Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of alive weight on body composition and fatty acid content of farmed beluga sturgeon (Huso huso)


The correlation between alive weight of farmed beluga (Huso huso) (ranging from 1 to 89 kg) and body composition and fatty acid content was examined for the first time. In all weight groups, the content of protein, fat, moisture, and ash varied as follows: protein 11.2% to 18.63%, fat 1.40% to 6.0%, moisture 65.77% to 80.4%, and ash 0.54% to 1.4%. Monounsaturated fatty acids (MUFAs) were the most predominant fatty acids (43.11%) followed by polyunsaturated fatty acids (PUFAs; 28.02%) and saturated fatty acids (SFAs; 20.72%). The content of protein, SFAs (C16:0, C18:0, and C20:0), and PUFAs (C18:2 n-6, C18:3 n-3, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)) and the n-3/n-6 ratio showed a significant correlation (P < 0.01) with body weight. The content of n-3 (ranging from 6.99% to 11.72%) and n-6 (ranging from 10.82% to 28.21%) fatty acids, EPA (ranging from 0.85% to 2.66%), and DHA (ranging from 3.18% to 7.58%) and the n-3/n-6 ratio (ranging from 0.24 to 1.04) increased significantly with increasing body weight of beluga (P < 0.01), while MUFA and the DHA/EPA ratio were not correlated with the body weight of the fish. The results of this study indicated that protein content and essential n-3 PUFA were influenced by body weight.


Seafood is a good source of high-quality protein with well-balanced essential amino acids. It is rich in n-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and contains low cholesterol level (Barrento et al. 2010). N-3 are not synthesized in the human body (Simopoulos 2002), and seafood is reported to be the only main source of n-3 PUFA in the human diet which plays an important role in human nutrition and health promotion. This is the reason why an increased consumption of seafood is recommended by dietary guidelines (Jacobsen et al. 2008). Seafood consumption also has an effect on healthy balance between n-3 and n-6 PUFAs in the diet (Orban et al. 2011). With the growing emphasis on the importance of n-3 PUFA on human health and nutrition, it is important to determine the n-3 content of fish and fish products.

Sturgeons are one of the most valuable wildlife commodities on earth. Twenty-seven species of sturgeon exist in the diverse habitats of the northern hemisphere including rivers, estuaries, near-shore oceanic environments, and inland seas. The Caspian Sea is the largest inland water body in the world. The greatest abundance of sturgeon inhabits in the Caspian Sea which is the largest and most important sturgeon fisheries (Ovissipour and Rasco 2012). Six species of sturgeon occur in the Caspian Sea basin (beluga, Russian, Persian, sterlet, stellate, ship; Pikitch et al. 2005). Fuelled by the lucrative international caviar market, the stocks of many sturgeon species have faced rapid declines (Bronzi et al. 2011). In response to the declining sturgeon stocks, commercial sturgeon production in farms has been undertaken by many countries. The Siberian sturgeon (Acipenser baerii), Russian sturgeon (Acipenser gueldenstaedtii), Adriatic sturgeon (Acipenser naccarii), white sturgeon (Acipenser transmontanus), beluga sturgeon (Huso huso), and several hybrids are the main cultured sturgeon species (Badiani et al. 1997; Ercan 2011; Oliveira et al. 2006; Vaccaro et al. 2005).

Commercial catches of the beluga sturgeon in the Caspian Sea basin declined rapidly due to excessive fishing and habitat deterioration (Ruban and Khodorevskaya 2011). The beluga sturgeon is an important species for sturgeon aquaculture in Iran. This fish grows fast, has big size, and is highly appreciated for its tasty and boneless flesh (Ghomi et al. 2012b; Pourshamsian et al. 2012). Beluga is cultured in concrete indoor tanks using well water (Ghomi et al. 2012c). At the age of 3 years old, males and females are sexed to indentify males for meat production, while females are reserved for caviar production (Masoudifard et al. 2011; Ovissipour and Rasco 2011). Recently, caviar from farmed beluga females was successfully obtained in Iran, and the meat was being sold to the market. The objective of this study was to investigate the effect of body weight (from 1 to 89 kg) on the body composition and fatty acid content of farmed beluga used for caviar production.


Fish samples

Beluga (n = 20) with body weight ranging from 1 to 89 kg was cultured in a local beluga farm (Sari, Iran). The fish from different weight categories were raised in concrete circular tanks (8-m diameter, 1.5-m depth) at a stocking density of 30 kg/m3 and fed 2% of body weight with a commercial diet containing 40% protein and 15% lipid. The fatty acid composition of the diet was composed of 23.87% saturated fatty acid (SFA), 30.95% monounsaturated fatty acid (MUFA), 40.71% PUFA, 13.44% n-3 fatty acid, and 27.27% n-6 fatty acid. Fish with body weight higher than 50 kg were used for caviar production. After removing caviar, the obtained meat was used to analyze proximate and fatty acid composition. In total, 20 specimens of beluga were analyzed.

Proximate composition

Moisture was determined by drying the samples in an oven (D-63450, Heraeus, Hanau, Germany) at 105°C to a constant weight (AOAC 2005). Ash was determined by incineration in a muffle furnace (Isuzu, Tokyo, Japan) at 600°C for 3 h (AOAC 2005). Crude protein was determined by the Kjeldahl method (N × 6.25) using an automatic Kjeldahl system (230-Hjeltec Analyzer, Foss Tecator, Höganäs, Sweden) (AOAC 2005).

Lipid extraction

Lipid was extracted according to the method of Bligh and Dyer (1959). Fifty grams of sample was homogenized in a blender for 2 min with a mixture of 50 ml chloroform and 100 ml methanol. Then 50 ml of chloroform was added and further homogenized for 30 s. Finally, 50 ml of distilled water was added to the mixture and blended for 30 s. The homogenate was centrifuged (Avanti J-E, BECKMAN COULTER, Inc., Fullerton, CA, USA) at 4,000 rpm for 15 min at 4°C. The supernatant was then transferred into a separating flask, and the lower phase (chloroform phase) was drained off into a 250-ml Erlenmeyer flask containing 4 g anhydrous sodium sulfate and shaken vigorously. The solution was then filtered through a Whatman No. 4 filter paper into a round-bottom flask. A rotary evaporator was used for solvent evaporation at 25°C.

Fatty acid analysis

Fatty acid composition was determined on the oils extracted by the method of Bligh and Dyer (1959). Fatty acid methyl ester was prepared as follows: Lipid samples (1 g) were diluted with 2 ml of 2 M potassium hydroxide in methanol followed by the addition of 7 ml n-hexane in a sealed tube. The mixture was then shaken using a vortex for 1 min and left for about 20 min in a water bath (temperature 50°C to 55°C) until it was separated into two phases. From the top layer, fatty acid methyl ester was then taken for analysis using Trace GC (Thermo Finnigan, Rodano, Italy). The GC conditions were as follows: capillary column (Bpx-70, 60 m, 0.32 mm, i.d. 0.25 μm), split ratio of 90:1, injection port temperature of 250°C, and flame ionization detector temperature of 270°C. The oven temperature was set at 195°C for 75 min. The flow rate of carrier gas (helium) was 1 ml/min, and the makeup gas was N2 (30 ml/min). The sample size injected for each analysis was 1 μl. The data are expressed as grams/100 grams of total fatty acids.

Statistical analysis

Pearson's correlation coefficient with a significance level of P < 0.05 was used to test for linear correlations. Data are expressed as mean ± standard deviation (SD).

Results and discussion

Proximate composition

The protein, fat, moisture, and ash content of farmed beluga sturgeon are shown in Table 1. The content of protein, fat, moisture, and ash were 14.73%, 3.92%, 74.97%, and 0.81%, respectively. The protein content in beluga was lower than that in other farmed sturgeon species such as white sturgeon (A. transmontanus) with 18% to 19% protein (Paleari et al. 1997), Acipenserspp. with 17.6% to 21% protein (Badiani et al.1996), Gulf of Mexico sturgeon (A. oxyrynchus desotoi) with 17.4% to 19.5% protein (Oliveira et al. 2006), Siberian sturgeon (A. baerii) with 17.8% to 19.6% protein, and Russian sturgeon (A. gueldenstaedtii) with 16.4% to 17.6% protein (Chapman et al. 2005). On the other hand, farmed beluga contained lower fat than other farmed sturgeon species (Badiani et al. 1996; Chapman et al. 2005), but its fat content is higher than the fat content of the Gulf of Mexico sturgeon (Oliveira et al. 2006). According to fat content, fish are usually classified into lean (fat content <2%), low-fat (fat content 2% to 4%), medium-fat (fat content 4% to 8%), and high-fat (fat content >8%) (Haard 1992). The present study indicated that the farmed beluga with a fat content lower than 4% could be placed amongst those fish with low fat content. A significant correlation between fish weight and protein content was observed (r = 0.504, P < 0.05; Figure 1). Palmeri et al. (2007) analyzed the proximate composition of Murray cod of different sizes and reported a lower fat content in smaller fish, more likely due to the utilization of fat at a faster rate during early growth stages. However, in this study, a correlation between body fat and fish weight was not found.

Figure 1

Correlation scatterplot for protein and body weight in farmed beluga.

Table 1 Correlation between farmed beluga weight and proximate composition

Fatty acid composition

The fatty acid composition of farmed beluga sturgeon fillet is shown in Table 2. MUFAs were the most predominant fatty acids (43.11%) followed by PUFAs (28.02%) and SFAs (20.72%). MUFAs also represented the major fatty acids in several farmed sturgeon species including the white sturgeon (45.39%), Adriatic sturgeon (47.70%), and Siberian sturgeon (44.89%) (Badiani et al. 1997) and the sturgeon hybrid A. baerii × (A. baerii × A. medirostris) (46.21%) (Jankowska et al. 2005). Oleic acid (C18:1) was the major MUFA (40.12% of total fatty acid (TFA)). Palmitic acid (C16:0) was the main SFA (16.6% of TFA). Docosahexaenoic acid (C22:6) was the main n-3 fatty acid (5.20% of TFA), while linoleic acid (C18:2) was the major n-6 fatty acid (17.30% of TFA). The EPA and DHA content of beluga (Figure 2) were lower than those of other cultured sturgeon species such as the Siberian sturgeon (A. baerii) with 6.54% EPA and 9.7% DHA, Adriatic sturgeon (A. naccarii) with 4.81% EPA and 8.77% DHA, and white sturgeon (A. transmontanus) with 5.55% EPA and 9.06% DHA (Badiani et al. 1997). Fatty acid composition could be influenced by the diet the fish consumed (Vaccaro et al. 2005). A significant correlation (P < 0.01) between SFAs (C16:0, C18:0, and C20:0), PUFAs (C18:2 n-6, C18:3 n-3, EPA, and DHA), and n-3/n-6 ratio and body weight was found (Table 2). The percentage content of n-3 (ranging from 6.99 to 11.72) and n-6 (ranging from 10.82 to 28.21) fatty acids, EPA (ranging from 0.85 to 2.66), and DHA (ranging from 3.18 to 7.58) and the n-3/n-6 ratio (ranging from 0.24 to 1.04) increased significantly with increasing fish weight (P < 0.01). Similarly, among some commercial studied species by Ghomi and Dezhabad (2012), n-3 polyunsaturated fatty acids significantly increased (P = 0.032) with the increase of fish weight in silver carp, while n-6 fatty acids decreased (P = 0.013). However, MUFA and the DHA/EPA ratio were not correlated with body weight.

Figure 2

Fatty acid (EPA, C20:5 n-3; DHA, C22:6 n-3) amount in different body weight of farmed beluga.

Table 2 Correlation between farmed beluga weight and fatty acid composition (% of total fatty acids)

Essential polyunsaturated fatty acids such as EPA and DHA are not synthesized in the human body; therefore, their inclusion in diets is essential (Ghomi et al. 2012a). A higher DHA/EPA ratio is more beneficial to health as DHA is more efficient than EPA in reducing the risk of coronary heart disease (Simopoulos 2002). The fatty acid composition of farmed Atlantic salmon (Refsgaard et al. 1998); farmed sea bass, gilthead sea bream, and rainbow trout (Testi et al. 2006); carp, walleye Pollock, cod, and Baltic salmon (Usydus et al. 2011); Siberian sturgeon, Adriatic sturgeon, and white sturgeon (Badiani et al. 1997); and sturgeon hybrid (Adriatic sturgeon × Siberian sturgeon) (Vaccaro et al. 2005) also contained a higher percentage of DHA than EPA. On the other hand, a significant positive correlation was found for EPA (r = 0.709, P = 0.000) and DHA (r = 0.848, P = 0.000) with fish weight (Table 2, Figure 3).

Figure 3

Correlation scatterplot for fatty acid (EPA, C20:5 n-3; DHA, C22:6 n-3) and body weight in farmed beluga.

The n-3/n-6 ratio is an important nutritional index of lipid quality. The n-3 PUFA is important in the prevention of human chronic inflammatory and cardiovascular diseases and prevention of cancer. Seafood is the only significant source of n-3 PUFA, predominantly EPA and DHA (Orban et al. 2011). The n-3/n-6 ratio in farmed beluga was 0.6 (ranging from 0.24 to 1.04). The optimal ratio of n-3/n-6 fatty acids is 1:5 (0.2; Sargent 1997). The n-3/n-6 ratios observed for other sturgeon species were 6.74 in farmed sturgeon hybrid (A. naccarii × A. baerii) (Vaccaro et al. 2005), 3.83 in farmed Siberian sturgeon (A. baerii), and 4.21 in farmed white sturgeon (A. transmontanus). In general, the n-3/n-6 ratio in seafood is higher than the recommended value (1:5), and from a nutritional viewpoint, this is highly beneficial and desirable for the daily human diet (Usydus et al. 2011). The correlation between n-3/n-6 ratio and body weight was highly significant (r = 0.828, P = 0.000). Larger farmed beluga contained a significantly higher n-3/n-6 ratio when compared to smaller fish which could indicate the beneficial health effect of larger farmed beluga fillets.


The nutritional value of farmed beluga used for caviar production in Iran based on fatty acid traits was established for the first time. A significant correlation between the body weight of farmed beluga and protein, PUFA, n-3 and n-6 fatty acids, and n-3/n-6 ratio was observed. The content of essential n-3 PUFA such as EPA and DHA increased with increasing body weight. As all cultured fish were fed with the same source of food, the present study indicates that the body weight could alter the rate of fatty acids established in the body; consequently, the body's fatty acids are dependent to fish body size.


  1. AOAC: Official methods of analysis. 18th edition. Association of Official Analytical Chemists, Gaithersburg; 2005.

  2. Badiani A, Anfossi P, Fiorentini L, Gatta PP, Manfredini M, Nanni N: Nutritional composition of cultured sturgeon ( Acipenser spp.). J Food Comp Anal 1996, 9: 171–190. 10.1006/jfca.1996.0024

  3. Badiani A, Stipa S, Nanni N, Gatta PP, Manfredini M: Physical indices, processing yields, compositional parameters and fatty acid profile of three species of cultured sturgeon (Genus Acipenser ). J Sci Food Agric 1997, 74: 257–264. 10.1002/(SICI)1097-0010(199706)74:2<257::AID-JSFA801>3.0.CO;2-K

  4. Barrento S, Marques A, Teixeira B, Mendes R, Bandarra N, Vaz-Pires P, Nunes ML: Chemical composition, cholesterol, fatty acid and amino acid in two populations of brown crab Cancer pagurus : ecological and human health implications. J Food Comp Anal 2010, 23: 716–725. 10.1016/j.jfca.2010.03.019

  5. Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Food Biochem Physiol 1959, 37: 911–917. 10.1139/o59-099

  6. Bronzi P, Rosenthal H, Gessner J: Global sturgeon aquaculture production: an overview. J Appl Ichthyol 2011, 27: 169–175. 10.1111/j.1439-0426.2011.01757.x

  7. Chapman FA, Colle DE, Miles RD: Processing yields for meat of Russian and Siberian sturgeons cultured in Florida, USA. J Aquat Food Prod Technol 2005, 14: 29–36. 10.1300/J030v14n01_04

  8. Ercan E: A glance on sturgeon farming potential of Turkey. Int Aquat Res 2011, 3: 117–124.

  9. Ghomi MR, Dezhabad A: Nutritional properties of kutum ( Rutilus frisii kutum , Kamensky, 1901), silver carp ( Hypophthalmichthys molitrix ) and rainbow trout ( Oncorhynchus mykiss ) correlated with body weight. Arch Pol Fish 2012, 20: 275–280.

  10. Ghomi MR, Shahriari R, Faghani Langroudi H, Nikoo M, Von Elert E: Effects of exogenous dietary enzyme on growth, body composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquacult Int 2012, 20: 249–254. 10.1007/s10499-011-9453-9

  11. Ghomi MR, Nikoo M, Babaei Z: Fatty acid composition in farmed great sturgeon Huso huso . Comp Clin Pathol 2012, 21: 111–114. 10.1007/s00580-011-1228-1

  12. Ghomi MR, Nikoo M, Pourshamsian K: Omega-6/omega-3 essential fatty acid ratio in cultured beluga sturgeon. Comp Clin Pathol 2012, 21: 479–483. 10.1007/s00580-012-1495-5

  13. Haard N: Control of chemical composition and food quality attributes of cultured fish. Food Res Int 1992, 25: 289–307. 10.1016/0963-9969(92)90126-P

  14. Jacobsen C, Undeland I, Storrø I, Rustad T, Hedges N, Medina I: Preventing lipid oxidation in seafood. In Improving seafood products for the consumer. Edited by: Bùrresen T. Woodhead, Cambridge; 2008:426–460.

  15. Jankowska B, Kolman R, Szczepkowski M, Zmijewski T: Production value, chemical composition and color of fillets of the reciprocal hybrid of Siberian sturgeon with green sturgeon ( Acipenser baerii Br ×  Acipenser medirostris Ayres). Czech J Anim Sci 2005, 50: 220–225.

  16. Masoudifard M, Vajhi AR, Moghim M, Nazari RM, Naghavi AR, Sohrabnejad M: High validity sex determination of three years old cultured beluga sturgeon ( Huso huso ) using ultrasonography. J Appl Ichthyol 2011, 27: 643–647. 10.1111/j.1439-0426.2011.01726.x

  17. Oliveira ACM, O’Keefe SF, Balaban MO: Fillet yields and proximate composition of cultured Gulf of Mexico sturgeon ( Acipenser oxyrinchus desotoi ). J Aquat Food Prod Technol 2006, 14: 5–16.

  18. Orban E, Lena GD, Nevigato T, Masci M, Casini I, Caproni R: Proximate, unsaponifiable lipid and fatty acid composition of bogue ( Boops boops ) and horse mackerel ( Trachurus trachurus ) from the Italian trawl fishery. J Food Comp Anal 2011, 24: 1110–1116. 10.1016/j.jfca.2011.03.009

  19. Ovissipour M, Rasco B: Fatty acid and amino acid profiles of domestic and wild beluga ( Huso huso ) roe and impact on fertilization ratio. J Agric Res Dev 2011, 2: 1–6.

  20. Ovissipour M, Rasco B: Sturgeon: conservation of Caspian Sea stocks. J Agric Res 2012, 3: 1–2.

  21. Paleari A, Beretta G, Grimaldi P, Vaini F: Composition of muscle tissue of farmed sturgeon with particular reference to lipidic content. J Appl Ichthyol 1997, 13: 63–66. 10.1111/j.1439-0426.1997.tb00102.x

  22. Palmeri G, Turchini GM, De Silva SS: Lipid characterisation and distribution in the fillet of the farmed Australian native fish, Murray cod ( Maccullochella peelii peelii ). Food Chem 2007, 102: 796–807. 10.1016/j.foodchem.2006.06.018

  23. Pikitch EK, Doukakis P, Lauck L, Chakrabarty P, Erickson DL: Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish 2005, 6: 233–265. 10.1111/j.1467-2979.2005.00190.x

  24. Pourshamsian K, Ghomi MR, Nikoo M: Fatty acid and proximate composition of farmed great sturgeon ( Huso huso ) affected by thawing methods, frying oils and chill storage. Adv Stud Biol 2012, 4: 67–76.

  25. Refsgaard HHF, Brockhoff PB, Jensen B: Biological variation of lipid constituents and distribution of tocopherols and astaxanthin in farmed Atlantic salmon ( Salmo salar ). J Agric Food Chem 1998, 46: 808–812. 10.1021/jf970721q

  26. Ruban GI, Khodorevskaya RP: Caspian Sea sturgeon fishery: a historic overview. J Appl Ichthyol 2011, 27: 199–208. 10.1111/j.1439-0426.2011.01725.x

  27. Sargent JR: Fish oils and human diet. Br J Nutr 1997, 78: 5–13. 10.1079/BJN19970114

  28. Simopoulos AP: The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002, 56: 365–379. 10.1016/S0753-3322(02)00253-6

  29. Testi S, Bonaldo A, Gatta PP, Badiani A: Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem 2006, 98: 104–111. 10.1016/j.foodchem.2005.05.053

  30. Usydus Z, Szlinder-Richert J, Adamczyk M, Szatkowska U: Marine and farmed fish in the Polish market: comparison of the nutritional value. Food Chem 2011, 126: 78–84. 10.1016/j.foodchem.2010.10.080

  31. Vaccaro AM, Buffa G, Messina CM, Santulli A, Mazzola A: Fatty acid composition of a cultured sturgeon hybrid ( Acipenser naccari  ×  A. baerii ). Food Chem 2005, 93: 627–631. 10.1016/j.foodchem.2004.09.042

Download references


This research has been supported by a research grant from Islamic Azad University, Tonekabon Branch, Iran.

Author information

Correspondence to Mehdi Nikoo.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MRG and MN participated in the design of the study. MRG and MS carried out the experiment and performed the statistical analysis. MRG and MN participated in the discussion and corrected the manuscript. All authors read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Authors’ original file for figure 3

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Ghomi, M.R., Nikoo, M. & Sohrabnezhad, M. Effect of alive weight on body composition and fatty acid content of farmed beluga sturgeon (Huso huso). Int Aquat Res 5, 6 (2013).

Download citation


  • Body composition
  • Fatty acid content
  • Body weight
  • Farmed beluga sturgeon