Human monocyte derived macrophage (MDMs) cultures
Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats of healthy donors by density gradient centrifugation using Lympholyte-H (Cederlane, Hornby, Ontario, Canada). The lymphocytic/monocytic fraction was then re-suspended in RPMI 1640 medium (Hyclone Labs Inc. Logan, UTAH) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS) (Hyclone), L-glutamine (2 mM), penicillin (100 IU/ml) and streptomycin (100 mg/ml) and cells were seeded on 175 cm2 flasks and maintained at 37°C in 5% CO2, to generate adhering MDMs. After 1 h of culture, non-adhering cells were removed and the residual adhering MDMs were maintained in culture for 7 days to obtain partially differentiated macrophages. At this time, cells were detached using cold PBS, seeded at a density of 2.5 × 104 cells/cm2 in 35 mm culture plates or on cover-slips (∅ 10 mm) and allowed to adhere for 4–5 days before treatments.
MDMs in vitro treatments
Essential oil from Eucalyptus globulus was purchased from Cruciani Prodotti Crual® Srl, (Rome, Italy). To exclude that the oil preparation used contained any endotoxins, we tested the E O extract using the Limulus Amebocyte Lysate (LAL) test (PYROGENT. Plus – Lonza Walkersville, Inc., Walkersville MD) The LAL test is a qualitative test for Gram-negative bacterial endotoxin utilizing a lysate prepared from the circulating amebocytes of the horseshoe crab (Limulus polyphemus) standardized to detect the labelled concentration (EU/ml) of the FDA Reference Standard Endotoxin. Limulus Amebocyte Lysate was mixed in equal parts with the solution being tested and incubated 1 h at 37°C. In the presence of endotoxin, a positive reaction is characterized by the formation of a firm gel; in the absence of endotoxin, gelation does not occur. The assay was done as a yes/no test. The EO samples and controls were diluted in sterile water, performed in triplicate and run in parallel. Positive controls consisted in 2 ng/ml (1 EU/ml) E. coli Control Standard Endotoxin or 0.1 μg/ml LPS; negative control consisted in sterile water. The LAL test excluded that the E O extract contained any endotoxins. (see Table S1 in the additional file 4).
Human MDMs were treated with 0.008% v/v in RPMI 1640 medium (corresponding to about 50 μg/ml) or 0.016% v/v (about 100 μg/ml) of Eucalyptus oil (E O) for 24 h. Concentrations were selected on the basis of the lowest, non toxic, effective doses found in a preliminary dose-response experiment (see Additional file 1). Cell viability after E O treatment was determined by the Trypan blue dye exclusion method. MDMs stimulated with 0.1 μg/ml of bacterial lipopolysaccharide (LPS, Sigma-Aldrich Co., St. Louis, Mo, USA) for 6 h were used as positive control of macrophage activation. The effect of E O 24 h pre-treatment before stimulation with LPS was also analysed. Essential oils from Lavender oil and the Tea Tree oil (Cruciani Prodotti Crual® Srl), were used as controls to exclude a non specific effect on macrophages phagocytic activity caused by the oil preparation. For any microscopic analysis cells were grown on cover-slips.
Optical and Scanning Electron Microscopy (SEM)
Analysis of morphological feature of activated MDMs, was carried out by phase-contrast microscopy after Wright Giemsa staining and by scanning electron microscopy (SEM). For SEM observation, MDMs were fixed with 2.5% glutharaldehyde in 0.1 M Millonig's phosphate buffer (MPB) at 4°C for 1 h. After washing in MPB, cells were post-fixed with 1% OsO4 in the same buffer for 1 h at 4°C and dehydrated using increasing acetone concentrations. The specimens were critical-point dried using liquid CO2 and sputter-coated with gold before examination on a Stereoscan 240 scanning electron microscope (Cambridge Instr., Cambridge, UK).
Evaluation of phagocytic activity of human MDMs by confocal microscopy
The phagocytic activity of treated and untreated MDMs was tested by adding to cultures 2 × 107 beads/ml of yellow-green fluorescent polystyrene beads (∅ 1 μm, at a ratio of at least 10 beads/cell) with excitation/emission wavelengths of approximately 495 nm/515 nm (Molecular Probes, Inc., Eugene, OR). After 30 min, cells were fixed with paraformaldehyde, counter-stained with 1 μg/ml propidium iodide (PI – Sigma-Aldrich) and observed by the confocal microscope LEICA TCS SP5 (Leica Instruments, Heidelberg, Germany). The excitation/emission wavelengths employed for PI staining were 568 nm/590 nm. A minimum of 500 cells per sample were observed, the number of phagocytic MDMs (reported as percent of phagocytic cells), as well as the number of beads per cell, were counted. MDMs subjected to beads administration and maintained at 0°C to block internalization, was used as negative control of uptake. Quantitative assessment was done in a blinded fashion. The experiment was repeated three times and the mean values were plotted. We analyzed at least 20 buffy coats from different healthy donors.
Evaluation of cytokines production
The concentration of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ secreted into the culture media by human macrophages after in vitro E O treatment were determined by using the BD Cytometric Bead Array human Th1/Th2 cytokine kit (BD Pharmingen) according to the manufacturer's protocol [31]. Flow cytometry analysis was carried out using a FACSCalibur flow cytometer (Becton Dickinson, Mountain View, CA). The effect of E O pre-treatment on the pro-inflammatory and immune modulating cytokines production by macrophages stimulated with LPS was also evaluated.
In vitro inhibitory study
To depolymerize microtubules, control cells and macrophages, pre-treated with LPS or E O, were treated with 2 μg/ml nocodazole for 30 min. For phagocytic activity testing, after nocodazole treatment, fluorescent polystyrene beads were added to the cell culture, samples were processed as described above and analysed by confocal microscopy. The effect of nocodazole on microtubular network was analysed after immuno-staining, using an anti-human tubulin mouse monoclonal antibody (Molecular Probes) revealed with the secondary Alexa Fluor 488-conjugated anti-mouse IgG (Molecular Probes), by confocal microscopy. Cells were counter-stained with PI (Sigma-Aldrich).
Animals and in vivo treatments
Inbred male BDIX rats (Charles River, Calco, Italy), 8 weeks old and weighing 220–250 g, were held for 7 days, housed in a pathogen-free animal facility with free access to water and standard food and kept in accordance with European Community guidelines. Experiments were approved by the local committee on animal experimentation, and were performed under strict governmental and international guidelines. E O was administrated for 15 days per os, at a dose of 12 mg/Kg/day, by adding, every evening, the essential oil extract directly to drinking water (7 μl/day of essential oil per animal). Two sets of in vivo experiments were carried out. In the first one, in which we tested the effect of E O on peripheral blood mononuclear cells of immuno-competent rats, animals were divided in two groups (12 animals/group), an untreated control group and a group treated for 15 days with E O (see schematic diagram in Fig. 6a). In a second experiment, in which we tested whether E O treatment could be able to induce a recovery of peripheral blood mononuclear cells activity after bone marrow suppression, rats of both groups (12 animals/group) were intra-peritonally injected with a single dose of 100 mg/Kg of the chemotherapeutic agent 5-fluorouracil (5-FU) on day 7 from the beginning of E O treatment (see schematic diagram in Fig. 8a). In both sets of experiments, from all animals, anaesthetized by inhalation of 2-bromo-2-chloro-1,1,1-trifluoroethane (Fluka, Sigma-Aldrich), blood was collected, by intracardiac puncture, before treatment (day 0 – T0), on day 7 (T7), on day 15 (T15) and on day 20 (T20). For evaluation of haematological parameters, after erythrocytes lysis by FACS Lysing Solution (Becton Dickinson), mononuclear cell fractions in RPMI 1640 medium were analyzed for forward (FSC) and sideward (SSC) scatter patterns in a fluorescence-activated cell sorter (FACScan, Becton Dickinson). Gates were defined to identify populations of cells with different FSC/SSC characteristics, corresponding to granulocytes, lymphocytes or monocytes populations and results were expressed as percent of total cells. In addition, rat peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using Lympholyte-H (Cederlane, Hornby, Ontario, Canada). The lymphocytic/monocytic fraction was then re-suspended in RPMI 1640 medium and rat adhering macrophages were obtained as described previously for human MDMs and used for the ex vivo experiments.
Evaluation of phagocytic activity of rat peripheral mononuclear cells and macrophages
The evaluation of phagocytic activity of monocytes/granulocytes from peripheral blood of BDIX rats, after in vivo EO administration, in absence or in presence of bone marrow suppression by 5-FU administration, was carried out by cytofluorimetric analysis using the phagotest kit (ORPEGEN Pharma, Heidelberg, Germany), following the manual's protocol. This test allows the quantitative determination of leukocyte phagocytosis in heparinized whole blood. It contains fluorescein (FITC)-labelled opsonized bacteria (E. coli-FITC) and necessary reagents, and measures the overall percentage of phagocytic monocytes and granulocytes (that have ingested one or more bacteria per cell) and the individual cellular phagocytic activity (number of bacteria per cell) recorded as Mean Fluorescence Intensity (MFI).
The phagocytic activity of rat MDMs, obtained from treated and untreated animals and grown on cover-slips, was evaluated ex vivo by confocal microscopy after fluorescent beads administration, as previously described for the in vitro experiments on human MDMs. To test the phagocytic ability towards microbial pathogens, MDMs from treated and untreated immuno-competent animals were subjected to an in vitro infection with a suspension of Staphylococcus aureus (1 × 105bacteria/cell), and observed after 6 h of culture by confocal microscopy.
Evaluation of CD44 expression and CD25+ cells in circulating monocytes
The expression of CD44 and the percentage of CD25+ cells in circulating monocytes from treated and untreated rats were evaluated by cytofluorimetric analysis. Living cells were incubated with a mouse anti-rat CD44H (clone OX-49; BD Pharmingen), detected using a PE-conjugated polyclonal anti-mouse IgG (BD Pharmingen) or with a FITC-conjugated mouse anti-rat CD25 (clone OX-39; BD Pharmingen), using a FACScan flow cytometer (Becton Dickinson).
Statistical analysis
For statistical analysis the two-tailed Student's t test was used. For the in vitro evaluations, at least three independent experiments have been carried out and data are given as the mean ± SD. For the in vivo and ex vivo experiments, results are reported as mean of 12 animals/group ± SD. For all analyses, significance was calculated with a P value < 0.01.