Introduction

Fractional calculus has gained importance during the past three decades due to its applicability in diverse fields of science and engineering[1]. The notions of fractional calculus may be traced back to the works of Euler, but the idea of fractional difference is very recent.

Diaz and Osler[2] defined the fractional difference by the rather natural approach of allowing the index of differencing, in the standard expression for the n th difference, to be any real or complex number. Later, Hirota[3] defined the fractional order difference operator ∇α, where α is any real number, using Taylor’s series. Nagai[4] adopted another definition for fractional difference by modifying Hirota’s[3] definition. Recently, Deekshitulu and Jagan Mohan[5] modified the definition of Nagai[4] and discussed some basic inequalities, comparison theorems, and qualitative properties of the solutions of fractional difference equations[510].

Discrete inequalities involving sequences of real numbers, which may be considered as discrete analogues of the Gronwall-Bellman inequality, have been extensively used in the analysis of finite difference equations. In the year 1973, Pachpatte[11] established the following remarkable inequality:

Theorem 1

Let u(n), b(n), and c(n) be nonnegative real valued functions defined on N 0 + and c ≥ 0 is a constant. If, forn N 0 + ,

u(n)c+ j = 0 n 1 b(j) u ( j ) + k = 0 j 1 c ( k ) u ( k ) ,

then

u(n)c 1 + j = 0 n 1 b ( j ) k = 0 j 1 [ 1 + b ( j ) + c ( j ) ] .

Throughout the present paper, we use the following notations[12]:N is the set of natural numbers including zero andZ is the set of integers. N a + ={a,a+1,a+2,} foraZ. Let u(n) be a real valued function defined on N 0 + . Then, for all n 1 , n 2 N 0 + , and n1 > n2, j = n 1 n 2 u(j)=0 and j = n 1 n 2 u(j)=1, i.e., empty sums and products are taken to be 0 and 1, respectively. If n and n + 1 are in N 0 + , the backward difference operator ∇ is defined as ∇u(n) = u(n) − u(n − 1).

Now, we introduce some basic definitions and results concerning nabla discrete fractional calculus. The extended binomial coefficient a n , (aR,nZ), is defined by[4]:

a n = Γ ( a + 1 ) Γ ( a n + 1 ) Γ ( n + 1 ) n > 0 1 n = 0 0 n < 0 .

In 2003, Nagai[4] gave the following definition for the fractional order difference operator:

Definition 1

Let

αR

and m be an integer such that m − 1 < α ≤ m. The difference operator ∇ of order α, with step length ϵ, is defined as

α u ( n ) = α m [ m u ( n ) ] = ϵ m α j = 0 n 1 α m j ( 1 ) j m u ( n j ) α > 0 u ( n ) α = 0 ϵ α j = 0 n 1 α j ( 1 ) j u ( n j ) α < 0 .

The above definition of ∇αu(n) given by Nagai[4] contains the ∇ operator and the term (−1)j inside the summation index, and hence, it becomes difficult to study the properties of the solution. Deekshitulu and Jagan Mohan[5] modified the above definition for α ∈ (0, 1) as follows:

Definition 2

The fractional sum operator of order α(αR) is defined as

α u ( n ) = j = 0 n 1 j + α 1 j u ( n j ) = j = 1 n n j + α 1 n j u ( j ) ,
(1)

and the fractional difference operator of order α(αR and 0 < α < 1) is defined as

α u ( n ) = j = 0 n 1 j α j u ( n j ) = j = 1 n n j α 1 n j u ( j ) n α 1 n 1 u ( 0 ) .
(2)

Remark 1

If we take α = 1in (2), using the definition of the generalized binomial coefficient, we have

j = 0 n 1 j 1 j u ( n j ) = 1 0 u ( n ) + j = 1 n 1 j 1 j u ( n j ) = 1 0 u ( n ) + j = 1 n 1 j 1 1 u ( n j ) = u ( n ) .

Gray and Zhang[13] gave the following definition:

Definition 3

For any complex numbers α and β,

( α ) β = Γ ( α + β ) Γ ( α ) when α and α + β are neither zero nor negative integers 1 when α = β = 0 0 when α = 0 and β is neither zero nor a negative integer undefined otherwise.

Remark 2

For any complex numbers α and β, when α, β, and α + β are neither zero nor negative integers,

( α + β ) n = k = 0 n n k ( α ) n k ( β ) k

for any positive integer n.

Theorem 2

Let u(n) and v(n) be real valued functions defined on

N 0 +

and α,

βR

such that 0 < α, β, α + β < 1 and c, d are constants. Then,

  1. 1.

    α[ cu(n) + dv(n)] = cα u(n) + dα v(n).

  2. 2.

    αα u(n) = u(n) − u(0).

  3. 3.

    α u(0) = 0 and ∇α u(1) = u(1) − u(0) = ∇u(1).

Proof

  1. 2

    Consider

    α α u ( n ) = α α u ( n ) = j = 1 n n j + α 1 n j α u ( j ) = j = 1 n n j + α 1 n j k = 0 j 1 k α k u ( j k ) = j = 1 n n j + α 1 n j i = 1 j j i α j i u ( i )
    = j = 1 n i = 1 j n j + α 1 n j j i α j i u ( i ) = i = 1 n j = i n Γ ( n j + α ) Γ ( n j + 1 ) Γ ( α ) Γ ( j i α + 1 ) Γ ( j i + 1 ) Γ ( α + 1 ) u ( i ) = i = 1 n j = 0 n i Γ ( n j i + α ) Γ ( n j i + 1 ) Γ ( α ) Γ ( j α + 1 ) Γ ( j + 1 ) Γ ( α + 1 ) u ( i ) = i = 1 n u ( i ) Γ ( n i + 1 ) j = 0 n i Γ ( n i + 1 ) Γ ( n i j + 1 ) Γ ( j + 1 ) × Γ ( n i j + α ) Γ ( α ) Γ ( j α + 1 ) Γ ( α + 1 ) = i = 1 n u ( i ) Γ ( n i + 1 ) j = 0 n i n i j ( α ) n i j ( α + 1 ) j = i = 1 n u ( i ) Γ ( n i + 1 ) ( 1 ) n i = i = 1 n Γ ( n i + 1 ) Γ ( n i + 1 ) Γ ( 1 ) u ( i ) = u ( n ) u ( 0 ) .

The proofs of 1 and 3 are clear from Definition 2. □

Definition 4

Letf(n,r): N 0 + ×RR. Then, a nonlinear difference equation of order α, 0 < α < 1, together with an initial condition is of the form

α u(n+1)=f(n,u(n)),u(0)= u 0 .
(3)

Now, we consider (1) and replace u(n)by ∇αu(n), and we have

α [ α u ( n ) ] = j = 1 n n j + α 1 n j [ α u ( j ) ] or u ( n ) u ( 0 ) = j = 1 n n j + α 1 n j [ α u ( j ) ] or u ( n ) = u 0 + j = 0 n 1 n j + α 2 n j 1 [ α u ( j + 1 ) ] or u ( n ) = u 0 + j = 0 n 1 B ( n 1 , α ; j ) f ( j , u ( j ) ) ,
(4)

where

B(n,α;j)= n j + α 1 n j

for 0 ≤ j ≤ n. The above recurrence relation shows the existence of the solution of (3).

Recently, the authors have established the following fractional discrete Gronwall-Bellman-type inequality[10]:

Theorem 3

Let u(n), a(n), and b(n) be nonnegative real valued functions defined on

N 0 +

. If, forn N 0 + ,

α u(n+1)a(n)u(n)+b(n),
(5)

then

u ( n ) u ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) a ( j ) × j = 0 n 1 B ( n 1 , α ; j ) b ( j ) k = j + 1 n 1 1 + B ( n 1 , α ; k ) a ( k ) .

Main Results

In this section, we shall establish some new fractional order difference inequalities of Gronwall-Bellman type analogous to the inequality (Theorem 1) given by Pachpatte[11]. Let u(n), b(n), c(n), p(n), and q(n) be nonnegative real valued functions defined on

N 0 +

and u(0) ≥ 0 be a constant.

Theorem 4

If a(n) is a positive, monotonic, and nondecreasing real valued function defined on N 0 + and

u ( n ) a ( n ) + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) × u ( j ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k )
(6)

forn N 0 + , then

u ( n ) a ( n ) 1 + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) × k = 0 j 1 1 + B ( j 1 , α ; k ) [ b ( k ) + c ( k ) ]
(7)

forn N 0 + .

Proof

Since a(n) is a positive, monotonic, and nondecreasing real valued function, from (6), we observe that

u ( n ) a ( n ) 1 + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) × u ( j ) a ( n ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k ) a ( n ) 1 + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) × u ( j ) a ( j ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k ) a ( k ) .
(8)

Define a function

z ( n ) = 1 + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) × u ( j ) a ( j ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k ) a ( k ) .

Then, z(0) = 1, u ( n ) a ( n ) z(n), and using (4), we get

α z ( n + 1 ) = b ( n ) u ( n ) a ( n ) + k = 0 n 1 B ( n 1 , α ; k ) c ( k ) u ( k ) a ( k ) b ( n ) z ( n ) + k = 0 n 1 B ( n 1 , α ; k ) c ( k ) z ( k ) .
(9)

Let

v(n)=z(n)+ k = 0 n 1 B(n1,α;k)c(k)z(k).
(10)

Then, v(0) = z(0) = 1, z(n) ≤ v(n), and ∇αv(n + 1) = ∇αz(n + 1) + c(n)z(n) ≤ [b(n) + c(n)]v(n). Now, an application of Theorem 3 yields

v(n) j = 0 n 1 1 + B ( n 1 , α ; j ) [ b ( j ) + c ( j ) ] .
(11)

Then, from (9) and (11), we have

α z(n+1)b(n) j = 0 n 1 1 + B ( n 1 , α ; j ) [ b ( j ) + c ( j ) ] .
(12)

Now, again by application of Theorem 3, we get

z ( n ) z ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) × b ( j ) k = 0 j 1 1 + B ( j 1 , α ; k ) [ b ( k ) + c ( k ) ] .
(13)

Using (13) in u ( n ) a ( n ) z(n), we get the required inequality (7). □

Theorem 5

If a(n) is a nonnegative function defined on N 0 + and forn N 0 + ,

u ( n ) u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) × u ( j ) + b ( j ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k ) ,
(14)

then

u ( n ) u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) [ b ( j ) + A ( j ) ] ,
(15)

where

A ( n ) = u ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) + c ( j ) ] × j = 0 n 1 B ( n 1 , α ; j ) a ( j ) b ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) + c ( k ) ] .
(16)

Proof

Define a function

z ( n ) = u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) × u ( j ) + b ( j ) + k = 0 j 1 B ( j 1 , α ; k ) c ( k ) u ( k ) .

Then, z(0) = u(0), u(n) ≤ z(n), and

α z ( n + 1 ) a ( n ) b ( n ) + a ( n ) z ( n ) + k = 0 n 1 B ( n 1 , α ; k ) c ( k ) z ( k ) .
(17)

Let

v(n)=z(n)+ k = 0 n 1 B(n1,α;k)c(k)z(k).
(18)

Then, v(0) = z(0), z(n) ≤ v(n), and ∇αv(n + 1) = ∇αz(n + 1) + c(n)z(n) ≤ a(n)b(n) + [ a(n) + c(n)] v(n). Now, an application of Theorem 3 yields

v ( n ) v ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) + c ( j ) ] + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) b ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) + c ( k ) ] = A ( n )
(19)

Then, from (17) and (19), we have

α z ( n + 1 ) a ( n ) [ b ( n ) + A ( n ) ] .
(20)

Now, again by application of Theorem 3, we get

z(n)z(0)+ j = 0 n 1 B(n1,α;j)a(j)[b(j)+A(j)].
(21)

Using (21) in u(n) ≤ z(n), we get the required inequality (15). □

Theorem 6

Let a(n) be a nonnegative real valued function defined on N 0 + . Suppose the following inequality holds for alln N 0 + :

u ( n ) u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) k = 0 j 1 B ( j 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) c ( l ) u ( l ) .
(22)

If [ 1 − B(n − 1,α;j)a(j)] ≥ 0 and [1 + B(n − 1,α;j)[a(j) − b(j)]] ≥ 0 for all 0 ≤ j ≤ (n − 1), then, forn N 0 + ,

u ( n ) u ( 0 ) j = 0 n 1 1 B ( n 1 , α ; j ) a ( j ) × j = 0 n 1 B ( n 1 , α ; j ) a ( j ) C ( j ) × k = j + 1 n 1 1 B ( n 1 , α ; k ) a ( k ) ,
(23)

where

B(n)= j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) + b ( j ) + c ( j ) ]
(24)

and

C ( n ) = j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) b ( j ) ] × j = 0 n 1 B ( n 1 , α ; j ) b ( j ) B ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) b ( k ) ] .
(25)

Proof

Define a function

z ( n ) = u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) k = 0 j 1 B ( j 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) c ( l ) u ( l ) .

Then, z(0) = u(0), u(n) ≤ z(n), and

α z ( n + 1 ) a ( n ) k = 0 n 1 B ( n 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) c ( l ) z ( l ) .
(26)

Adding a(n)z(n) to both sides of the above inequality, we have

α z ( n + 1 ) + a ( n ) z ( n ) a ( n ) z ( n ) + k = 0 n 1 B ( n 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) c ( l ) z ( l ) .
(27)

Let

v(n)=z(n)+ k = 0 n 1 B(n1,α;k)b(k) l = 0 k 1 B ( k 1 , α ; l ) c ( l ) z ( l ) .
(28)

Then, v(0) = z(0), z(n) ≤ v(n), and

α v(n+1)= α z(n+1)+b(n) l = 0 n 1 B(n1,α;l)c(l)z(l).
(29)

Using the facts that ∇αz(n + 1) ≤ a(n)v(n) and z(n) ≤ v(n), we get

α v(n+1)a(n)v(n)+b(n) l = 0 n 1 B(n1,α;l)c(l)z(l).
(30)

Adding b(n)v(n) to both sides of the above inequality, we have

α v ( n + 1 ) + b ( n ) v ( n ) a ( n ) v ( n ) + b ( n ) v ( n ) + l = 0 n 1 B ( n 1 , α ; l ) c ( l ) z ( l ) .
(31)

Let

w(n)=v(n)+ l = 0 n 1 B(n1,α;l)c(l)z(l).
(32)

Then, w(0) = v(0), v(n) ≤ w(n), and

α w(n+1) α v(n+1)+c(n)w(n).
(33)

Now, from (30) and (31), we have

α v(n+1) α v(n+1)+b(n)v(n)[a(n)+b(n)]w(n).
(34)

Using (34) in (33), we get

α w(n+1)[a(n)+b(n)+c(n)]w(n).
(35)

Now, an application of Theorem 3 yields

w ( n ) w ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) + b ( j ) + c ( j ) ] = w ( 0 ) B ( n ) .
(36)

Then, from (31) and (35), we have

α v(n+1)[a(n)b(n)]v(n)+w(0)b(n)B(n).

Now, again by application of Theorem 3, we get

v ( n ) v ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) b ( j ) ] + w ( 0 ) j = 0 n 1 B ( n 1 , α ; j ) b ( j ) B ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) b ( k ) ] = v ( 0 ) C ( n ) .
(37)

Then, from (27) and (37), we get

α z ( n + 1 ) a ( n ) z ( n ) + v ( 0 ) a ( n ) C ( n ) .

Now, again by application of Theorem 3, we get

z ( n ) z ( 0 ) j = 0 n 1 1 B ( n 1 , α ; j ) a ( j ) + v ( 0 ) j = 0 n 1 B ( n 1 , α ; j ) a ( j ) C ( j ) × k = j + 1 n 1 1 B ( n 1 , α ; k ) a ( k ) .
(38)

Using (38) in u(n) ≤ z(n), we get the required inequality (23). □

Theorem 7

Let a(n) be a nonnegative real valued function defined on N 0 + . Suppose the following inequality holds for alln N 0 + :

u ( n ) u ( 0 ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) k = 0 j 1 B ( j 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) [ c ( l ) u ( l ) + p ( l ) ] .
(39)

If [ 1 − B(n − 1,α;j)a(j) ] ≥ 0 and [1 + B(n − 1,α;j)[ a(j) − b(j)] ] ≥ 0 for all 0 ≤ j ≤ (n − 1), then, forn N 0 + ,

u ( n ) u ( 0 ) j = 0 n 1 1 B ( n 1 , α ; j ) a ( j ) + j = 0 n 1 B ( n 1 , α ; j ) a ( j ) E ( j ) × k = j + 1 n 1 1 B ( n 1 , α ; k ) a ( k ) ,
(40)

where

D ( n ) = u ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) + b ( j ) + c ( j ) ] + j = 0 n 1 p ( j ) k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) + b ( k ) + c ( k ) ]
(41)

and

E ( n ) = u ( 0 ) j = 0 n 1 1 + B ( n 1 , α ; j ) [ a ( j ) b ( j ) ] + j = 0 n 1 B ( n 1 , α ; j ) b ( j ) D ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) b ( k ) ] .
(42)

Theorem 8

Let a(n) be a nonnegative real valued function defined on N 0 + . Suppose the following inequality holds for alln N 0 + :

u ( n ) p ( n ) + q ( n ) j = 0 n 1 B ( n 1 , α ; j ) a ( j ) × k = 0 j 1 B ( j 1 , α ; k ) b ( k ) l = 0 k 1 B ( k 1 , α ; l ) c ( l ) u ( l ) .
(43)

If [ 1 − B(n − 1,α;j)a(j) ] ≥ 0 and [1 + B(n − 1,α;j)[ a(j) − b(j)] ] ≥ 0 for all 0 ≤ j ≤ (n − 1), then, forn N 0 + ,

u ( n ) p ( n ) + q ( n ) j = 0 n 1 B ( n 1 , α ; j ) a ( j ) G ( j ) × k = j + 1 n 1 1 B ( n 1 , α ; k ) a ( k ) ,
(44)

where

F ( n ) = j = 0 n 1 B ( n 1 , α ; j ) [ c ( j ) p ( j ) ] × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) + b ( k ) + c ( k ) q ( k ) ]
(45)

and

G ( n ) = j = 0 n 1 B ( n 1 , α ; j ) b ( j ) F ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) b ( k ) ] .
(46)

Proof

Define a function z(n)by

z ( n ) = j = 0 n 1 B ( n 1 , α ; j ) a ( j ) × k = 0 j 1 B ( j 1 , α ; k ) b ( k ) l = 0 k 1 B ( k 1 , α ; l ) c ( l ) u ( l ) .
(47)

Then, z(0) = 0, u(n) ≤ p(n) + q(n)z(n), and using the same argument as in the proof of Theorem 6, we obtain

α z ( n + 1 ) a ( n ) k = 0 n 1 B ( n 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(48)

Adding a(n)z(n) to both sides of the above inequality, we have

α z ( n + 1 ) + a ( n ) z ( n ) a ( n ) z ( n ) + k = 0 n 1 B ( n 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(49)

Let

v ( n ) = z ( n ) + k = 0 n 1 B ( n 1 , α ; k ) b ( k ) × l = 0 k 1 B ( k 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(50)

Then, v(0) = z(0), z(n) ≤ v(n), and

α v ( n + 1 ) = α z ( n + 1 ) + b ( n ) l = 0 n 1 B ( n 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(51)

Using the facts that ∇αz(n + 1) ≤ a(n)v(n) and z(n) ≤ v(n), we get

α v ( n + 1 ) a ( n ) v ( n ) + b ( n ) l = 0 n 1 B ( n 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(52)

Adding b(n)v(n) to both sides of the above inequality, we have

α v ( n + 1 ) + b ( n ) v ( n ) a ( n ) v ( n ) + b ( n ) v ( n ) + l = 0 n 1 B ( n 1 , α ; l ) [ c ( l ) p ( l ) + c ( l ) q ( l ) z ( l ) ] .
(53)

Let

w(n)=v(n)+ l = 0 n 1 B(n1,α;l)[c(l)p(l)+c(l)q(l)z(l)].
(54)

Then, w(0) = v(0), v(n) ≤ w(n), and

α w(n+1) α v(n+1)+[c(n)p(n)+c(n)q(n)w(n)].
(55)

Now, from (53) and (54), we have

α v(n+1) α v(n+1)+b(n)v(n)[a(n)+b(n)]w(n).
(56)

Using (56) in (55), we get

α w(n+1)[a(n)+b(n)+c(n)q(n)]w(n)+c(n)p(n).
(57)

Now, an application of Theorem 3 yields

w ( n ) j = 0 n 1 B ( n 1 , α ; j ) [ c ( j ) p ( j ) ] × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) + b ( k ) + c ( k ) q ( k ) ] = F ( n ) .
(58)

Then, from (53) and (58), we have

α v(n+1)[a(n)b(n)]v(n)+b(n)F(n).

Now, again by application of Theorem 3, we get

v ( n ) j = 0 n 1 B ( n 1 , α ; j ) b ( j ) F ( j ) × k = j + 1 n 1 1 + B ( n 1 , α ; k ) [ a ( k ) b ( k ) ] = G ( n ) .
(59)

Then, from (49) and (59), we get

α z(n+1)a(n)z(n)+a(n)G(n).

Now, again by application of Theorem 3, we get

z ( n ) j = 0 n 1 B ( n 1 , α ; j ) a ( j ) G ( j ) × k = j + 1 n 1 1 B ( n 1 , α ; k ) a ( k ) .
(60)

Using (60) in u(n)≤p(n) + q(n)z(n), we get the required inequality (44). □

Conclusions

In this paper, some new Gronwall-Bellman-type fractional difference inequalities are established which provide explicit bounds for the solutions of fractional difference equations.