Water scarcity represents one of the problems that the world is facing now, where most of the countries are suffering from acute shortages of water for the degree of drought. Saving of huge amounts from industrial wastewater that discharged to the external environment may be participated in solving two problems in parallel, which are the water scarcity and water pollution. So, most of environmental researches have been focused on industrial wastewater treatment and the possibility of its reuse for the industrial purposes in order to save water consumption and decrease water pollution [1]. However, in order to recycle the treated industrial wastewater or even discharge clean wastewater to the external environment, the industrial wastewater should be completely free from the heavy metals to avoid their enormous risks on the vital life or even on the industrial machining system. Among the various heavy metals, cadmium ion is a well-known toxic metal, considered as a priority pollutant, and its adverse effects are well documented [2]. On the other hand, nuclear energy is getting more and more widely used around the world nowadays as a clean and promising energy source [3].
Radioactive wastes generated from the nuclear power plant therefore become an environmental concern. In respect to the hazard of the radioactive waste to the environment and public health, this waste needs to be treated before being discharged to the environment [4]. In the low-level radioactive liquid waste (LLRLW) discharged from a nuclear power plant, the majority of nucleotides are fission products. These fission products can be categorized into three different groups: long-lived members such as 87Sr and 133Cs; medium-lived members such as 91Zr, 93Nb, 140Ce, 141Pr, 101Ru, 103Rh, 145Pm, and 150Sm; and short-lived nuclides with half-lives ranging from a few seconds to days that can be neglected [4]. Accordingly, both cesium and strontium radionuclides represent the main pollutants due to their large active periods. In this respect, it is of particular significance to propose highly efficient technique to trap both lead and strontium ions from the contaminated wastewaters.
Among the techniques of water treatment, the ion exchange separation technique is characterized over the other separation techniques by its simplicity and because it is cheap and not energy consumable. Inorganic cation exchange materials are characterized by their chemical, thermal, and radiation stabilities compared with the organic counterpart cation exchangers [5].
Zirconium-based ion exchangers have received attention because of their excellent ion exchange behavior and some important chemical applications in the field of ion exchanger, ion exchange membrane, and solid state electrochemistry. Accordingly, various hetero-polyacid salts based on zirconium (IV) have been reported in the literature as cation exchange materials. Among these hetero-polyacid salts, zirconium tungesto-vanadate nanoparticles as novel material establish its effectiveness for cationic ions decontamination [6]. This novel material has been studied for its synthesis, ion exchange behavior, and analytical applications. This novel material explored higher ion exchange capacity and higher stability at elevated temperature compared with the other previously prepared zirconium-based hetero-polyacid cation exchange material such as zirconium tungstatephenolate, zirconium tungstophosphate, zirconium arsenovanadate, and zirconium iodovanadate [7]. Preparations of both poorly crystalline and amorphous nano-zirconium tungesto-vanadate materials in spherical particles morphological structures have been reported earlier [6]. However, the production of crystalline zirconium tungesto-vanadate material with other morphological structure rather than the spherical nanoparticles was not investigated at the literature.
In this concern, this cation exchange material will be architectured in hollow nanotube morphological structure with crystalline structure to improve its surface area that by its role enhance its sorption efficiency for the pollutants. The cation exchange performance of fabricated nanotube zirconium tungesto-vanadate will be examined toward both the cadmium and strontium ions decontamination from polluted wastewaters.