The review was performed according to the PRISMA-statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses [10] and the recommendations of the Cochrane Collaboration [11].
Protocol
Methods of analysis and inclusion criteria were specified in advance. We used the review protocol of our systematic review on cognitive behavioral therapies in FMS [12].
Eligibility criteria
Types of interventions
Studies with hypnosis and guided imagery as an active treatment of primary interest for FMS were included. Hypnosis/guided imagery should use pain-related and/or pain- addressed suggestions and/or images. Studies with relaxation only (without trance induction or without the use of imagination) or with the combination of hypnosis with a defined pharmacological therapy as an active treatment of primary interest were excluded. Experimental studies (single session) with hypnosis/guided imagery were excluded.
Types of studies
A controlled design (controlled trials = CTs) was demanded. In case of multiple control groups we predefined the following order for comparison: Cognitive intervention (nonspecific elements of hypnosis/guided imagery such as education, emotional support, pure relaxation, suggestions without induction of hypnotic trance), treatment as usual, waiting list, active therapy (any defined pharmacological or non-pharmacological intervention other than hypnosis/guided imagery). The number of patients in each study arm should be > 5. The studies should be available as a full publication in a peer reviewed science journal.
Types of participants
Patients diagnosed with FMS based on defined criteria and of any age were included.
Types of outcomes measures
Studies should assess at least one key domain of FMS (pain, sleep, fatigue, HRQOL) [2]. Depressed mood was chosen for secondary outcome because depressive symptoms frequently occur in FMS-patients [1] and improving emotional status is one main target of hypnosis/guided imagery [6, 7].
Data sources and searches
The electronic bibliographic databases screened included http://ClinicalTrials.gov, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, PsycINFO and SCOPUS (through December 30, 2010). The search strategy for MEDLINE was as follows: (("Hypnosis"[Mesh] OR "Imagery (Psychotherapy)"[Mesh])) AND "Fibromyalgia"[Mesh] AND ((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading])
The search strategy was adapted for the other databases. No language restrictions were made. In addition, reference sections of original studies were screened manually.
Study selection
Two authors independently screened the titles and abstracts of potentially eligible studies identified by the search strategy detailed above (NF, PK). The full text articles were then examined independently by two authors to determine if they met the inclusion criteria (KB, WH).
Data collection process
Two authors independently extracted the data using standard extraction forms (KB, NF). Discrepancies were rechecked and consensus achieved by discussion. If needed a third author reviewed the data to reach a consensus (WH).
We contacted all trial authors for further details of their methodology. The requests were answered by four authors. Where means or standard deviations (SDs) were missing, attempts were made to obtain these data through contacting four trial authors. Additional data were provided by three authors. Where SDs were not available from trial authors, they were calculated from t-values, confidence intervals or standard errors, where reported in articles. If these data were not available, the SD was substituted by the mean of the SDs of studies available which used the same outcome scale [12].
Data items
The data of study setting, participants, inclusion and exclusion criteria, interventions, cotherapies, side effects reported and outcomes used for meta-analysis are listed in tables 1 and 2.
Table 1 Main characteristics of controlled studies with hypnosis/guided imagery in fibromyalgia syndrome
Table 2 Details on therapeutic techniques and co-therapies of the studies analysed
Risk of bias in individual studies and quality ratings
To ascertain the methodological quality of the eligible studies, two authors independently (KB, NF) rated eligible trials using a scale developed specifically for assessing the quality of psychological treatments for chronic pain [13]. Discrepancies were rechecked and consensus achieved by discussion. If needed a third author reviewed the data to reach a consensus (WH). The Quality Rating Scale is comprised of an overall quality score (0-35) consisting of two subscales. A treatment quality subscale (0-9) covers stated rationale for treatment, manualization, therapist training and patient engagement. Patient engagement was defined by checking for trance phenomena during hypnosis and/or execution of homework audiotape training. A design and methods quality subscale (0-26) covers inclusion/exclusion criteria, attrition, sample description, minimization of bias (randomisation method, allocation bias, blinding of assessment, equality for treatment expectations), selection of outcomes, length of follow-up, adequacy of statistical analyses (a priori power calculation, sufficient sample size, adequate data analysis and summary statistics, intention to treat analysis) and choice of control. We assumed a sample size of at least 10 per treatment arm to be sufficient. We defined scores 0-2 to indicate a poor, scores 3-5 an average and scores 6-9 an excellent treatment quality and scores 0-12 indicating a low, scores 13-19 a medium and scores > 19 a high methodological quality. Interrater reliability was calculated for both subscales by intra-class correlation coefficients (ICC).
Summary measures
Meta-analyses were conducted using RevMan Analyses software (RevMan 5.0.24) of the Cochrane collaboration [14]. Standardized mean differences (SMD) were calculated by means and SDs for each intervention. Examination of the combined results was performed by a random effects model (inverse variance method), because this model is more conservative than the fixed-effects model and incorporates both within-study and between-study variance [15]. SMD used in Cochrane reviews is the effect size known as Hedges (adjusted) g. We used Cohen's categories to evaluate the magnitude of the effect size, calculated by SMD, with g > 0.2-0.5 = small effect size, g > 0.5-0.8 = medium effect size, g > 0.8 = large effect size [16].
Planned methods of analysis
Heterogeneity was tested using the I² statistics with I² values above 50% indicate substantial heterogeneity. Tau² was used to determine how much heterogeneity was explained by subgroup differences [11].
Risk of bias across studies
Potential publication bias (i.e. the association of publication probability with the statistical significance of study results) was investigated the Egger test, in which the standardized effect size (effect size calculated by standard error) is regressed on precision (inverse of standard error). The intercept value is an estimate of asymmetry of funnel plot. Positive values (> 0) indicate higher levels of effect size in studies with smaller sample sizes [17].
Additional analyses
Subgroup and sensitivity analysis
If there were at least three studies available, subgroup analyses were prespecified for type of psychological therapy (hypnosis and guided imagery; hypnosis/guided imagery with and without home training with audiotapes) and type of control group. These subgroup analyses were also used to examine potential sources of clinical heterogeneity.
We decided post-hoc to perform a sensitivity analysis of studies without calculated values (median instead of mean; SD calculated from other studies; adjusting for baseline values).
Metaregression analyses
We a priori decided to metaregress SMDs with the treatment and methodological quality score for potential sources of heterogeneity. We post - hoc decided to metaregress SMDs with the number of the participants of the studies. Meta-regression was performed using the mixed effects model. Tau² variance was calculated by the method of unrestricted maximum likelihood by Comprehensive Metaanalysis software [18].