160:41–50
Li H, Ji C, Ren Y, Hu J, Qin M, Wang L (2019) Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phasecoupled method. Carbon 141:481487.
Biabanifard M, Abrishamian MS (2018) Circuit modeling of tunable terahertz graphene absorber. Optik 158:842–849
Xiong H, Tang MC, Li M, Li D, Jiang YN (2018) Equivalent circuit method analysis of graphenemetamaterial (GM) absorber. Plasmonics 13(3):857–862
Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102(24):3
Chen S, DíazRubio A, Li J, Cummer SAJAPL (2018) A surface impedancebased threechannel acoustic metasurface retroreflector. Appl Phys Lett 112(18):183503
Li H, Qin M, Wang L, Zhai X, Ren R, Hu J (2017) Total absorption of light in monolayer transitionmetal dichalcogenides by critical coupling. Opt Express 25(25):31612–31621
Li H, Ren Y, Hu J, Qin M, Wang L (2018) Wavelengthselective wideangle light absorption enhancement in monolayers of transitionmetal dichalcogenides. J Lightwave Technol 36(16):3236–3241
Peng Y , Besteiro L V , Jiang W , et al. (2018) Metamaterial perfect absorber with unabated sizeindependent absorption. Opt. Express 26(16):20471
Owiti E O , Yang H , Liu P , et al. (2018) Polarization Converter with Controllable Birefringence Based on Hybrid AllDielectricGraphene Metasurface. Nanoscale Research Letters 13(1):38
Yu P, Besteiro L V, Huang Y, Wu J, et. al. (2019) Broadband Metamaterial Absorbers 7:1800995
Acknowledgements
A special acknowledgment to master Tahir Bashir from Chongqing University for his revision. The reviewers are also acknowledged for the very valuable suggestions and comments.
Funding
Funding was received from the following:

1.
National Natural Science Foundation of China (61501067)

2.
Foundation and Advanced Research Projects of Chongqing Municipal Science and Technology Commission (Cstc2016jcyjA0377)

3.
Opening Project of Guangxi College Key Laboratory of Microwave and Optical Wave Applications Technology (MLLAB2016001).

4.
Fundamental Research Funds for the Central Universities (106112019CDQYTX033).
Availability of Data and Materials
If the request is reasonable, the analyzed datasets during this study can be available from the corresponding author.
Author information
Authors and Affiliations
Contributions
H X did the synthetic and characteristic job in this journal. MC T carried out the simulation, YH P and YH Z analyzed the data. XH T reviewed and edited this paper. After reading, the final data approved by all of the authors.
Corresponding author
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Xiong, H., Tang, MC., Peng, YH. et al. Surface Impedance of Metasurfaces/Graphene Hybrid Structures. Nanoscale Res Lett 14, 194 (2019). https://doi.org/10.1186/s116710192995x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s116710192995x