1 Introduction, definitions and notations

In the usual notations, let B n (x) and E n (x) denote, respectively, the classical Bernoulli and Euler polynomials of degree n in x, defined by the generating functions

n = 0 B n (x) t n n ! = t e t 1 e x t ,|t|<2π

and

n = 0 E n (x) t n n ! = 2 e t + 1 e x t ,|t|<π.

Also, let

B n := B n (0)and E n := E n (0),

where B n and E n are, respectively, the Bernoulli and Euler numbers of order n.

Carlitz first extended the classical Bernoulli polynomials and numbers, Euler polynomials and numbers [1]. There are numerous recent investigations on this subject by many authors. Cheon [2], Kurt [3], Luo [4], Luo and Srivastava [5], Srivastava et al. [6, 7], Tremblay et al. [8], and Mahmudov [9, 10].

Throughout this paper, we always make use of the following notation: ℕ denotes the set of natural numbers and ℂ denotes the set of complex numbers.

The q-numbers and q-factorial are defined by

[ a ] q = 1 q a 1 q ,q1, [ n ] q != [ n ] q [ n 1 ] q [ 2 ] q [ 1 ] q ,nN,aC,

respectively, where [ 0 ] q !=1, nN, aC. The q-polynomials coefficient is defined by

[ n k ] q = ( q : q ) n ( q : q ) n k ( q : q ) k ,

where ( q : q ) n =(1q) ( 1 q n ) n .

The q-analogue of the function ( x + y ) q n is defined by

( x + y ) q n = k = 0 n [ n k ] q q k ( k 1 ) 2 x n k y k .

The q-binomial formula is known as

( n : q ) a = ( 1 a ) q n = j = 0 n 1 ( 1 q j a ) = k = 0 n [ n k ] q q k ( k 1 ) 2 ( 1 ) k a k .

The q-exponential functions are given by

e q (z)= n = 0 z n [ n ] q ! = k = 0 1 ( 1 ( 1 q ) q k z ) ,0<|q|<1,|z|< 1 | 1 q |

and

E q (z)= n = 0 q n ( n 1 ) 2 z n [ n ] q ! = k = 0 ( 1 + ( 1 q ) q k z ) ,0<|q|<1,zC.

From these forms, we easily see that e q (z) E q (z)=1. Moreover, D q e q (z)= e q (z), D q E q (z)= E q (qz), where D q is defined by

D q f(z)= f ( q z ) f ( z ) q z z ,0<|q|<1,0zC.

The above q-standard notation can be found in [10].

Mahmudov defined and studied properties of the following generalized q-Bernoulli polynomials B n , q ( α ) (x,y) of order α and q-Euler polynomials E n , q ( α ) (x,y) of order α as follows [10].

Let qC, αN and 0<|q|<1. The q-Bernoulli numbers B n , q ( α ) and polynomials B n , q ( α ) (x,y) in x, y of order α are defined by means of the generating functions

n = 0 B n , q ( α ) t n [ n ] q ! = ( t e q ( t ) 1 ) α ,|t|<2π,
(1)
n = 0 B n , q ( α ) (x,y) t n [ n ] q ! = ( t e q ( t ) 1 ) α e q (tx) E q (ty),|t|<2π.
(2)

The q-Euler numbers E n , q ( α ) and polynomials E n , q ( α ) (x,y) in x, y of order α are defined by means of the generating functions

n = 0 E n , q ( α ) t n [ n ] q ! = ( 2 e q ( t ) + 1 ) α ,|t|<π,
(3)
n = 0 E n , q ( α ) (x,y) t n [ n ] q ! = ( 2 e q ( t ) + 1 ) α e q (tx) E q (ty),|t|<π.
(4)

The q-Genocchi numbers G n , q ( α ) and polynomials G n , q ( α ) (x,y) in x, y of order α are defined by means of the generating functions

n = 0 G n , q ( α ) t n [ n ] q ! = ( 2 t e q ( t ) + 1 ) α ,|t|<π,
(5)
n = 0 G n , q ( α ) (x,y) t n [ n ] q ! = ( 2 t e q ( t ) + 1 ) α e q (tx) E q (ty),|t|<π.
(6)

It is obvious that

B n , q ( α ) = B n , q ( α ) ( 0 , 0 ) , lim q 1 B n , q ( α ) ( x , y ) = B n ( α ) ( x + y ) , lim q 1 B n , q ( α ) = B n ( α ) , E n , q ( α ) = E n , q ( α ) ( 0 , 0 ) , lim q 1 E n , q ( α ) ( x , y ) = E n ( α ) ( x + y ) , lim q 1 E n , q ( α ) = E n ( α )

and

G n , q ( α ) = G n , q ( α ) (0,0), lim q 1 G n , q ( α ) (x,y)= G n ( α ) (x+y), lim q 1 G n , q ( α ) = G n ( α ) .

From (2), (4) and (6), it is easy to check that

B n , q ( α ) ( x , y ) = k = 0 n [ n k ] q B n k , q ( x , 0 ) B k , q ( α 1 ) ( 0 , y ) , E n , q ( α ) ( x , y ) = k = 0 n [ n k ] q E n k , q ( x , 0 ) E k , q ( α 1 ) ( 0 , y )

and

G n , q ( α ) (x,y)= k = 0 n [ n k ] q G n k , q (x,0) G k , q ( α 1 ) (0,y).

In this work, we give a different form of the analogue of the Srivastava-Pintér addition theorem.

More precisely, we prove

G n , q ( x , y ) = y G n 1 , q ( x , q y ) + x G n 1 , q ( x , y ) G n , q ( x , y ) = + 1 [ n ] q { G n , q ( x , y ) 1 2 k = 0 n [ n k ] q G k , q ( x , y ) G n k , q ( 1 , 0 ) } , k = 0 n [ n k ] q G k , q ( x , y ) + G n , q ( x , y ) = 2 [ n ] q ( x + y ) q n 1 , G n , q ( α ) ( x , y ) = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j k + G k , q ( α ) ( x , 0 ) } G n + 1 k , q ( 0 , m y ) m k n = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( 0 , y ) m j k + G k + 1 , q ( α ) ( 0 , y ) } × G n + 1 k , q ( m x , 0 ) m k n , G n , q ( α ) ( x , y ) = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j n G k , q ( α ) ( x , 0 ) } B n + 1 k , q ( 0 , m y ) m k n , B n , q ( α ) ( x , y ) = 1 2 r = 0 n + 1 [ n + 1 r ] q 1 [ n + 1 ] q ( r = 0 k [ k r ] q B k , q ( α ) ( x , 0 ) m k r + B r , q ( α ) ( x , 0 ) ) × G n + 1 r , q ( 0 , m y ) m r n .

2 Main theorems

Proposition 2.1 The generalized q-Bernoulli and q-Euler polynomials satisfy the following relations:

k = 0 n [ n k ] q B k , q ( α ) (x,0) B n k , q ( α ) = x n ,
(7)
k = 0 n [ n k ] q B k , q ( α ) (0,y) B n k , q ( α ) = q n ( n 1 ) 2 y n ,
(8)
B n , q ( α ) (x,y)= l = 0 n [ n l ] q B n l , q ( α ) (0,y) k = 0 l [ l k ] q E k , q ( α ) (x,0) E l k , q ( α ) (0,0),
(9)
E n , q ( α ) (x,y)= l = 0 n [ n l ] q E n l , q ( α ) (0,y) k = 0 l [ l k ] q E k , q ( α ) (x,0) B l k , q ( α ) (0,0).
(10)

Proposition 2.2 For x,y,zC, the following relations hold true:

G n , q ( α ) (x+z,y)= p = 0 n [ n p ] q G n p , q ( α ) (0,y) r = 0 p [ p r ] q x r z p r ,
(11)
k = 0 n [ n k ] q G k , q ( α ) (x,y) G n k , q ( α ) (0,0)= k = 0 n [ n k ] q x k y n k q ( n k ) ( n k 1 ) 2 = ( x + y ) q n .
(12)

Proof The proof of these propositions can be found from (1)-(6). □

Theorem 2.3 The generalized q-Genocchi polynomials satisfy the following recurrence relation:

G n , q ( x , y ) = y G n 1 , q ( x , q y ) + x G n 1 , q ( x , y ) + 1 [ n ] q { G n , q ( x , y ) 1 2 k = 0 n [ n k ] q G k , q ( x , y ) G n k , q ( 1 , 0 ) } .
(13)

Proof In (6) for α=1, we take the q-derivative of the generalized q-Genocchi polynomials G n , q (x,y) according to t. We note that

n = 0 D q , t G n , q ( x , y ) t n [ n ] q ! = D q , t { 2 t e q ( t ) + 1 e q ( t x ) E q ( y t ) } = 2 e q ( t x ) E q ( y t ) e q ( t ) + 1 + y 2 t e q ( t x ) E q ( y t ) e q ( t ) + 1 + x 2 t e q ( t x ) E q ( y t ) e q ( t ) + 1 2 t e q ( t x ) E q ( y t ) e q ( t ) + 1 e q ( x ) e q ( t ) + 1

and

n = 0 G n + 1 , q ( x , y ) t n [ n ] q ! = 1 t n = 0 G n , q ( x , y ) t n [ n ] q ! + y n = 0 G n , q ( x , q y ) t n [ n ] q ! + x n = 0 G n , q ( x , y ) t n [ n ] q ! 1 2 t n = 0 G n , q ( x , y ) t n [ n ] q ! n = 0 G n , q ( 1 , 0 ) t n [ n ] q ! .

If we take necessary operation, comparing the coefficients of t n [ n ] q ! , we have (13). □

Theorem 2.4 There is the following relation for the q-Genocchi polynomials:

k = 0 n [ n k ] q ( G k , q ( α ) ( x , 0 ) + G k , q ( α ) ( x , 1 ) ) =2 [ n ] q G n 1 , q ( α 1 ) (x,0).
(14)

Proof From (6) and e q (z) E q (z)=1, we have

n = 0 G n , q ( α ) (x,0) t n [ n ] q ! + n = 0 G n , q ( α ) (x,1) t n [ n ] q ! = ( 2 t e q ( t ) + 1 ) α e q (tx) ( 1 + E q ( t ) )

and

n = 0 ( G n , q ( α ) ( x , 0 ) + G n , q ( α ) ( x , 1 ) ) t n [ n ] q ! =2t n = 0 G n , q ( α 1 ) (x,0) t n [ n ] q ! .

Thus, we obtain

n = 0 { k = 0 n [ n k ] q ( G k , q ( α ) ( x , 0 ) + G k , q ( α ) ( x , 1 ) ) } t n [ n ] q ! =2 n = 1 [ n ] q G n 1 , q ( α 1 ) (x,0) t n [ n ] q ! .

From this last equality, we have (14). □

Theorem 2.5 There is the following identity for the q-Genocchi polynomials:

k = 0 n [ n k ] q G k , q (x,y)+ G n , q (x,y)=2 [ n ] q ( x + y ) q n 1 .
(15)

Proof From e q (t) E q (t)=1, we write as

1 E q ( t ) + 1 = 1 1 e q ( t ) + 1 , 2 t e q ( t x ) E q ( y t ) E q ( t ) + 1 = 2 t e q ( t x ) E q ( y t ) 2 t e q ( t x ) E q ( y t ) e q ( t ) + 1 , 2 t e q ( t ) + 1 e q ( t x ) E q ( y t ) e q ( t ) = 2 t e q ( t x ) E q ( t y ) n = 0 G n , q ( x , y ) t n [ n ] q ! , n = 0 G n , q ( x , y ) t n [ n ] q ! n = 0 t n [ n ] q ! = 2 n = 0 ( x , y ) q n t n + 1 [ n ] q ! n = 0 G n , q ( x , y ) t n [ n ] q ! .

By using the Cauchy product, compression of the results, we have (15). □

Theorem 2.6 There are the following relationships for the q-Genocchi polynomials:

G n , q ( α ) ( x , y ) = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j k + G k , q ( α ) ( x , 0 ) } × G n + 1 k , q ( 0 , m y ) m k n ,
(16)
G n , q ( α ) ( x , y ) = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( 0 , y ) m j k + G k + 1 , q ( α ) ( 0 , y ) } × G n + 1 k , q ( m x , 0 ) m k n .
(17)

Proof Proof of (16), we write

n = 0 G n , q ( α ) ( x , y ) t n [ n ] q ! = ( 2 t e q ( t ) + 1 ) α e q ( t x ) E q ( t y ) = ( 2 t e q ( t ) + 1 ) α e q ( t x ) e q ( t m ) + 1 t m t m e q ( t m ) + 1 = m t { n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! n = 0 t n m n [ n ] q ! + n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! } × n = 0 G n , q ( 0 , m y ) t n m n [ n ] q ! = n = 0 ( 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j k + G k , q ( α ) ( x , 0 ) } × G n + 1 k , q ( 0 , m y ) m k n ) t n [ n ] q ! .

Comparing the coefficients of t n [ n ] q ! , we have (16). The proof of (17) is similar to that of (16). □

3 Explicit relation between the q-Bernoulli polynomials and q-Genocchi polynomials

In this section, we prove two interesting relations between the q-Bernoulli polynomials B n , q ( α ) (x,y) of order α and the q-Genocchi polynomials G n , q ( α ) (x,y) of order α.

Theorem 3.1 There is the following relation between q-Genocchi polynomials and q-Bernoulli polynomials

G n , q ( α ) ( x , y ) = 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j n G k , q ( α ) ( x , 0 ) } × B n + 1 k , q ( 0 , m y ) m k n .
(18)

Proof From (6), we deduce that

n = 0 G n , q ( α ) ( x , y ) t n [ n ] q ! = ( 2 t e q ( t ) + 1 ) α e q ( t x ) E q ( t y ) = m t { n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! n = 0 t n m n [ n ] q ! n = 0 B n , q ( 0 , m y ) t n m n [ n ] q ! n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! n = 0 B n , q ( 0 , m y ) t n m n [ n ] q ! } = m t { n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! n = 0 t n m n [ n ] q ! n = 0 G n , q ( α ) ( x , 0 ) t n [ n ] q ! } × n = 0 B n , q ( 0 , m y ) t n m n [ n ] q ! = n = 0 ( 1 [ n + 1 ] q k = 0 n + 1 [ n + 1 k ] q { j = 0 k [ k j ] q G j , q ( α ) ( x , 0 ) m j n G k , q ( α ) ( x , 0 ) } × B n + 1 k , q ( 0 , m y ) m k n ) t n [ n ] q ! .

Comparing the coefficients of t n [ n ] q ! , we have (18). □

Theorem 3.2 There is the following relation between q-Bernoulli polynomials and q-Genocchi polynomials:

B n , q ( α ) ( x , y ) = 1 2 r = 0 n + 1 [ n + 1 r ] q 1 [ n + 1 ] q ( r = 0 k [ k r ] q B k , q ( α ) ( x , 0 ) m k r + B r , q ( α ) ( x , 0 ) ) × G n + 1 r , q ( 0 , m y ) m r n .
(19)

Proof From (2), we obtain

n = 0 B n , q ( α ) ( x , y ) t n [ n ] q ! = ( t e q ( t ) 1 ) α e q ( t x ) E q ( t y ) = m 2 t { ( t e q ( t ) 1 ) α e q ( t x ) e q ( t m ) 2 t m e q ( t m ) + 1 E q ( t m , m y ) + ( t e q ( t ) 1 ) α e q ( t x ) 2 t m e q ( t m ) + 1 E q ( t m , m y ) } = m 2 t { n = 0 B n , q ( α ) ( x , 0 ) t n [ n ] q ! n = 0 t n m n [ n ] q ! + n = 0 B n , q ( α ) ( x , 0 ) t n [ n ] q ! } × n = 0 G n , q ( 0 , m y ) t n m n [ n ] q ! = m 2 n = 0 r = 0 n [ n r ] q ( r = 0 k [ k r ] q B k , q ( α ) ( x , 0 ) m k r + B r , q ( α ) ( x , 0 ) ) × G n r , q ( 0 , m y ) m r n 1 [ n ] q t n 1 [ n 1 ] q ! = m 2 n = 1 { 1 2 r = 0 n + 1 [ n + 1 r ] q 1 [ n + 1 ] q × ( r = 0 k [ k r ] q B k , q ( α ) ( x , 0 ) m k r + B r , q ( α ) ( x , 0 ) ) × G n + 1 r , q ( 0 , m y ) m r n } t n [ n ] q ! .

Comparing the coefficients of t n [ n ] q ! , we have (19). □