Review

The province of Ontario in Canada has demonstrated its will to expand renewableenergy production, encourage energy conservation and create ‘green’ jobswith the passing of the Green Energy Act of 2009 [1, 2]. These changes have been recognized by one of Canada's most visibleenvironmental non-governmental organizations (ENGO), the David Suzuki Foundation,that Ontario's green energy policies are the most far reaching in North America interms of clean energy, innovation and jobs [3]. The province is also the first jurisdiction in North America withlegislation in place to eliminate coal-fired thermoelectric production, making coaluse illegal by the end of 2014 [46]. In order to be in compliance, the facilities are required to follow allestablished certificates of approval for air, water and land emissions issued by theOntario Ministry of the Environment (MOE). Although non-compliance would be highlyunlikely after the legislation goes into effect, penalties could be established bythe MOE, should a generating station burn coal after 2014.

It is anticipated that these coal phase out policy changes will have socio-economicimpacts in all regions where Ontario Power Generation (OPG) operates coal-firedstations, with Atikokan Generating Station (AGS) being the only facility slated toswitch to 100% woody biomass [7], while other coal-burning stations such as Lambton and Nanticoke areslated for decommissioning before the 2014 deadline. In this paper, we definesocio-economic impacts in general terms as social and economic well-being ofcommunity members, with well-being defined, ‘as a person's quality of life.This is influenced by a range of factors, including work, family, community, health,personal values, personal freedom and a person's financial situation [8]’. Positive socio-economic impacts provided by a company'sinvolvement in a community can include creating jobs, inducing jobs in othersectors, providing physical infrastructure such as parks and recreation centres,paying municipal taxes and providing charitable donations to civic and communitygroups. Woody biomass in this paper refers to wood pellets produced from sawdust andforest harvest residues of commercial spruce, pine and fir species. Woody biomass isalso obtained from harvesting other underutilized species like white birch(Betula papyrifera Marsh.) and poplar (Populus spp.).Depending on site conditions and tree species, Canadian boreal forest practicestypically follow a 60- to 100-year harvesting cycle. The AGS will require a total of90,000 oven-dried tonnes of biomass wood pellets per year for full conversion [912]. This value should be easily achievable. Alam and others demonstratedthat there is adequate forest harvest residue and underutilized wood biomassfeedstock available in Northwestern Ontario to meet the demand [13]. Furthermore, woody biomass stock would also likely come from sawmillresidues and waste, further reducing the pressure on forest resources.

Although Ontario is fully converting to non-coal options, many jurisdictions employco-firing (burning coal along with woody biomass), which is often seen as moreenvironmentally desirable than burning 100% coal, since a portion of the greenhousegas (GHG) emissions will be from fossil fuels and a portion from renewable energy [14]. Co-firing is becoming more common and is being practised at a commercialscale in many countries such as the USA, Finland, Denmark, Germany and Belgium [15]. The ratio of coal to woody biomass is very site specific, and it dependson a number of factors such as furnace and boiler design, physical and chemical fuelcharacteristics, fuel handling and milling units [15]. Utilizing a life cycle approach at AGS, Zhang and others [16] indicated that co-firing woody biomass (as an alternative to 100% coal)can be an economically feasible option to reduce GHG emissions in the Ontariocontext.

At present (2011 values), nuclear power generating stationsa meet 56.9% ofdemand and are running at full load throughout a full 24-h period in order to meetenergy base load demand. [17]. Base load is considered the minimum level of power demand. Nuclear powerideally meets this base load demand since it has a high electrical productioncapacity and relatively low production cost. However, nuclear power has lesscapacity to adjust to fluctuations in demand. Hydroelectric power generation meets22.2% of demand and responds to variations in load to meet the peak demand. Peakproduction stations are employed to make up capacity at maximum demand periods andin emergency situations [17]. These can transition from idle to full power production in short periodsto meet these temporary and sometimes unpredictable demands. Peak demand is variableover the course of daily and yearly cycles and is in part contingent on weatherconditions and is managed to a degree with time-of-use pricing.

As an important renewable energy source, hydroelectric plants provide‘flexibility in base loading, peaking and energy storage applications’ [18]. Many smaller hydroelectric generating stations reduce productionovernight, storing water to meet peak demand during the following day, with only thelargest hydroelectric stations running throughout the night. If the demand exceedssupply by smaller hydroelectric stations, the natural gas generating stations, whichmeet 14.7% of demand, begin production. Under this regime, coal, which only meets2.7% of demand, is used as a last resort for voltage supportb. The use ofcoal for power generation has been on a steady decline (Figure 1). Recent additions to Ontario's power mix include wind, which meets2.6% of demand, with all other energy sources (including solar power) meeting 0.8%of Ontario's power demand [4, 19, 20].

Figure 1
figure 1

Historical changes in fuel supply used for electricity production from2003 to 2011. Raw data from Ontario's Independent Electricity SystemOperator News Releases from 2004 to 2012 [21] were used to establish a 9-year tread (2003 to 2011) forOntario's electricity power mix in order to provide an Ontario context.Nuclear (yellow line) and hydro (blue line) production levels have remainedrelatively constant over the period. Electricity produced from coal (greyline) has been steadily decreasing over the time period. In 2008, IESOceased to report natural gas, oil, wind and alternative fuel sourcestogether (Other 1, dark purple line) and broke it apart to report gas (pinkline), wind (magenta) and Other 2 (light purple) separately.

Regardless of the electrical energy fuel source, each option has its ownenvironmental consequences such as release of GHGs, particulates, nitrous oxidesand/or sulphur dioxide [22, 23]. As public support for coal and other fossil fuels continues to wane,renewable sources are being sought [2428] with biomass-fired power becoming a viable renewable energy optionpartially because this technology is ‘rapidly deployable, low-risk, regionallyindigenous, and inherently grid-compatible [29]’. Wind and solar energy do not possess these characteristics sincethey depend on weather conditions [17]. Furthermore, woody biomass can provide (1) reserve capacity during peakdemand, (2) capacity during routine maintenance at other generating stations and (3)resilience in the power grid, should other generating stations go offline in anemergency.

Whenever the use of woody biomass for power generation is introduced, a variety ofpublic opinions may arise. On the one hand, woody biomass for power generation hasmany of the above-mentioned benefits; on the other, there is documented publicopposition [30, 31]. The Greenpeace report, ‘Fueling a Biomess’, is critical ofCanadian provinces' efforts to stimulate biomass fuel for electricity production [32]. The report critiques are directed to the government's ‘biomassextraction policies and subsidies [32]’, and it outlines a number of recommendations to government, manyof which represent socio-economic impacts. These include (1) suspend the approval ofnew bioenergy proposals and conduct a review of existing projects, their woodallocations and their impacts on communities, climate and forests, (2) precludelow-efficiency electricity-only production from forest biomass and require thatwaste heat of biomass electric plants be utilized locally and (3) support theproduction of higher value wood products from public forests to optimize jobcreation, minimize resource extraction and develop sustainable solutions forforest-based communities [32].

Recommendations such as these imply that the forest management planning process doesnot routinely incorporate socio-economic considerations. In contrast, forestpractitioners, with the responsibility for managing public forests in Ontario,operate under the Crown Forest Sustainability Act (1994) [33] that includes requirements for public consultation and recognizes thenecessity for both economic and ecological sustainability. This legislation isimplemented through a series of management guides [34] developed to ensure the protection of multiple forest values includingcultural heritage [35], resource-based tourism [36], biodiversity [37], natural disturbance pattern emulation [38] and species of interest (e.g. marten [39], woodland caribou [40]). Guide revision is ongoing, science-based, overseen by a joint committee(which includes government, industry, First Nations, academia) and subject to reviewevery 5 years [41]. Despite the processes in place, challenges such as those raised byGreenpeace need to be addressed through standard research protocols.

Therefore, the objectives of this paper are (1) to determine the current state ofpeer-reviewed literature relating to coal, biomass and co-fire burning in Ontarioand to relate the current state of knowledge nationally and globally, lookingoutside of Ontario when necessary for insights into the Ontario context and (2) toexplore the knowledge gaps with regard to socio-economic impacts, under threescenarios which include 100% biomass burning, 100% coal burning and co-firing.

Methods

In order to determine generally the current state of peer-reviewed literaturerelating to biomass burning for thermoelectric generation in Ontario and toidentify knowledge gaps in the peer-reviewed literature, the Thomson Reuters(ISI) Web of Knowledgec[42] was used to find articles covering the utilization of wood-basedbiomass in thermoelectric power generating stations. This preliminary search wascarried out by following the Boolean search string: ‘biomass’,‘wood*’ and ‘thermoelectric*’. Asterisks were used asthey provide the function of a ‘wildcard’ thus increasing thelikelihood of words with suffixes being included in the search. We alsopreliminarily searched simply ‘Atikokan’ in order to help usestablish a baseline of all studies conducted in the Atikokan region.

Secondly, since Ontario policy dictates that alternatives to coal must beimplemented, we also conducted a more in-depth literature search related tothree common burning scenarios:

  • 100% coal: this was searched since coal is the fuel sourcethat is being phased out at AGS. Although it is not widely used in Canada, it isglobally the second most important fuel after oil accounting for 27% of worldprimary energy demand [4],

  • 100% biomass: this was searched since biomass is being phasedin at AGS. Furthermore, biomass is experiencing more attention globally, forexample, increases in demand in Europe as they seek to power industry and reduceGHG emissions concurrently [43] and

  • Co-firing coal with biomass: this was searched since co-firinghas been an experimental intermediate stage at AGS and is employed in manyjurisdictions as a shorter term low-cost option to reduce GHG emissions [44].

In this second search, we used the following Boolean topic search in ThomsonReuters (ISI) Web of Knowledge: (‘biomass’, ‘wood*’,‘coal’ or ‘co-fire’) and (‘employ*’,‘product*’ or ‘community*’) and(‘electric*’). We used the search term ‘electric*’rather than ‘thermoelectric*’ as we did in the preliminary search inorder to broaden our results. Then, this search was narrowed down separately twomore times, the first one by only adding the term ‘Canada’ to theoriginal topic search and the second one by only adding the term‘Ontario’ to the original search. Results where then presented in apie graph.

Following this, we identified and used relevant articles indicated throughforward and backward citations in Thomson Reuters (ISI) Web of Knowledge andGoogle Scholard[45]. Google Scholar was used in order to reduce the likelihood thatrelated sources would be missed. Additionally, we also investigated thenon-peer-reviewed literature such as grey literature and news publications asoftentimes useful information relevant to studies such as ours can be found inthese source types.

From the retrieved sources utilizing the various above-mentioned methods, onlythose relevant to this paper were included and used to establish a relativeabundance of articles categorized by Literature Type,Location, Impacts, Fuel and Combinations.Then, based on the current state of knowledge and gaps, we discuss potentialmethods for future work, which should elucidate the anticipated policy changeson a community level.

Results and discussion

Our findings from the preliminary Thomson Reuters (ISI) Web of Knowledge searchindicate that very few Canadian peer-reviewed articles investigate biomassburning in thermoelectric generating stations. For example, the search(‘biomass’ and ‘wood*’ and‘thermoelectric*’) yielded six articles of which only one [46] has any direct bearing to this review. The search‘Atikokan’ retrieved 45 articles, with only 8 of these articleshaving any bearing on this review further indicating that limited work has beenconducted to date which is Atikokan-specific [7, 4651].

The secondary search (‘biomass’ or ‘wood*’ or‘coal’ or ‘co-fire’) and (‘employ*’or,‘product*’ or ‘community*’) and(‘electric*’) was followed by the narrowing term (and‘Canada’), and again, the narrowing term (and ‘Ontario’)indicated that out of the 4,954 articles retrieved, only 93 addressed Canada andonly 10 addressed Ontario (Figure 2), of which manyfrom Canada or Ontario were actually not suitable sources for this study. Sincethe literature indicates that most research has been conducted outside ofOntario, Canada, we had to rely primarily on these studies from otherjurisdictions.

Figure 2
figure 2

Relative abundance of Canada- and Ontario-based peer-reviewedpapers. The search (‘biomass’ or ‘coal’or ‘co-fire’) and (‘employ*’or‘product*’ or ‘community*’) and(‘electric*) yielded 4,954 articles, of which 4,851 articles werefrom outside Canada [42]. The first narrowed down search which included the searchterm ‘Canada’ yielded 93 articles. The second narrowed downsearch which included the search term ‘Ontario’ yielded 10articles.

From the results of our second query, it was noted that the top five countries'institutional affiliations are (1) United States, (2) People's Republic ofChina, (3) England, (4) Germany and (5) Sweden. However, this list might bemisleading since it reflects countries where universities and other researchinstitutions are located but not necessarily where the research is taking placeon the ground. This list also does not indicate where biomass utilization iscurrently being employed on a production scale although ‘abundantresources and favourable policies’ have allowed Northern Europe and theUnited States to expand biomass utilization for power [52]. Wherever possible, we have generalized and related these findings tothe Ontario context, addressing the local socio-economic impacts relating to100% biomass burning, 100% coal burning and co-firing biomass with coal.

We reviewed over 150 sources in depth, which included peer-reviewed articles andnon-peer-reviewed grey literature such as government documents, non-governmentalorganization (NGO) reports and news publications. Of those sources, 74 bearingrelevance to our study were cited and summarized in Table 1. It became apparent that a gap exists in the peer-reviewedliterature related to Canadian studies investigating woody biomass burning forthermoelectric production. We found eight sources which discuss biomass burningin Canada (relevant to this study), of which only three are peer-reviewedjournal articles. Out of the 74 sources cited in this paper, only 27 of theseare peer-reviewed journal articles, with the other articles being classed asacademic text books or government, NGO, corporation and trade publications(Table 1). Although non-peer-reviewed literatureis an excellent source for knowledge, it is not always subject to the sameacademic critical review as peer-reviewed journal articles are subjected to.

Table 1 Publications identified and reviewed based on fuel location andimpacts

A primary factor in assessing local socio-economic impacts is the extent to whicheconomic activities remain within the region. In Canada, thermoelectric stationsare often built near the fuel source, commonly known as mine-mouth [53], examples include Boundary Dam Power Station and Poplar River PowerStation in Saskatchewan and Sheerness Thermal Generating Station in Alberta.However, AGS has no nearby mine and uses lignite coal, which is shippedapproximately 1,000 km on rail from Bienfait, Saskatchewan. Althoughlignite coal and wood pellets tend to have similar energy density(Table 2), woody biomass is still more expensiveto produce and hence generally requires short transportation distances to bemost cost-effective [17, 54] in the absence of subsidies or other incentives. The data inTable 2 are primarily quantitative in nature andgenerally a good indicator of differences in the three burning scenarios.However, a potential weakness of the values presented is related to varyingmarket conditions. It is possible that these values for coal, biomass andco-firing may fluctuate, potentially rendering these values less helpful inreality and in the Ontario context.

Table 2 Comparison of local socio-economic impact factors of burningscenarios

The phase out from coal to biomass in Atikokan has the potential to provide newlocal benefits such as necessitating a local biomass supply chain [15], and it is speculated that it could not only secure current jobs butalso create new ones [54]. It has been reported that a greater number of people can benefitfrom woody biomass production since direct labour inputs for woody biomassproduction can range anywhere from 2 to 3 times [65] up to 20 times [15] greater than coal.

The utilization of woody biomass in co-firing, as with 100% biomass, has thepotential to develop localized wood pellet industries (albeit on a smallerscale) which can benefit local rural economies [70]. However, local benefit from woody biomass may not always berealized. If the quantity of required wood pellets is low relative to coal, itmay be more feasible to transport biomass a greater distance rather than createa local production facility.

The World Business Council for Sustainable Development (WBCSD) recently publisheda report evaluating 10 assessment tools for evaluating a company'ssocio-economic impact [71]. Their criteria for inclusion were twofold. Firstly, for a tool to beincluded, it had to focus solely on socio-economic impacts, and secondly, it hadto be developed primarily for business. The document presents and defines the 10tools, assessing them on 9 dimensions. The dimensions fall under two broadcategories: (1) strategic fit (i.e. secure licence to operate, improve businessenabling environment, strengthen value chains, fuel product and serviceinnovation) and (2) applicable levels (i.e. site, value chain, business line,company operations at the national level and company). For each tool, thedocument also outlines the degree of guidance provided, data requirements, levelof effort and example case studies.

In order to properly evaluate the impacts of AGS transition from coal to biomass,choosing the most appropriate method is imperative. Of the nine dimensionsoutlined in the WBCSD report, we identified ‘maintaining license tooperate’ as a key dimension for evaluating potential methods for an impactassessment at AGS since this dimension is concerned with determining howbusiness activities create ‘net benefits for the economies and societiesin which they operate [71]’. Furthermore, the ‘site’ level is most appropriatefor the Atikokan context since we are most concerned with how the provincialcoal cessation legislation affects the AGS site and nearby community. Selectingand employing a tool which address these two dimensions should effectivelycapture how changes at AGS affect the community.

Also, when evaluating a major change in a small town's primary industry, we feelthat the selected tool must be readily available in order to expediteimplementation and allow for future comparative analysis across other sites orcontexts. A tool for the Atikokan context also needs to best lend itself to adeveloped country scenario. For example, one of the tools, ‘Progress outof Poverty (PPI)’ [71] would not likely be a viable option for Atikokan. Based on thesecriteria, possible candidate tools exist and may include the GlobalEnvironmental Management Initiative (GEMI) Metrics Navigator [72], measuring impact framework [73], or socio-economic assessment toolbox (SEAT) [74]. Regardless of the tool, each needs to be evaluated on its own meritand ‘on functionality, fit for purpose, and cost and complexity ofimplementation [71]’.

Conclusions

In this review paper, we explored the literature related to burning coal and woodybiomass for thermoelectric production with specific reference to socio-economicimpacts. It was identified that changes in Ontario's energy policy which include thetotal ban on coal burning will have wide-reaching effects on how electricity will beproduced in the province. Since there is very little peer-reviewed research thatdirectly relates to the province of Ontario (and Canada) and the transitions set totake place at AGS, we see this as a timely research opportunity.

We propose that the use of a carefully selected socio-economic impact tool couldeffectively characterize potential socio-economic impacts as a community anticipatestransitions related to a wholesale change in fuel utilization in its localthermoelectric generating station. In order for socio-economic impact assessmenttools to be valid and meaningful, appropriate and robust local data must becollected through various means, following an accepted and proven approach, such asone or more of the tools presented by WBCSD [71] that will require local community involvement and support. This proposedresearch is necessary in order to address concerns raised by groups such asGreenpeace and to gain insight into the impacts of the transition from coal to woodybiomass. Future research should explore these issues at a greater depth, using AGSas the only North American case study of this scale currently available.

Endnotes

aIt should be noted that nuclear power proponents often promote thisenergy source as ‘green’.

bAll OPG thermoelectric plants produce solely electricity, with nofacilities currently producing heat under a combined heat and power (CHP) system,although the Ontario Power Authority is interested in developing CHP in Ontario.c.f.http://www.powerauthority.on.ca/update-chpcesop.

cThe Thomson Reuters (ISI) Web of Knowledge is described as a premierliterature and abstract database platform, which has been designed to helpresearchers to ‘quickly find, analyze, and share information in the sciences,social sciences, arts, and humanities’.

dGoogle Scholar is a Google search engine optimized for searchingscholarly literature across disciplines and sources such as articles, theses, books,professional societies and online repositories.