Studies have reported important functions played by natural carotenoids in regulating immunity and disease etiology [1, 2]. Specifically, interest in the biological activity of astaxanthin, an oxycarotenoid found in high amounts in the carapace of crustaceans and in the flesh of salmon and trout, has increased in recent years. In vitro studies have demonstrated that astaxanthin is several fold more active as a free radical antioxidant than β-carotene and α-tocopherol [3].
Using a rodent model, we [4] and others [5, 6] have demonstrated that astaxanthin stimulated immune response in mice. Mice supplemented with astaxanthin had increased ex vivo splenocyte antibody response to T-dependent antigens [6], lymphoblastogenic response and cytotoxic activity [4]. Moreover, these studies also showed that astaxanthin was consistently more active than other carotenoids such as β-carotene, lutein and canthaxanthin.
In addition to immunoregulatory activity, astaxanthin also inhibited mammary tumor growth. We [7] reported that dietary astaxanthin inhibited mammary tumor growth in mice. Astaxanthin has been shown to reduce bacterial load and gastric inflammation in Helicobacter pylori-infected mice [5], and to protect against UVA-induced oxidative stress [8].
Immune cells are particularly sensitive to oxidative stress due to a high percentage of polyunsaturated fatty acids in their plasma membranes, and they generally produce more oxidative products [1]. Overproduction of reactive oxygen and nitrogen species can tip the oxidant:antioxidant balance, resulting in the destruction of cell membranes, proteins and DNA. Therefore, under conditions of increased oxidative stress (e.g. during disease states), dietary antioxidants become critical in maintaining a desirable oxidant:antioxidant balance. While studies on the immunomodulatory role of dietary astaxanthin have been reported in rodents, similar studies in humans are not available. We hypothesize that dietary astaxanthin will act as a potent antioxidative and anti-inflammatory agent; through these and other mechanisms, astaxanthin can enhance immune response. Our objective is to study the possible immune-enhancing, antioxidative and anti-inflammatory activity of dietary astaxanthin in humans.
Subjects and methods
Study participants and study design
Free-living healthy female college students with an average age of 21.5 yr (20.2-22.8 yr) and BMI of 21.6 (16.3-27.5) were participants in this study. Participants were recruited from Inha University (Seoul, Korea) through flyers and emails, and all were native Koreans. Subjects with a history of diabetes, alcohol abuse, cancer or smoking were excluded; exclusion criteria also included those taking antioxidant supplements. Prior to the initiation of dietary supplementation, a three-day dietary record was obtained from each subject who provided informed consent. During the study, subjects were allowed to consume their normal diets but were advised to refrain from eating astaxanthin-rich foods such as salmon, lobster, and shrimp. Subjects were ranked based on BMI (age was within a very narrow range) and groups of 3 participants with similar BNI were randomly assigned to receive daily: 0 (control; Con), 2 mg (2Asta), or 8 mg (8Asta) astaxanthin (109 g astaxanthin complex/kg oleoresin concentrate from Haematococcus pluvialis, astaZanthin™, La Haye Laboratories Inc., Redmond, WA) (n = 14 subjects/diet) for 8 wk in a double-blind, placebo-controlled study. Astaxanthin was administered as a softgel capsule taken every morning, and all softgel capsules were externally identical. Blinding was further ensured by assigning consecutive numbers to the dietary treatments and maintaining a master list until the study was completed. The astaxanthin complex used in this study came from a supercritical CO2 extract of Haematococcus pluvialis. Astaxanthin in the H. pluvialis extract is entirelythe 3S, 3S' enantiomer, and is primarily monoesterified with smaller quantities of diester and free astaxanthin. The astaxanthin complex also contains small amounts (<15%) of mixed carotenoids including lutein, β-carotene and canthaxanthin. To minimize subject-to-subject and assay-to-assay variation due to different sampling days, blood was drawn from all 42 subjects on one day for each of wk 0, 4 and 8. Immune function and oxidative status was assessed within 24 h of blood collection. All procedures were approved by the Institutional Review Board (IRB #4421) of Washington State University.
Analytical procedures
HPLC
Astaxanthin content in plasma was analyzed by reverse phase HPLC (Alliance 2690, Waters, Milford, MA) as previously described [9]. Trans-β-apo-8'carotenal (Sigma Chem. Co., St. Louis, MO) was used as the internal standard. Mobile phase used was acetonitrile:methanol:water, 47:47:16 (v/v/v), and samples were eluted through a 5-μm spherical C-18 column (3.9 × 150 mm Resolve, Waters, Milford, MA) at a flow rate of 1.5 mL/min. Absorbance was monitored at 492 nm on a photo diode array detector.
Lymphoproliferation
The proliferation response of peripheral blood mononuclear cells to phytohemagglutinin (2 and 10 mg/L final concentration), concanavalin A (2 and 10 mg/L), and pokeweed mitogen (1 and 5 mg/L) was assessed using whole blood cultures (to mimic in vivo conditions) as previously described [10]. Results were calculated as stimulation index.
Natural killer cell cytotoxic activity
Effector cells (peripheral blood mononuclear cells) and target (K562) cells were cultured at effector:target ratios of 5:1 and 10:1 in DMEM (Sigma, St. Louis, MO) containing 100 mL/L fetal bovine serum, 0.1 U/L penicillin, and 100 g/L streptomycin sulfate. Killing was assessed using MTT to measure cell viability. The percent of specific cytotoxicity was calculated as follows:
Phenotyping
Populations of total T cells (CD3+CD19-), T cytotoxic cells (Tc; CD3+CD8+), T helper cells (Th; CD3+CD4+), B cells (CD3-CD19+), and natural killer cells (NK; CD3-/CD16+56+) were quantitated by dual color flow cytometry as previously described [10, 11]. Cells were labeled with monoclonal antibodies conjugated to fluorescein isothiocyanate (FITC) or phycoerythrin (PE): anti-CD3 was conjugated to FITC, and anti-CD8, anti-CD4 and anti-CD19 were conjugated to PE (Caltag Laboratories, Burlingame, CA). In addition, the distribution of the intercellular adhesion molecule ICAM-1 (CD54+, BD Biosciences), and the leukocyte function antigens LFA-1 (CD11a+, BD Biosciences) and LFA-3 (CD58+, BD Biosciences) were measured. A lymphocyte analysis gate and the antibodies CD45-FITC and CD14-PE (Caltag Laboratories, Burlingame, CA) were used to help distinguish the lymphocytes from other blood cell types. A total of 2000 gated events were acquired for each sample and analyzed by flow cytometry (FACScan, BD Biosciences, San Jose, CA) using the Cell Quest program (version 3.3).
Tuberculin delayed-type hypersensitivity
Delayed-type hypersensitivity (DTH) response to an intracutaneous injection of tuberculin (Mono-Vacc Test O.T., Pasteur Merieux Connaught, France) was assessed on wk 8. A physician administered the injections and also measured skin thickness and induration at 0, 24, 48 and 72 h after challenge.
Cytokine production
Plasma samples were analyzed using commercially available ELISA kits for IL-2 (BD OptEIA™ Set Human IL-2, BD Biosciences, San Diego, CA), TNFα (BD OptEIA™ Set Human TNF), and IFN-γ (BD OptEIA™ Set Human IFN-γ), as well as IL-1β (Amersham Pharmacia Biotech Inc., Piscataway, NJ) and IL-6 (Amersham Pharmacia Biotech Inc.).
C-Reactive protein
C-Reactive protein (CRP), a well-established marker of inflammatory status, was measured in plasma with a commercially available ELISA (Alpha Diagnostic, San Antonio, TX).
Oxidative damage to DNA
Oxidative DNA damage was assessed by measuring plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) using competitive ELISA (BIOXYTECH® 8-OHdG-EIA Kit, OxisResearch, Portland, OR).
Lipid-peroxidation
Plasma concentrations of 8-epi-prostaglandin F2α (8-isoprostane) were measured by a commercially available competitive ELISA (8-Isoprostane EIA kit, Cayman Chemical Company, Ann Arbor, MI).
Statistical analysis
Data were analyzed by repeated measures ANOVA using the General Linear Model of SAS [12]. Differences among treatment means were compared by a protected LSD test and considered different at P < 0.05.