Abstract
Quantum squeezing can improve the ultimate measurement precision by squeezing one desired fluctuation of the two physical quantities in Heisenberg relation. We propose a scheme to obtain squeezed states through graphene nanoelectromechanical system (NEMS) taking advantage of their thin thickness in principle. Two key criteria of achieving squeezing states, zeropoint displacement uncertainty and squeezing factor of strained multilayer graphene NEMS, are studied. Our research promotes the measured precision limit of graphenebased nanotransducers by reducing quantum noises through squeezed states.
Introduction
The Heisenberg uncertainty principle, or the standard quantum limit [1, 2], imposes an intrinsic limitation on the ultimate sensitivity of quantum measurement systems, such as atomic forces [3], infinitesimal displacement [4], and gravitationalwave [5] detections. When detecting very weak physical quantities, the mechanical motion of a nanoresonator or nanoelectromechanical system (NEMS) is comparable to the intrinsic fluctuations of the systems, including thermal and quantum fluctuations. Thermal fluctuation can be reduced by decreasing the temperature to a few mK, while quantum fluctuation, the quantum limit determined by Heisenberg relation, is not directly dependent on the temperature. Quantum squeezing is an efficient way to decrease the system quantum [6–8]. Thermomechanical noise squeezing has been studied by Rugar and Grutter [9], where the resonator motion in the fundamental mode was parametrically squeezed in one quadrature by periodically modulating the effective spring constant at twice its resonance frequency. Subsequently, Suh et al. [10] have successfully achieved parametric amplification and backaction noise squeezing using a qubitcoupled nanoresonator.
To study quantumsqueezing effects in mechanical systems, zeropoint displacement uncertainty, Δx _{zp}, the best achievable measurement precision, is introduced. In classical mechanics, the complex amplitudes, X = X _{1} + iX _{2}, where X _{1} and X _{2} are the real and imaginary parts of complex amplitudes respectively, can be obtained with complete precision. In quantum mechanics, X _{1} and X _{2} do not commute, with the commutator [X _{1}, X _{2}] = iħ/M _{eff} w, and satisfy the uncertainty relationship ΔX _{1}ΔX _{2} ≥ (ħ/2M _{eff} w)^{1/2}. Here, ħ is the Planck constant divided by 2π, M _{eff} = 0.375ρLWh/2 is the effective motional doubleclamped film mass [11, 12], ρ is the volumetric mass density, L, W, and h are the length, width, and thickness of the film, respectively, and w = 2f _{0} is the fundamental flexural mode angular frequency with
where E is the Young's modulus of the material, T _{s} is the tension on the film, A is 0.162 for a cantilever and A is 1.03 for a doubleclamped film [13]. Therefore, Δx _{zp} of the fundamental mode of a NEMS device with a doubleclamped film can be given by Δx _{zp} = ΔX _{1} = ΔX _{2} = (ħ/2M _{eff} w)^{1/2}. In a mechanical system, quantum squeezing can reduce the displacement uncertainty Δx _{zp}.
Recently, freestanding graphene membranes have been fabricated [14], providing an excellent platform to study quantumsqueezing effects in mechanical systems. Meanwhile, a graphene membrane is sensitive to external influences, such as atomic forces or infinitesimal mass (e.g., 10^{21} g) due to its atomic thickness. Although graphene films can be used to detect very infinitesimal physical quantities, the quantum fluctuation noise Δx _{zp} of graphene NEMS devices (approx. 10^{2} nm), could easily surpass the magnitudes of signals caused by external influences. Thus, quantum squeezing becomes necessary to improve the ultimate precision of graphenebased transducers with ultrahigh sensitivity. In this study, we have studied quantumsqueezing effects of strained multilayer graphene NEMS based on experimental devices proposed by Chen et al. [15].
Results
Displacement uncertainty of graphene NEMS
A typical NEMS device with a doubleclamped freestanding graphene membrane is schematically shown in Figure 1. The substrate is doped Si with high conductivity, and the middle layer is SiO_{2} insulator. A pump voltage can be applied between the membrane and the substrate. The experimental data of the devices are used in our simulation [15]. For graphene, we use a Young's modulus of E = 1.03 × 10^{12} Pa, volumetric mass density of ρ = 2200 kg/m^{3}, based on previous theories and scanning tunneling microscope experiments [13, 15, 16].
In graphene sensors and transducers, to detect the molecular adsorbates or electrostatic forces, a strain ε will be generated in the graphene film [15, 17]. When a strain exists in a graphene film, the tension T _{s} in Equation 1 can be deduced as T _{s} = ESε = EWhε. The zeropoint displacement uncertainty of the strained graphene film is given by
where ρ' represents the effective volumetric mass density of graphene film after applying strain. The typical measured strains in [15] are ε = 4 × 10^{5} when ρ' = 4ρ and ε = 2 × 10^{4} when ρ' = 6ρ. Based on Equation 2, measurable Δx _{zp} of the strained multilayer graphene films of various sizes are shown in Figure 2, and typical Δx _{zp} values of graphene NEMS under various ε are summarized in Table 1.
According to the results in Figure 2 and Table 1, we find Δx _{zp} ^{large strain} < Δx _{zp} ^{small strain}; one possible reason is that larger applied strain results in smaller fundamental angular frequency and Δx _{zp}, therefore, the quantum noise can be reduced.
Quantumsqueezing effects of graphene NEMS
To analyze quantumsqueezing effects in graphene NEMS devices, a backactionevading circuit model is used to suppress the direct electrostatic force acting on the film and modulate the effective spring constant k of the membrane film. Two assumptions are used, namely, the film width W is on the micrometer scale and X _{1} >> d, where d is the distance between the film and the substrate. Applying a pump voltage V _{m}(t) = V[1+ sin(2w _{m} t + θ)], between the membrane film and the substrate, the spring constant k will have a sinusoidal modulation k _{m}(t), which is given by k _{m}(t) = sin(2w _{m} t + θ)C _{T} V ^{2}/2d ^{2}, where C _{T} is the total capacitance composed of structure capacitance C _{0}, quantum capacitance C _{q}, and screen capacitance C _{s} in series [18]. The quantum capacitance C _{q} and screen capacitance C _{s} cannot be neglected [18–20] owing to a graphene film thickness on the atomic scale. The quantum capacitance of monolayer graphene [21, 22] is C _{q} ^{monolayer} = 2e^{2} n ^{1/2}/(ħv _{F}π^{1/2}), where n is the carrier concentration, e is the elementary charge, and v _{F} ≈ c/300, where c is the velocity of light, with bilayer C _{q} ^{bilayer} = 2 × 0.037m _{e} e ^{2}/πħ ^{2}, and trilayer C _{q} ^{trilayer} = 2 × 0.052m _{e} e ^{2}/πħ ^{2}, where m _{e} is the electron mass [23].
Pumping the graphene membrane film from an initial thermal equilibrium state at frequency w _{m} = w, the variance of the complex amplitudes, ΔX ^{2} _{1,2}(t, θ), are given by [24]
where N = [exp(ħw/k _{B} T)  1]^{1} is the average number of quanta at absolute temperature T and frequency w, k _{B} is the Boltzmann constant, τ = Q/w is the relaxation time of the mechanical vibration, Q is the quality factor of the NEMS, and η = C _{T} V ^{2}/8d ^{2} M _{eff} w _{m}. When θ = 0, a maximum modulation state, namely, the best quantumsqueezed state, can be reached [9, 21], and ΔX _{1} can be simplified as ΔX _{1}(t) = [(ħ/2M _{eff} w _{a})(2N + 1)(τ^{1} + 2η)^{1}(τ^{1} + 2η exp(τ^{1} + 2η)t)]^{1/2}. As t → ∞, the maximum squeezing of ΔX _{1} is always finite, with expression of ΔX _{1}(t → ∞) ≈ [ħ(2N + 1)(1 + 2Qη)^{1}/2M _{eff} w]^{1/2}. The squeezing factor R, defined as R = ΔX _{1}/Δx _{zp} = ΔX _{1}/(ħ/2M _{eff} w)^{1/2}, can be expressed as
where ε is the strain applied on the graphene film. In order to achieve quantum squeezing, R must be less than 1. According to Equation 4, R values of monolayer and bilayer graphene films with various dimensions, strain ε, and applied voltages at T = 300 K and T = 5 K have been shown in Figure 3. Quantum squeezing is achievable in the region log R < 0 at T = 5 K. As shown in Figure 3, the applied strain increases the R values because of the increased fundamental angular frequency and the decreased Δx _{zp} caused by strain, which makes squeezing conditions more difficult to reach. Figure 4a has shown that ΔX _{1} changes with applied voltages at T = 5 K, the red line represents the uncertainties of X _{1} and the dashed reference line is ΔX = Δx _{zp}. As shown in Figure 4a, applying a voltage larger than 100 mV, we can obtain ΔX _{1} < Δx _{zp}, which means that the displacement uncertainty is squeezed, and the quantum squeezing is achieved. Some typical R values of monolayer graphene film, obtained by varying the applied voltage V, such as strain ε, have been listed in Table 2 (with T = 300 K and Q = 125) and Table 3 (with T = 5 K and Q = 14000). As shown in Tables 2 and 3 and Figure 3, lowering the temperature to 5 K can dramatically decrease the R values. The lower the temperature, the larger the quality factor Q, which makes the squeezing effects stronger.
In contrast to the previous squeezing analysis proposed by Rugar and Grutter [9], in which steadystate solutions have been assumed and the minimum R is 1/2, we use timedependent pumping techniques to prevent X _{2} from growing without bound as t → ∞, which should be terminated after the characteristic time t _{ct} = ln(QC _{T} V ^{2}/4M _{eff} w ^{2} d ^{2})4M _{eff} wd ^{2}/C _{T} V ^{2}, when R achieves its limiting value. Therefore, we have no upper bound on R. Figure 4b has shown the time dependence of ΔX _{1} and ΔX _{2} in units of t _{ct}, and the quantum squeezing of the monolayer graphene NEMS has reached the limiting value after one t _{ct} time. Also, to make the required heat of conversion from mechanical energy negligible during the pump stage, t _{ct} << τ must be satisfied. We find t _{ct}/τ ≈ 1.45 × 10^{5} for the monolayer graphene parameters considered in the text.
Discussion
The ordering relation of Δx _{zp} for multilayer graphene is Δx _{zp} ^{trilayer} < Δx _{zp} ^{bilayer} < Δx _{zp} ^{monolayer} shown in Figure 5a, as the zeropoint displacement uncertainty is inversely proportional to the film thickness. Squeezing factors R of multilayer graphene films follow the ordering relation; R _{trilayer} > R _{bilayer} > R _{monolayer}, as shown in Figure 5b, as R is proportional to the thickness of the graphene film. The thicker the film, the more difficult it is to achieve a quantumsqueezed state, which also explains why traditional NEMS could not achieve quantum squeezing due to their thickness of several hundred nanometers.
For a clear view of squeezing factor R as a function of film length L, 2D curves from Figure 5b are presented in Figure 6. It is found that R approaches unity as L approaches zero, while R tends to be zero as L approaches infinity as shown in Figure 6a,b. It explains why R has some kinked regions, shown in the upper right part of Figure 5b with black circle, when the graphene film length is on the nanometer scale shown in Figure 3. To realize quantum squeezing, the graphene film length should be in the order of a few micrometers and the applied voltage V should not be as small as several mV, shown in Figure 6b. As L → 0, where the graphene film can be modeled as a quantum dot, the voltage must be as large as a few volts to modulate the film to achieve quantum squeezing. As L → ∞, where graphene films can be modeled as a 1D chain, the displacement uncertainty would be on the nanometer scale so that even a few mV of pumping voltage can modulate the film to achieve quantum squeezing easily.
By choosing the dimensions of a typical monolayer graphene NEMS device in [15] with L = 1.1 μm, W = 0.2 μm, T = 5 K, Q = 14000, V = 2.5 V, and ε = 0, we obtain Δx _{zp} = 0.0034 nm and R = 0.374. After considering quantum squeezing effects based on our simulation, Δx _{zp} can be reduced to 0.0013 nm. With a length of 20 μm, Δx _{zp} can be as large as 0.0145 nm, a radiofrequency singleelectrontransistor detection system can in principle attain such sensitivities [25]. In order to verify the quantum squeezing effects, a displacement detection scheme need be developed.
Conclusions
In conclusion, we presented systematic studies of zeropoint displacement uncertainty and quantum squeezing effects in strained multilayer graphene NEMS as a function of the film dimensions L, W, h, temperature T, applied voltage V, and strain ε applied on the film. We found that zeropoint displacement uncertainty Δx _{zp} of strained graphene NEMS is inversely proportional to the thickness of graphene and the strain applied on graphene. By considering quantum capacitance, a series of squeezing factor R values have been obtained based on the model, with R _{monolayer} < R _{bilayer} < R _{trilayer} and R _{small strain} < R _{large strain} being found. Furthermore, highsensitivity graphenebased nanotransducers can be developed based on quantum squeezing.
Abbreviations
 NEMS:

nanoelectromechanical system.
References
LaHaye MD, Buu O, Camarota B, Schwab KC: Approaching the quantum limit of a nanomechanical resonator. Science 2004, 304: 74–77. 10.1126/science.1094419
Blencowe M: Nanomechanical quantum limits. Science 2004, 304: 56–57. 10.1126/science.1095768
Caves CM, Thorne KS, Drever RWP, Sandberg VD, Zimmermann M: ON the measurement of a weak classical force coulped to a quantummechanical oscillator. I. Issues of principle. Rev Mod Phys 1980, 52: 341–392. 10.1103/RevModPhys.52.341
Mozyrsky D, Martin I, Hastings MB: Quantumlimited sensitivity of singleelectrontransistorbased displacement detectors. Phys Rev Lett 2004, 92: 083103.
Hollenhorst JN: Quantum limits on resonantmass gravitationalradiation detectors. Phys Rev D 1979, 19: 1669–1679. 10.1103/PhysRevD.19.1669
Blencowe M: Quantum electromechanical systems. Phys Rep Rev Sec Phys Lett 2004, 395: 159–222.
Giovannetti V, Lloyd S, Maccone L: Quantumenhanced measurements: beating the standard quantum limit. Science 2004, 306: 1330–1336. 10.1126/science.1104149
Blencowe MP, Wybourne MN: Quantum squeezing of mechanical motion for micronsized cantilevers. Physica B 2000, 280: 555–556. 10.1016/S09214526(99)018621
Rugar D, Grutter P: Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett 1991, 67: 699–702. 10.1103/PhysRevLett.67.699
Suh J, LaHaye MD, Echternach PM, Schwab KC, Roukes ML: Parametric amplification and backaction noise squeezing by a qubitcoupled nanoresonator. Nano Lett 2010, 10: 3990–3994. 10.1021/nl101844r
Ekinci KL, Yang YT, Roukes ML: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 2004, 95: 2682–2689. 10.1063/1.1642738
Ekinci KL, Roukes ML: Nanoelectromechanical systems. Rev Sci Instrum 2005, 76: 061101. 10.1063/1.1927327
Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL: Electromechanical resonators from graphene sheets. Science 2007, 315: 490–493. 10.1126/science.1136836
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. Science 2004, 306: 666–669. 10.1126/science.1102896
Chen CY, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 2009, 4: 861–867. 10.1038/nnano.2009.267
Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX: Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 2007, 7: 2758–2763. 10.1021/nl071254m
Lee C, Wei XD, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321: 385–388. 10.1126/science.1157996
Xu Y, Aluru NR: Pullin/out analysis of nano/microelectromechanical switches with defective oxide layers. Appl Phys Lett 2009, 95: 073112. 10.1063/1.3211111
Tang Z, Xu Y, Li G, Aluru NR: Physical models for coupled electromechanical analysis of silicon nanoelectromechanical systems. J Appl Phys 2005, 97: 114304. 10.1063/1.1897483
Xu Y, Aluru NR: Multiscale electrostatic analysis of silicon nanoelectromechanical systems (NEMS) via heterogeneous quantum models. Phys Rev B 2008, 77: 075313.
Fang T, Konar A, Xing HL, Jena D: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 2007, 91: 092109. 10.1063/1.2776887
Xia JL, Chen F, Li JH, Tao NJ: Measurement of the quantum capacitance of graphene. Nat Nanotechnol 2009, 4: 505–509. 10.1038/nnano.2009.177
Koshino M, Ando T: Orbital diamagnetism in multilayer graphenes: systematic study with the effective mass approximation. Phys Rev B 2007, 76: 085425.
Grishchuk LP, Sazhin MV: Squeezed quantum states of a harmonicoscillator in the problem of detecting gravitationalwaves. Zh Eksp Teor Fiz 1983, 84: 1937–1950.
Turin VO, Korotkov AN: Analysis of the radiofrequency singleelectron transistor with large quality factor. Appl Phys Lett 2003, 83: 2898–2900. 10.1063/1.1614840
Acknowledgements
The authors gratefully acknowledge Prof. Raphael Tsu at UNCC, Prof. JeanPierre Leburton at UIUC, Prof. Yuanbo Zhang at Fudan University, Prof. Jack Luo at University of Bolton, and Prof. Bin Yu at SUNY for fruitful discussions and comments. This study is supported by the National Science Foundation of China (Grant No. 61006077) and the National Basic Research Program of China (Grant Nos. 2007CB613405 and 2011CB309501). Dr. Y. Xu is also supported by the Excellent Young Faculty Awards Program (Zijin Plan) at Zhejiang University and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP with Grant No. 20100101120045).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors' contributions
Both SY and YX designed and conducted all the works and drafted the manuscript. Both ZJ and YW have read and approved the final manuscript.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Xu, Y., Yan, S., Jin, Z. et al. Quantumsqueezing effects of strained multilayer graphene NEMS. Nanoscale Res Lett 6, 355 (2011). https://doi.org/10.1186/1556276X6355
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1556276X6355
Keywords
 Graphene Film
 Multilayer Graphene
 Quantum Capacitance
 Applied Voltage Versus
 Graphene Membrane