Advertisement

Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy

  • Piet Hein Jongbloet
  • André LM Verbeek
  • Martin den Heijer
  • Nel Roeleveld
Open Access
Hypothesis

Abstract

Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are associated with polymorphisms in folate-related genes, such as the 677C → T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established for several constitutional chronic diseases in adulthood, such as schizophrenia, cardiovascular diseases, dementia, and even neoplasias in different organ systems. This spectrum of developmental anomalies and constitutional diseases may be linked to high-risk conceptions related to preovulatory overripeness ovopathy (PrOO). Some developmental anomalies, such as NTDs, are to a large extent prevented by supplementation of folic acid before conception, but supplementation does not seem to prevent cardiovascular disease or cognitive decline. These diverging results can be elucidated by introduction of the PrOO concept, as MTHFR polymorphisms and inherent low folate levels induce both non-optimal maturation of the oocyte and unsuccessful DNA methylation and demethylation, i.e. epigenetic mutations. The PrOO concept is testable and predicts in a random population the following: (1) female carriers of specific genetic MTHFR variants exhibit more ovulatory disturbances and inherent subfecundity traits, (2) descendents from a carrier mother, when compared with those from a wild-type mother, are more frequently conceived in PrOO high-risk conditions and, thus, (3) disadvantaged in life expectancy. If so, some MTHFR polymorphisms represent a novel, genetically determined, PrOO high-risk conception category comparable to those which are environmentally and behaviorly influenced. These high-risk conditions may cause developmental anomalies and defective epigenetic reprogramming in progeny. The interaction between genetic and environmental factors is a plausible mechanism of multifactorial inheritance.

Notes

Acknowledgements

Wim Lemmens contributed towards the design of the figures.

References

  1. 1.
    Jongbloet PH: The effects of preovulatory overripeness of human eggs on development. Aging gametes. Their biology and pathology. International Symposium, Seattle, 1973. Edited by: Blandau RJ. 1975, Basel: Karger, 300-329.Google Scholar
  2. 2.
    Jongbloet PH: The ageing gamete in relation to birth control failures and Down syndrome. Eur J Pediatr. 1985, 144: 343-347. 10.1007/BF00441775.CrossRefPubMedGoogle Scholar
  3. 3.
    Jongbloet PH: Prepregnancy care: Background biological effects. Prepregnancy Care: A Manual for Practice. Edited by: Chamberlain G, Lumley J. 1986, New York: Wiley & Sons, 31-52.Google Scholar
  4. 4.
    Jongbloet PH: Over-ripeness ovopathy – A challenging hypothesis for sex ratio modulation. Hum Reprod. 2004, 19: 769-774. 10.1093/humrep/deh136. and 1036–1038.CrossRefPubMedGoogle Scholar
  5. 5.
    Morgan HD, Santos F, Green K, Dean W, Reik W: Epigenetic reprogramming in mammals. Hum Molec Genet. 2005, 14: R47-R58. 10.1093/hmg/ddi114.CrossRefPubMedGoogle Scholar
  6. 6.
    Molloy AM, Daly S, Mills JL, Kirke PN, Whitehead AS, Ramsbottom D, Conley MR, Weir DG, Scott JM: Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates; implications for folate intake recommendations. Lancet. 1997, 349: 1591-1593. 10.1016/S0140-6736(96)12049-3.CrossRefPubMedGoogle Scholar
  7. 7.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, Heuvel van den LP, Rozen R: A candidate genetic risk factor for vascular disease: a common mutation in methyleneterahydrofolate reducase. Nat Genet. 1995, 10: 111-113. 10.1038/ng0595-111.CrossRefPubMedGoogle Scholar
  8. 8.
    Guéant-Rodriguez R-M, Guéant J-L, Debard R, Thirion S, Hong LX, Bronowicki J-P, Namour F, Chabi NW, Sani A, Anello G, Bosco P, Romano C, Amouzou E, Arrieta HR, Sànchez BE, Romano A, Herbeth B, Guilland J/C, Mutchinick OM: Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr. 2006, 83 (3): 701-707.CrossRefGoogle Scholar
  9. 9.
    Blom HJ, Shaw GM, den Heijer M, Finnell RH: Neural tube defects and folate: case far from closed. Nat Rev/Neurosience. 2006, 7: 724-731. 10.1038/nrn1986.CrossRefGoogle Scholar
  10. 10.
    Bailey LB, Berry RJ: Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriages. Am J Clin Nutr. 2005, 81 (suppl): 1213S-1217S.CrossRefGoogle Scholar
  11. 11.
    Hobbs CA, James SJ, Jernigan S, Melnyk S, Lu Y, Malik S, Cleves MA: Congenital heart defects, maternal homocysteine, smoking, and the 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene: Evaluating gene-environment interactions. Am J Obstet Gynecol. 2006, 194: 218-224. 10.1016/j.ajog.2005.06.016.CrossRefPubMedGoogle Scholar
  12. 12.
    Bille C, Murray JC, Olsen SF: Folid acid and birth malformations. BMJ. 2007, 334: 433-434. 10.1136/bmj.39133.386296.BE.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M: Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry. 2006, 11 (2): 143-149. 10.1038/sj.mp.4001746.CrossRefPubMedGoogle Scholar
  14. 14.
    Zintzaras E: C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet. 2006, 16 (3): 105-115. 10.1097/01.ypg.0000199444.77291.e2.CrossRefPubMedGoogle Scholar
  15. 15.
    Gilbody S, Lewis S, Lightfoot T: Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A huge review. Am J Epidemiol. 2007, 165: 1-13. 10.1093/aje/kwj347.CrossRefPubMedGoogle Scholar
  16. 16.
    Zintzaras E, Chatzoulis DZ, Karabatsas CH, Stefanidis I: The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type. J Hum Genet. 2005, 50: 267-275. 10.1007/s10038-005-0250-z.CrossRefPubMedGoogle Scholar
  17. 17.
    Bodnar LM, Tang G, Ness RB, Harger G, Roberts JM: Periconceptional multivitamin use reduces the risk of preeclampsia. Am J Epidemiol. 2006, 164: 470-477. 10.1093/aje/kwj218.CrossRefPubMedGoogle Scholar
  18. 18.
    Chavarro JE, Rich-Edwards JW, Rosner BA, Wilett WC: Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertil Steril. 2007, 89 (3): 668-676. 10.1016/j.fertnstert.2007.03.089.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    den Heijer M, Lewington S, Clarke R: Homocysteine, MTHFR and risk of venous thrombosis: a metaanalysis of published epidemiological studies. J Thromb Haemost. 2005, 3: 292-299. 10.1111/j.1538-7836.2005.01141.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Cronin S, Furie KL, Kelly PJ: Dose-related association of MTHFR 677T allele with risk of ischemic stroke Evidence from a cumulative meta-analysis. Stroke. 2005, 36: 1581-1587. 10.1161/01.STR.0000169946.31639.af.CrossRefPubMedGoogle Scholar
  21. 21.
    Födinger M, Sunder-Plassmann G: Methylenetetrahydrofolate reductase polymorphisms and renal failure. MTHFR polymorphisms and Disease. Edited by: Ueland PM, Rozen R. 2005, Georgetown, Texas, USA: Eurekah.com/Landes Bioscience, 170-178.Google Scholar
  22. 22.
    Elias MF, Sullivan LM, D'Agostino RB, Elias PK, Jacques PF, Selhub J, Seshadri S, et al: Homocysteine and cognitive performance in the Framingham offspring study: Age is important. Am J Epidemiol. 2005, 162: 644-653. 10.1093/aje/kwi259.CrossRefPubMedGoogle Scholar
  23. 23.
    Clarke R: Commentary: An updated review of the published studies of homocysteine and cardiovascular disease. Int J Epidemiol. 2002, 31: 70-71. 10.1093/ije/31.1.70.CrossRefPubMedGoogle Scholar
  24. 24.
    Clarke R: Homocysteine, B vitamins, and the risk of dementia. Am J Nutr. 2007, 85 (2): 329-330.CrossRefGoogle Scholar
  25. 25.
    Davey Smith G, Ebrahim S: Folate supplementation and cardiovascular disease. Lancet. 2005, 366: 1679-1681. 10.1016/S0140-6736(05)67676-3.CrossRefPubMedGoogle Scholar
  26. 26.
    Wald DS, Moris JK, Law M, Wald NJ: Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ. 2006, 333: 1114-1117. 10.1136/bmj.39000.486701.68.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zintzaras E: Methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to breast cancer: A meta-analysis. Clin Genet. 2006, 69: 327-336. 10.1111/j.1399-0004.2006.00605.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Zintzaras E: Associations of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet. 51: 618-624. 10.1007/s10038-006-0405-6.CrossRefGoogle Scholar
  29. 29.
    Zintzaras E, Koufalis T, Ziakas PD, Rodopoulou P, Giannouli S, Voulgarelis M: A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol. 2006, 21: 501-510. 10.1007/s10654-006-9027-8.CrossRefPubMedGoogle Scholar
  30. 30.
    Crott JW, Mason JB: MTHFR Polymorphisms and colorectal neoplasia. MTHFR polymorphisms and Disease. Edited by: Ueland PM, Rozen R. 2005, Georgetown, Texas, USA: Eurekah.com/Landes Bioscience, 178-196.Google Scholar
  31. 31.
    Venners SA, Liu X, Perry MJ, Korrick SA, Li Z, Yang F, Yang J, Lasley BL, Xu X, Wang X: Urinary estrogen and progesterone metabolite concentrations in menstrual cycles of fertile women with non-conception, early pregnancy loss or clinical pregnancy. Hum Reprod. 2006, 21: 2272-2280. 10.1093/humrep/del187.CrossRefPubMedGoogle Scholar
  32. 32.
    Selevan SG, Lemasters GK: The dose-response fallacy in human reproductive studies of toxic exposures. J Occup Med. 1987, 29: 451-455.PubMedGoogle Scholar
  33. 33.
    Wynn M, Wynn A: No nation can rise above the level of women: New thoughts on maternal nutrition. The Caroline Walker Lecture. 1993, London: Caroline Walker Trust, 1-30.Google Scholar
  34. 34.
    Young SS, Eskenzi B, Marchetti FM, Block G, Wyrobek AJ: The association of folate, zinc and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod. 2008, 23: 1014-1022. 10.1093/humrep/den036.CrossRefPubMedGoogle Scholar
  35. 35.
    Li D, Pickel L, Liu Y, Wu Q, Cohn JS, Rozen R: Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr. 2005, 82: 188-195.CrossRefGoogle Scholar
  36. 36.
    Ferguson SE, Smith GN, Walker MC: Maternal plasma homocysteine levels in women with preterm premature rupture of membranes. Med Hypoth. 2001, 56: 85-90. 10.1054/mehy.2000.1116.CrossRefGoogle Scholar
  37. 37.
    George L, Mills JL, Johansson ALV, Nordmark A, Olander B, Granath F, Cnattingius S: Plasma folate levels and risk of spontaneous abortion. JAMA. 2002, 288: 1867-1873. 10.1001/jama.288.15.1867.CrossRefPubMedGoogle Scholar
  38. 38.
    Nelen WLDM, Blom HJ: Pregnancy complications. MTHFR polymorphisms and Disease. Edited by: Ueland PM, Rozen R. 2005, Georgetown, Texas, USA: Eurekah.com/Landes Bioscience, 144-162.Google Scholar
  39. 39.
    Ren A, Wang J: Methylenetetrahydrofolate reductase C677T polymorphism and the risk of unexplained recurrent pregnancy loss: A meta-analysis. Fertil Steril. 2006, 86: 1716-1722. 10.1016/j.fertnstert.2006.05.052.CrossRefPubMedGoogle Scholar
  40. 40.
    Isotalo PA, Wells GA, Donelly JG: Neonatal and fetal methylenetetrahydrofolate reductase genetic polymorphisms: An examination of C677T and A1298C mutations. Am J Hum Genet. 2000, 67: 986-990. 10.1086/303082.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Isotalo PA, Donnelly JG: Prevalence of methylenetetrahydrofolate reductase mutations in patients with venous thrombosis. Molec Diag. 2000, 5: 59-66.CrossRefGoogle Scholar
  42. 42.
    Zetterberg H, Regland B, Palmer M, Ricksten A, Palmqvist L, Rymo L, Arvanitis DA, Spandilos DA, Blennow K: Increased frequency of combined methylenetetrahydrofolate reductase C677T and A1298C mutated alleles in spontaneous aborted embryos. Eur J Hum Genet. 2002, 10: 113-118. 10.1038/sj.ejhg.5200767.CrossRefPubMedGoogle Scholar
  43. 43.
    Bae J, Shin SJ, Cha SH, Choi DH, Lee S, Kim NK: Prevalent genotypes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) in spontaneously aborted embryos. Fertil Steril. 2007, 87: 351-355. 10.1016/j.fertnstert.2006.06.027.CrossRefPubMedGoogle Scholar
  44. 44.
    Jugessur A, Wilcox AJ, Lie RT, Murray JC, Taylor JA, Ulvik A, Devron CA, Vindenes HA, Åbyholm FE: Exploring the effects of methylenetetrahydrofolate reductase gene variants C677T and A1298C on the risk of orofacial clefts in 261 Norwegian case-parent triads. Am J Epidemiol. 2003, 157: 1083-1091. 10.1093/aje/kwg097.CrossRefPubMedGoogle Scholar
  45. 45.
    van Beynum IM, Kapusta L, den Heyer M, Vermeulen SHHM, Kouwenberg M, Daniëls O, Blom HJ: Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J. 2006, 27: 981-987. 10.1093/eurheartj/ehi815.CrossRefPubMedGoogle Scholar
  46. 46.
    Jongbloet PH: Non-optimal maturation of the oocyte, maternal MTHFR polymorphisms, periconceptional folate, and decrease of congenital heart defects. Eur Heart J. 2007, 28: 2043-10.1093/eurheartj/ehm235.CrossRefPubMedGoogle Scholar
  47. 47.
    Rozen R, Clarke Frazer F, Shaw G: Decreased proportion of female newborn infants homozygous for the 677C → T mutation in methylenetetrahydrofolate reductase. Am J Med Genet. 1999, 83: 142-143. 10.1002/(SICI)1096-8628(19990312)83:2<142::AID-AJMG12>3.0.CO;2-Y.CrossRefPubMedGoogle Scholar
  48. 48.
    Dobson AT, Davis RM, Rosen MP, Shen S, Rinaudo PF, Chan J, Cedars MI: Methyltetrahydrofolate reductase C677T and A1298C variants do not affect ongoing pregnancy rates following IVF. Hum Reprod. 2007, 22: 450-456. 10.1093/humrep/del396.CrossRefPubMedGoogle Scholar
  49. 49.
    Miettinen OS, Reiner ML, Nadas AS: Seasonal incidence of coarctation of the aorta. Br Heart J. 1970, 32: 103-107. 10.1136/hrt.32.1.103.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pallast EMG, Jongbloet PH, Straatman HM, Zielhuis GA: Excess seasonality of births among patients with schizophrenia and seasonal ovopathy. Schizophr Bull. 1994, 20: 269-227.CrossRefGoogle Scholar
  51. 51.
    Marzullo G, Clarke Fraser F: Similar rhythmsof seasonal conceptions in neural tube defects and schizophrenia: A hypothesis of oxidant stress and the photoperiod. Birth Def Res (part A). 2005, 73: 1-5. 10.1002/bdra.20100.CrossRefGoogle Scholar
  52. 52.
    Jongbloet PH, van Soestbergen M, Veen van der EA: Month-of-birth distribution of diabetics and ovopathy: A new aetiological view. Diabetes Res. 1988, 9 (2): 51-58.PubMedGoogle Scholar
  53. 53.
    Jongbloet PH, Groenewoud HMM, Roeleveld N: Seasonally bound ovopathy versus "Temperature at conception" as cause for anorexia nervosa and othe eating disorders. Int J Eat Disord. 2005, 38: 236-243. 10.1002/eat.20173.CrossRefPubMedGoogle Scholar
  54. 54.
    Jongbloet PH, Groenewoud HMM, Huber S, Fieder M, Roeleveld N: Month of birth related to fecundity and childlessness among contemporary women. Hum Biol. 2007, 79: 479-490.CrossRefGoogle Scholar
  55. 55.
    Allen C, Reardon W: Assisted reproduction technology and defects of genomic imprinting. BJOG. 2005, 112 (12): 1589-1594. 10.1111/j.1471-0528.2005.00784.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Horsthemke B, Ludwig M: Assisted reproduction: The epigenetic perspective. Hum Reprod. 2005, 11: 473-482. 10.1093/humupd/dmi022.CrossRefGoogle Scholar
  57. 57.
    Kelly TLJ, Trasler JM: Developmental biology: frontiers for clinical genetics. Clin Genet. 2004, 65: 247-260. 10.1111/j.0009-9163.2004.00236.x.CrossRefPubMedGoogle Scholar
  58. 58.
    Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR: Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril. 2005, 83: 349-354. 10.1016/j.fertnstert.2004.07.964.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wieczorek D, Ludwig M, Boehringer S, Jongbloet PH, Gillessen-Kaesbach G, Horsthemke B: Reproduction abnormalities and twin pregnancies in parents of sporadic patients with oculo-auriculo-vertebral spectrum/Goldenhar syndrome. Hum Genet. 2007, 121: 369-376. 10.1007/s00439-007-0336-0.CrossRefPubMedGoogle Scholar
  60. 60.
    Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE: DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. PNAS. 2007, 104: 19351-19356. 10.1073/pnas.0707258104.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cooney CA, Dave AA, Wolff GL: Maternal methyl supplements inmice affect epigentic variation and DNA methylation of offspring. J Nutr. 2002, 132: 2393S-2400S.CrossRefGoogle Scholar
  62. 62.
    DeBaun MR, Chang AS: Epigenetics and assisted reproductive technology. Fertil Steril. 2006, 85: 269-270. 10.1016/j.fertnstert.2005.10.006.CrossRefGoogle Scholar
  63. 63.
    Linden van der IJM, Smulders YM, Kok RM, van Beynum IM, den Heyer M, Blom JH: Decreased global DNA methylation in spina bifida patients. One-Carbon Metabolism and Neural Tube defects. 2008, Thesis Radboud University Nijmegen, 89-96. ISBN 978-90-6464-193-0.Google Scholar
  64. 64.
    Crow T: Genes for schizophrenia. Lancet. 2003, 366: 1829-1830. 10.1016/S0140-6736(03)13433-2.CrossRefGoogle Scholar
  65. 65.
    Stams WA, Den Boer ML, Beverloo HB, Meijerink JP, Van Wering ER, Janka-Schaub GE, Pieters R: Expression levels of Tel, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in T(12;21)-positive pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2005, 11: 2974-2980. 10.1158/1078-0432.CCR-04-1829.CrossRefPubMedGoogle Scholar
  66. 66.
    James SJ: The molecular dynamics of abnormal folate metabolism and DNA methylation; implications for disease susceptibility and progression. MTHFR polymorphisms and Disease. Edited by: Ueland PM, Rozen R. 2005, Georgetown, Texas, USA: Eurekah.com/Landes Bioscience, 78-99.Google Scholar

Copyright information

© Jongbloet et al; licensee BioMed Central Ltd. 2008

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Piet Hein Jongbloet
    • 1
  • André LM Verbeek
    • 1
  • Martin den Heijer
    • 1
  • Nel Roeleveld
    • 1
  1. 1.Department of Epidemiology, Biostatistics, and Health Technology AssessmentRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations