We included 100 individual patients after interviews with 100 unique physicians, from a sample of 832 patients with chest pain. Median age of the included patients was 46 years, men constituted 58%. An ECG was taken in 92 of the patients, other laboratory tests in a majority. Of the 24 patients categorised to an acute level of response, two thirds had a NACA-score indicating a potentially or definitely life-threatening medical situation. Half of the patients had suspected ischaemic heart disease; the rest had a variety of conditions. Half of the patients were admitted to a hospital for further care, of which a large majority were thought to have heart disease.
A main strength of the study is the prospective registration of all patients with chest pain at the collaborating casualty clinics. To avoid dependency and an unbalanced weighting of the data; each patient and physician could only be included once. Answering of the questionnaire through telephone interviews enabled the interviewer to give precise instructions. We aimed to reduce recall bias by reaching the physicians shortly after the consultation, but some recall bias will be expected when interviewing a physician about a specific patient one or two days after an out-of-hour shift. The NACA-score has been widely used in studies concerning pre-hospital emergency medicine, and all included physicians were thoroughly explained how to use the scoring system. However, most of the interviewed physicians did not know the scoring system before the interview, and this might limit the reliability of its use. The data does not include the place of consultation (casualty clinic vs. ambulance), and the study design did not allow physician appraisal on how they decided the level of care for treatment. Due to resources available for interviews, the study was limited to 100 patients and doctors, a number that may limit the inclusion of more seldom diagnoses.
A recent study from Belgium [5] examined the initial diagnosis and referral rates in patients with chest pain in primary care. 37% of the patients received “heart disease” (26% “serious” and 11% “other”) as the initial diagnosis, while muscular disease accounted for 30% and somatoform disease 10%. Our results are comparable to these numbers, and also to other studies of chest pain in primary care [1, 2, 6], except our higher rate of suspected heart disease. In the 26% with “serious heart disease” [5], nearly half was admitted urgently to the emergency department, while a third was referred non-urgently to a specialist or the hospital. Our study showed that 43 of the 50 patients with suspected heart disease were admitted to hospital. An ECG was recorded in only 29% of the patients in the study from Belgium, which is considerably lower than in our study (92%). A prospective study from Norway investigating 1100 patients with acute chest pain assigned an acute response level (“red”), showed that 26% of the patients were in a life-threatening medical situation [3]. This number is equal to our study (26% with NACA-score 4–7), but our study includes patients with all three levels of response.
Patients with chest pain account for approximately 1-2% [1–4] of all consultations in primary care. Our study confirmed that ECG is the most important diagnostic tool in primary care. The high rate of ECG-testing might be explained by the fact that an ECG often is taken as a routine in patients with chest pain before they are examined by the treating physician. ECG is also readily available in all Norwegian casualty clinics, and most GP surgeries. Early ECG-testing is important in patients with severe illness suspicious of ischaemic heart disease, but it is also well known that over-testing, including use of ECG, and hospital admissions for chest pain can be unfortunate for patients suffering from anxiety or panic attacks. ECG is also still a diagnostic tool with limited sensitivity [10], and the test demands comprehensive knowledge in order to interpret the results in a reliable way.
Our study confirms that acute chest pain is a common diagnostic challenge in a primary care setting [1, 2, 5, 6], and reflects much more than acute cardiac disease. However, the incidence of “heart disease” as the initial diagnosis in our study (50%) is higher than comparable studies. This may partly be explained by the study setting; patients at the casualty clinic are expected to have more acute and severe disease and higher prevalence of IHD than patients during daytime GP surgery hours [9]. On the other side, only 27 patients were given ASA, even though as many as 43 of the 50 patients with suspected heart disease, were admitted to a hospital. This suggests a lower probability of IHD in many of the patients, and few were given full “MONA”-treatment (morphine, oxygen, nitro-glycerine and ASA). The 50 patients with suspected IHD constituted most of the patients with a NACA-score ≥ 4. Still, even among the 43 patients with suspected IHD admitted to the hospital, almost half (19 of 43) had a NACA-score not indicative of a serious illness. In Norway, patients with chest pain in need of acute medical assistance are encouraged to call the national three digits emergency telephone number ″113″. A recent study from Norway [3], showed that in patients with chest pain handled by the emergency medical communication centres (EMCCs, responding to the ″113″ calls), 24% were brought directly to the hospital and managed by the ambulance staff alone, without involving the primary care physician on-call. Most ambulances in Norway can transmit an ECG to the hospital through telemedicine, and in many patients with acute chest pain the EMCC will “bypass” the casualty clinics. This might explain the low prevalence of patients given “MONA”-treatment at the casualty clinics in our study, but the 24% patients brought directly did nevertheless not have a NACA-score indicating a more severe illness [3].
The introduction of high-sensitivity (hs) troponin-tests, also in primary care, might change how GPs diagnose patients with acute chest pain in the near future. But it is important to bear in mind that an increased level of hs-troponin concentration alone does not give the diagnosis of acute myocardial infarction, according to recent guidelines [16]. Diagnosing chest pain in primary care is still a complex task because of the broad spectrum of causes, and it is important that a possible introduction of hs-troponin in primary care does not replace a comprehensive diagnostic approach.
Deciding the appropriate level of response can also be a difficult task, especially in patients with chest pain [3]. Our study showed that 63% of the patients with red response had a NACA-score indicating a potentially or definitely life-threatening medical situation, pointing to a certain degree of “over-triage”, well known to be resource demanding. On the other hand, 11 of the 76 patients (14%) given a yellow or green response level were also in need of rapid diagnostics and/or treatment (NACA ≥ 4), indicating possible “under-triage” and a potentially harmful underestimation of the patients’ severity of illness.
Half of the 100 patients in the study were admitted to hospital, and as many as 86% of the patients with an initial diagnosis of heart disease were admitted urgently. A recent study from the UK [17] showed that GPs in out-of-hours work with low “tolerance of risk” were more likely to admit patients to the hospital. Little is known about how physicians’ diagnose patients with chest pain in out-of-hours primary care and their reasons for deciding if the patient should be admitted to the hospital or not. More research is needed to elucidate this important part of GPs out-of-hours work.