1 Introduction

In 2007, Karsli [1] introduced a kind of new Gamma type operators defined as

L n (f;x)= ( 2 n + 3 ) ! x n + 3 n ! ( n + 2 ) ! 0 t n ( x + t ) 2 n + 4 f(t)dt,x>0.
(1)

He also estimated the rate of convergence of the operators (1) for functions with derivatives of bounded variation on (0,).

In 2009, Karsli et al. [2] gave an estimate of the rate of pointwise convergence of the operators (1) on a Lebesgue point of a bounded variation function f defined on the interval (0,).

In recent years Kim used q calculus to study several results on number theory and the related areas [3, 4]. Now we mention certain definitions based on q-integers, details can be found in [57]. For any fixed real number q>0 and each nonnegative integer n, we denote q-integers by [ n ] q , where

[ n ] q = { 1 q n 1 q , if  q 1 ; n , if  q = 1 .
(2)

Also q-factorial and q-binomial coefficients are defined as follows:

[ n ] q ! = { [ 1 ] q [ 2 ] q [ n ] q , if  n = 1 , 2 , ; 1 , if  n = 0 ; [ n k ] q = [ n ] q ! [ n k ] q ! [ k ] q ! , k = 0 , 1 , , n .

It is obvious that q-binomial coefficients will reduce to the ordinary case when q=1. The q-improper integrals are defined as (see [8, 9])

0 a f(x) d q x=(1q)a n = 0 f ( a q n ) q n ,aR

and

0 / A f(x) d q x=(1q) f ( q n A ) q n A ,A>0,
(3)

provided the sums converge absolutely.

The q-Beta integral is defined as

B q (t;s)=K(A;t) 0 / A x t 1 ( 1 + x ) q t + s d q x,
(4)

where K(x;t)= 1 x + 1 x t ( 1 + 1 x ) q t ( 1 + x ) q 1 t and ( a + b ) q s = j = 0 s 1 (a+ q j b), s Z + .

In particular, for any positive integers m, n

K(x;n)= q n ( n 1 ) 2 ,K(x;0)=1and B q (m;n)= Γ q ( m ) Γ q ( n ) Γ q ( m + n ) ,
(5)

where Γ q (t) is the q-Gamma function.

For m>0, the q-Gamma function is defined by

Γ q (m)= 0 1 1 q x m 1 E q (qx) d q x,
(6)

where E q (x)= n = 0 q n ( n 1 ) 2 x n [ n ] q ! . Obviously, it satisfies the following functional equations:

Γ q (t+1)= [ t ] q Γ q (t), Γ q (1)=1.

More details of the q-Gamma function and the q-Beta function can be found in [10].

Very recently, Cai and Zeng [11] proposed a kind of q-generalization of Gamma operators and studied their approximation properties. These operators are defined as follows:

G n , q (f;x)= [ 2 n + 3 ] q ! ( q n + 3 2 x ) n + 3 q n ( n + 1 ) 2 [ n ] q ! [ n + 2 ] q ! 0 / A t n ( q n + 3 2 x + t ) q 2 n + 4 f(t) d q t,x>0.
(7)

In approximation theory the Stancu type modification of operators is an interesting research topic. In this paper, we propose a kind of q-Gamma-Stancu operators G n , q α , β (f;x) as follows.

Definition 1 For fC(0,), q(0,1), 0αβ and nN, we can define q-Gamma-Stancu operators G n , q α , β (f;x) as

G n , q α , β (f;x)= [ 2 n + 3 ] q ! ( q n + 3 2 x ) n + 3 q n ( n + 1 ) 2 [ n ] q ! [ n + 2 ] q ! 0 / A t n ( q n + 3 2 x + t ) q 2 n + 4 f ( [ n ] q t + α [ n ] q + β ) d q t.
(8)

The rest of the paper is organized as follows. In Section 2 we present the moments of the operators G n , q α , β (f;x). In Section 3 we present two direct and local approximation results for the operators G n , q α , β (f;x) by means of the first- and second-order modulus of continuity and the second-order central moment of the operators. In Section 4 we study the rate of convergence of the operators G n , q α , β (f;x). In Section 5 we discuss the weighted approximation theorem and Voronovskaya type asymptotic formula of the operators.

2 Moment estimates

In order to obtain the approximation properties of the operators G n , q α , β (f;x), we need the following lemmas.

Lemma 1 ([11])

For any kN, kn+2 and q(0,1), we have

G n , q ( t k ; x ) = [ n + k ] q ! [ n k + 2 ] q ! [ n ] q ! [ n + 2 ] q ! q 2 k k 2 2 x k .
(9)

Lemma 2 If we define the moments as

T n , m α , β ( x ) = G n , q α , β ( t m ; x ) = [ 2 n + 3 ] ! ( q n + 3 2 x ) n + 3 q n ( n + 1 ) 2 [ n ] q ! [ n + 2 ] q ! 0 / A t n ( q n + 3 2 x + t ) q 2 n + 4 ( [ n ] q t + α [ n ] q + β ) m d q t ,
(10)

then we have

  1. (i)

    T n , 0 α , β (x)= G n , q α , β (1;x)=1,

  2. (ii)

    T n , 1 α , β (x)= G n , q α , β (t;x)= q [ n ] q [ n + 1 ] q ( [ n ] q + β ) [ n + 2 ] q x+ α [ n ] q + β , for n>2,

  3. (iii)

    T n , 2 α , β (x)= G n , q α , β ( t 2 ;x)= ( [ n ] q [ n ] q + β ) 2 x 2 + 2 α q [ n ] q [ n + 1 ] q ( [ n ] q + β ) 2 [ n + 2 ] q x+ ( α [ n ] q + β ) 2 , for n>3.

Proof From Lemma 1, we have T n , 0 α , β (x)= G n , q α , β (1;x)=1. Thus

T n , 1 α , β ( x ) : = [ 2 n + 3 ] q ! ( q n + 3 2 x ) n + 3 q n ( n + 1 ) 2 [ n ] q ! [ n + 2 ] q ! 0 / A t n ( q n + 3 2 x + t ) q 2 n + 4 ( [ n ] q t + α [ n ] q + β ) d q t = [ n ] q [ n ] q + β G n , q ( t ; x ) + α [ n ] q + β G n , q ( 1 ; x ) = q [ n ] q [ n + 1 ] q ( [ n ] q + β ) [ n + 2 ] q x + α [ n ] q + β .

Finally,

T n , 2 α , β ( x ) : = [ 2 n + 3 ] q ! ( q n + 3 2 x ) n + 3 q n ( n + 1 ) 2 [ n ] q ! [ n + 2 ] q ! 0 / A t n ( q n + 3 2 x + t ) q 2 n + 4 ( [ n ] q t + α [ n ] q + β ) 2 d q t = ( [ n ] q [ n ] q + β ) 2 G n , q ( t 2 ; x ) + 2 [ n ] q α ( [ n ] q + β ) 2 G n , q ( t ; x ) + ( α [ n ] q + β ) 2 G n , q ( 1 ; x ) = ( [ n ] q [ n ] q + β ) 2 x 2 + 2 α q [ n ] q [ n + 1 ] q ( [ n ] q + β ) 2 [ n + 2 ] q x + ( α [ n ] q + β ) 2 .

 □

Remark 1 If we put q=1 and α=β=0, we get the moments of the Gamma operators (see [1]):

L n ( t ; x ) = n + 1 n + 2 x , n > 2 , L n ( t 2 ; x ) = x 2 , n > 3 .

Remark 2 Let n>2 be a given natural number. For every q(0,1) we have

A n , q α , β (x)= G n , q α , β (tx;x)= { q [ n ] q [ n + 1 ] q ( [ n ] q + β ) [ n + 2 ] q 1 } x+ α [ n ] q + β ,
(11)
B n , q α , β ( x ) = G n , q α , β ( ( t x ) 2 ; x ) B n , q α , β ( x ) = ( [ n ] q [ n ] q + β ) 2 x 2 + 2 α q [ n ] q [ n + 1 ] q ( [ n ] q + β ) 2 [ n + 2 ] q x + ( α [ n ] q + β ) 2 B n , q α , β ( x ) = 2 x { q [ n ] q [ n + 1 ] q ( [ n ] q + β ) [ n + 2 ] q x + α [ n ] q + β } + x 2 B n , q α , β ( x ) = { ( [ n ] q [ n ] q + β ) 2 2 q [ n ] q [ n + 1 ] q ( [ n ] q + β ) [ n + 2 ] q + 1 } x 2 B n , q α , β ( x ) = + 2 α { q [ n ] q [ n + 1 ] q ( [ n ] q + β ) 2 [ n + 2 ] q 1 [ n ] q + β } x + ( α [ n ] q + β ) 2 ,
(12)
C n , q α , β ( x ) = G n , q α , β ( ( t x ) 4 ; x ) C n , q α , β ( x ) = { ( [ n ] q ) 3 [ n + 3 ] q [ n + 4 ] q [ n 1 ] q ( [ n ] q + β ) 4 q 4 4 q ( [ n ] q ) 2 [ n + 3 ] q q 2 ( [ n ] q + β ) 3 C n , q α , β ( x ) = + 6 ( [ n ] q ) 2 ( [ n ] q + β ) 2 4 q [ n ] q [ n + 1 ] q [ n + 2 ] q ( [ n ] q + β ) + 1 } x 4 C n , q α , β ( x ) = + 4 α [ n ] q + β { q ( [ n ] q ) 2 [ n + 3 ] q q 2 ( [ n ] q + β ) 3 3 ( [ n ] q ) 2 ( [ n ] q + β ) 2 + 3 q [ n + 1 ] q [ n ] q [ n ] q ( [ n ] q + β ) 1 } x 3 C n , q α , β ( x ) = + 6 α 2 ( [ n ] q + β ) 2 { ( [ n ] q ) 2 ( [ n ] q + β ) 2 2 q [ n ] q [ n + 1 ] q [ n + 2 ] q ( [ n ] q + β ) + 1 } x 2 C n , q α , β ( x ) = + 4 α 3 ( [ n ] q + β ) 3 { q [ n ] q [ n + 1 ] q [ n + 2 ] q ( [ n ] q + β ) 1 } x + α 4 ( [ n ] q + β ) 4 .
(13)

3 Local approximation

In this section we establish two direct and the local approximation theorems of the operators G n , q α , β (f;x).

Let C B [0,+) denote the space of all real valued continuous bounded functions f defined on the interval [0,+). The norm on the space C B [0,+) is given by f=sup{|f(x)|:x[0,+)}.

Further let us consider Peetre’s K-functional:

K 2 (f;δ)= inf g W 2 { f g + δ g } ,

where δ>0 and W 2 ={g C B [0,+): g , g C B [0,+)}.

For f C B [0,+), the modulus of continuity of second order is defined by

ω 2 (f;δ):= sup 0 < h δ sup x [ 0 , + ) |f(x+2h)2f(x+h)+f(x)|.

From [12, 13], there exists an absolute constant M 0 >0 such that

K 2 (f;δ) M 0 ω 2 (f; δ ),δ>0.
(14)

Also we set

ω(f;δ):= sup 0 < h δ sup x [ 0 , + ) |f(x+h)f(x)|.

In order to prove the theorems of this section, we need the following lemma.

Lemma 3 Let q(0,1), x(0,+), f C B [0,+). Then, for all g C B 2 [0,+), we have

| G ˆ n , q α , β (g;x)g(x)| ( B n , q α , β ( x ) + D n , q 2 ( x ) ) g ,

where

G ˆ n , q α , β ( f ; x ) = G n , q α , β ( f ; x ) + f ( x ) f ( T n , 1 α , β ( x ) ) , D n , q α , β ( x ) = T n , 1 α , β ( x ) x .
(15)

Proof From (15) and Lemma 2, we have

G ˆ n , q α , β (tx;x)=0.

For x(0,+) and g C B 2 [0,+), using Taylor’s formula,

g(t)g(x)=(tx) g (x)+ x t (tu) g (u)du,

we have

G ˆ n , q α , β ( g ; x ) g ( x ) = G ˆ n , q α , β ( ( t x ) g ( x ) ; x ) + G ˆ n , q α , β ( x t ( t u ) g ( u ) d u ; x ) = g ( x ) G ˆ n , q α , β ( ( t x ) ; x ) + G n , q α , β ( x t ( t u ) g ( u ) d u ; x ) x T n , 1 α , β ( x ) ( T n , 1 α , β ( x ) u ) g ( u ) d u = G n , q α , β ( x t ( t u ) g ( u ) d u ; x ) x T n , 1 α , β ( x ) ( T n , 1 α , β ( x ) u ) g ( u ) d u .

On the other hand, from

| x t (tu) g (u)du|| x t |tu|| g (u)|du| g | x t |tu|du| ( t x ) 2 g

and

| x T n , 1 α , β ( x ) ( T n , 1 α , β ( x ) u ) g (u)du| ( T n , 1 α , β ( x ) x ) 2 g = ( D n , q α , β ( x ) ) 2 g ,

we conclude that

| G ˆ n , q α , β ( g ; x ) g ( x ) | = | G n , q α , β ( x t ( t u ) g ( u ) d u ; x ) x T n , 1 α , β ( x ) ( T n , 1 α , β ( x ) u ) g ( u ) d u | G n , q α , β ( ( t x ) 2 g ; x ) + ( D n , q α , β ( x ) ) 2 g ( B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) g .

This completes the proof. □

Theorem 1 Let q(0,1), f C B [0,+). Then, for every x(0,+), there exists a constant M 1 >0 such that

| G n , q α , β (f;x)f(x)| M 1 ω 2 ( f ; B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) +ω ( f ; | D n , q α , β ( x ) | ) .

Proof By (15), we have

| G ˆ n , q α , β (f;x)|| G n , q α , β (f;x)|+2f3f.
(16)

Using Lemma 3, for every g C B 2 [0,+), we obtain

| G n , q α , β ( f ; x ) f ( x ) | | G ˆ n , q α , β ( f ; x ) f ( x ) | + | f ( x ) f ( T n , 1 α , β ( x ) ) | | G ˆ n , q α , β ( f g ; x ) ( f g ) ( x ) | + | f ( x ) f ( T n , 1 α , β ( x ) ) | + | G ˆ n , q α , β ( g ; x ) g ( x ) | 4 f g + | f ( x ) f ( T n , 1 α , β ( x ) ) | + ( B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) g 4 f g + ω ( f ; | D n , q α , β ( x ) | ) + ( B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) g .

Now, by taking infimum on the right-hand side for all g C B 2 [0,) and using (14), we get the following result:

| G n , q α , β ( f ; x ) f ( x ) | 4 K 2 ( f ; B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) + ω ( f ; | D n , q α , β ( x ) | ) 4 M 0 ω 2 ( f ; B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) + ω ( f ; | D n , q α , β ( x ) | ) = M 1 ω 2 ( f ; B n , q α , β ( x ) + ( D n , q α , β ( x ) ) 2 ) + ω ( f ; | D n , q α , β ( x ) | ) .

This completes the proof. □

Theorem 2 Let 0<γ1 and E be any bounded subset of the interval [0,+). If f C B [0,+) Lip M 3 (γ), then we have

| G n , q α , β (f;x)f(x)| M 3 { ( B n , q α , β ( x ) ) γ 2 + 2 ( d ( x ; E ) ) γ } ,

where M 3 is a constant depending only on α, d(x;E) is the distance between x and E defined as

d(x;E)=inf { | t x | : t E  and  x ( 0 , + ) } .

Proof From the properties of the infimum, there is at least one point t 0 in the closure of E such that

d(x;E)=| t 0 x|.

By the triangle inequality, we have

|f(t)f(x)||f(t)f( t 0 )|+|f( t 0 )f(x)|.

Thus

| G n , q α , β ( f ; x ) f ( x ) | G n , q α , β ( | f ( t ) f ( x ) | ; x ) G n , q α , β ( | f ( t ) f ( t 0 ) | ; x ) + G n , q α , β ( | f ( t 0 ) f ( x ) | ; x ) M 3 { G n , q α , β ( | t t 0 | γ ; x ) + | t 0 x | γ } M 3 { G n , q α , β ( | t x | γ ; x ) + 2 | t 0 x | γ }

holds. Now we choose p 1 = 2 γ and p 2 = 2 2 γ such that 1 p 1 + 1 p 2 =1, then by Hölder inequality we have

| G n , q α , β ( f ; x ) f ( x ) | M 3 { [ G n , q α , β ( | t x | γ p 1 ; x ) ] 1 p 1 [ G n , q α , β ( 1 p 2 ; x ) ] 1 p 2 + 2 | t 0 x | γ } = M 3 { G n , q α , β ( | t x | 2 ; x ) γ 2 + 2 | t 0 x | γ } = M 3 { ( B n , q α , β ( x ) ) γ 2 + 2 ( d ( x ; E ) ) γ } .

This completes the proof. □

4 Rate of convergence

Let B x 2 [0,+) be the set of all functions f defined on [0,+) satisfying the condition |f(x)| M f (1+ x 2 ), where M f is a constant depending only on f. Let C x 2 [0,+) denote the subset of all continuous functions belonging to B x 2 [0,+). If f C x 2 [0,+) and lim x + f ( x ) 1 + x 2 exists, we write f C x 2 [0,+). The norm on C x 2 [0,+) is given by f x 2 = sup x [ 0 , + ) | f ( x ) | 1 + x 2 . The modulus of continuity of f on the closed interval [0,a] is defined by

ω a (f;δ)= sup | t x | < δ sup x , t [ 0 , a ] |f(t)f(x)|.

We know that for a function f C x 2 [0,+), the modulus of continuity ω a (f;δ) tends to zero as δ0.

Now we give a rate of convergence theorem for the operators G n , q α , β (f;x).

Theorem 3 Let f C x 2 [0,+), q(0,1) and let ω a + 1 (f;δ) be modulus of the continuity of f on the finite interval [0,a+1][0,+), where a>0. Then for n>3,

| G n , q α , β (f;x)f(x)|5 M f ( 1 + a 2 ) B n , q α , β (x)+ ω a + 1 (f;δ) ( 1 + 1 δ [ B n , q α , β ( x ) ] 1 2 ) .
(17)

Proof For x(0,a] and t>a+1, since tx>1, we have

| f ( t ) f ( x ) | M f ( 2 + x 2 + t 2 ) M f ( 2 + x 2 + t 2 + ( 2 x t ) 2 ) M f ( 2 + 3 x 2 + 2 ( x t ) 2 ) 5 M f ( 1 + a 2 ) ( t x ) 2 .
(18)

For x(0,a] and ta+1, we have

|f(t)f(x)| ω a + 1 ( f ; | t x | ) ( 1 + | t x | δ ) ω a + 1 ( f ; | t x | )
(19)

with δ>0.

From (18) and (19) we get

|f(t)f(x)|5 M f ( 1 + a 2 ) ( t x ) 2 + ( 1 + | t x | δ ) ω a + 1 (f;δ),
(20)

for x(0,a] and t>0. Thus

| G n , q α , β ( f ; x ) f ( x ) | G n , q α , β ( | f ( t ) f ( x ) | ; x ) 5 M f ( 1 + a 2 ) G n , q α , β ( ( t x ) 2 ; x ) + ω a + 1 ( f ; δ ) ( 1 + 1 δ [ G n , q α , β ( ( t x ) 2 ; x ) ] 1 2 ) 5 M f ( 1 + a 2 ) B n , q α , β ( x ) + ω a + 1 ( f ; δ ) ( 1 + 1 δ [ B n , q α , β ( x ) ] 1 2 ) .

The proof is completed. □

As is well known, if f is not uniformly continuous on the interval [0,), then the usual first modulus of continuity ω(f;δ) does not tend to zero as δ0. For every f C x 2 [0,), we would like to take a weighted modulus of continuity Ω(f;δ) which tends to zero as δ0.

Let

Ω(f;δ)= sup 0 < h δ , x 0 | f ( x + h ) f ( x ) | 1 + ( x + h ) 2 ,for every f C x 2 [0,).

The weighted modulus of continuity Ω(f;δ) was defined by Yuksel and Ispir in [14]. It is well known that Ω(f;δ) has the following properties.

Lemma 4 ([14])

Let f C x 2 [0,), then:

  1. (i)

    Ω(f;δ) is a monotone increasing function of δ.

  2. (ii)

    For each f C x 2 [0,), lim δ 0 + Ω(f;δ)=0.

  3. (iii)

    For each mN{0}, Ω(f;mδ)mΩ(f;δ).

  4. (iv)

    For each λ R + , Ω(f;λδ)(1+λ)Ω(f;δ).

Theorem 4 Let f C x 2 [0,) and q= q n (0,1) such that q n 1 and [ n ] q n as n, then there exists a positive constant A such that the inequality

sup x ( 0 , ) | G n , q n α , β ( f ; x ) f ( x ) | ( 1 + x 2 ) 5 2 AΩ ( f ; 1 [ n + 2 ] q n )
(21)

holds.

Proof For t>0, x(0,) and δ>0, by the definition of Ω(f;δ) and Lemma 4, we get

| f ( t ) f ( x ) | ( 1 + ( x + | x t | ) ) 2 Ω ( f ; | t x | ) 2 ( 1 + x 2 ) ( 1 + ( t x ) 2 ) ( 1 + | t x | δ ) Ω ( f ; δ ) .

Since G n , q n α , β is linear and positive, we have

| G n , q n α , β ( f ; x ) f ( x ) | 2 ( 1 + x 2 ) Ω ( f ; δ ) { 1 + G n , q n α , β [ ( t x ) 2 ; x ] + G n , q n α , β [ ( 1 + ( t x ) 2 ) | t x | δ ; x ] } .
(22)

From Remark 2, we have

G n , q n α , β ( ( t x ) 2 ; x ) A 1 1 + x 2 [ n + 2 ] q n ,
(23)

for some positive constant A 1 . To estimate the second term of (22), applying the Cauchy-Schwartz inequality, we have

G n , q n α , β ( ( 1 + ( t x ) 2 ) | t x | δ ; x ) 2 ( G n , q n α , β ( 1 + ( t x ) 4 ; x ) ) 1 2 ( G n , q n α , β ( ( t x ) 2 δ 2 ; x ) ) 1 2 .
(24)

By Remark 2 and (23), there exist two positive constants A 2 , A 3 such that

( G n , q n α , β ( 1 + ( t x ) 4 ; x ) ) 1 2 A 2 ( 1 + x 2 )
(25)

and

( G n , q n α , β ( ( t x ) 2 δ 2 ; x ) ) 1 2 A 3 δ 1 + x 2 [ n + 2 ] q n .
(26)

Now we take A=1+2 A 1 +2 A 2 A 3 and δ= 1 [ n + 2 ] q n , and combining the above estimates, we obtain the inequality (21). □

5 Weighted approximation and Voronovskaya type asymptotic formula

In this section we will discuss the weighted approximation theorem and Voronovskaya type asymptotic formula.

Theorem 5 Let the sequence q={ q n } satisfy 0< q n <1, q n 1 and [ n ] q n as n. Then for f C x 2 [0,), we have

lim n G n , q n α , β ( f ) f x 2 =0.
(27)

Proof Using the Korovkin theorem in [15], we know that it is sufficient to verify the following three equations:

lim n G n , q n α , β ( t k ; x ) x k x 2 =0,k=0,1,2.
(28)

Since G n , q n α , β (1;x)=1, (28) holds true for k=0.

By Lemma 2, for n>1, we have

G n , q n α , β ( t ; x ) x x 2 = sup x [ 0 , ) { | { q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) [ n + 2 ] q n 1 } x + α [ n ] q n + β | × 1 1 + x 2 } | q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) [ n + 2 ] q n 1 | sup x [ 0 , ) x 1 + x 2 + α [ n ] q n + β sup x [ 0 , ) 1 1 + x 2 | q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) [ n + 2 ] q n 1 | + α [ n ] q n + β | q n [ n + 1 ] q n [ n + 2 ] q n 1 | + β q n [ n + 1 ] q n ( [ n ] q n + β ) [ n + 2 ] q n + α [ n ] q n + β | 1 q n 1 | + 1 q n [ n + 2 ] q n + α + β q n [ n ] q n + β .

Thus

lim n G n , q n α , β ( t ; x ) x x 2 =0.

Similarly, for n>2, we have

G n , q n α , β ( t 2 ; x ) x 2 x 2 = sup x [ 0 , ) { | ( [ n ] q n [ n ] q n + β ) 2 x 2 + 2 α q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) 2 [ n + 2 ] q n x + ( α [ n ] q n + β ) 2 x 2 | × 1 1 + x 2 } β 2 ( [ n ] q n + β ) 2 + 2 β [ n ] q n + β + α 2 ( [ n ] q n + β ) 2 + 2 α q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) 2 [ n + 2 ] q n α 2 + β 2 ( [ n ] q n + β ) 2 + 2 α q n + 2 β [ n ] q n + β ,

which implies that

lim n G n , q n α , β ( t 2 ; x ) x 2 x 2 =0.

The proof is completed. □

Finally, we give a Voronovskaya type asymptotic formula for G n , q n α , β (f;x) by means of the second and the fourth central moments.

Theorem 6 Let f be a bounded and integrable function on the interval (0,) and { q n } n = 1 be a sequence such that 0< q n <1 and q n 1 as n. Suppose that the second derivative f (x) exists at a point x(0,), then we have

lim n [ n + 2 ] q n ( G n , q n α , β ( f ; x ) f ( x ) ) = ( α ( 1 + β ) x ) f (x)+ x 2 f (x).
(29)

Proof By the Taylor formula we have

f(t)f(x)=(tx) f (x)+ 1 2 f (x) ( t x ) 2 +r(t,x) ( t x ) 2 ,

where r(t,x) is bounded and lim t x r(t,x)=0. By applying the operator G n , q α , β (f;x) to the above equation we obtain

G n , q n α , β ( f ; x ) f ( x ) = f ( x ) G n , q n α , β ( ( t x ) ; x ) + 1 2 f ( x ) G n , q n α , β ( ( t x ) 2 ; x ) + G n , q n α , β ( r ( t , x ) ( t x ) 2 ; x ) = f ( x ) A n , q n α , β ( x ) + 1 2 f ( x ) B n , q n α , β ( x ) + G n , q n α , β ( r ( t , x ) ( t x ) 2 ; x ) .

By direct calculation, we obtain

[ n + 2 ] q n A n , q n α , β ( x ) = { q n [ n ] q n [ n + 1 ] q n ( [ n ] q n + β ) [ n + 2 ] q n } x + α [ n + 2 ] q n [ n ] q n + β = { q n [ n + 1 ] q n [ n + 2 ] q n } x { q n β [ n + 1 ] q n [ n ] q n + β } x + α [ n + 2 ] q n [ n ] q n + β = ( q n q n ) [ n + 1 ] q n x { 1 + q n β [ n + 1 ] q n [ n ] q n + β } x + α [ n + 2 ] q n [ n ] q n + β = q n ( 1 q n n + 1 ) 1 + q n x { 1 + q n β [ n + 1 ] q n [ n ] q n + β } x + α [ n + 2 ] q n [ n ] q n + β α ( 1 + β ) x ( n ) .

Similarly,

[ n + 2 ] q n [ ( [ n ] q n [ n ] q n + β ) 2 2 q n [ n ] q n [ n ] q n ( [ n ] q n + β ) ( [ n + 2 ] q n ) + 1 ] = 2 { [ n + 2 ] q n q n [ n ] q n [ n + 1 ] q n [ n ] q n + β β [ n + 2 ] q n [ n ] q n + β } = 2 { [ n + 2 ] q n q n [ n + 1 ] q n + q n β [ n + 1 ] q n [ n ] q n + β β [ n + 2 ] q n [ n ] q n + β } = 2 { 1 + ( q n q n ) [ n + 1 ] q n + q n β [ n + 1 ] q n [ n ] q n + β β [ n + 2 ] q n [ n ] q n + β } 2 ( n ) .

That means

[ n + 2 ] q n B n , q n α , β (x)2 x 2 (n).
(30)

On the other hand, by simple calculation we obtain

[ n + 2 ] q n ( [ n + 3 ] q n [ n + 4 ] q n [ n ] q n [ n 1 ] q n 1 ) 8(n),
(31)
[ n + 2 ] q n ( [ n + 3 ] q n [ n ] q n 1 ) 3(n).
(32)

Thus from Remark 2, we have

[ n + 2 ] q n G n , q n α , β ( ( t x ) 4 ; x ) 0(n).
(33)

Since r(t,x) is bounded and lim t x r(t,x)=0, then for any given ϵ>0, there exists a δ>0 such that

|r(t,x)|ϵ+ M δ 2 ( t x ) 2 ( t , x ( 0 , ) , M  is a positive constant ) .

Thus

[ n + 2 ] q n | G n , q n α , β ( r ( t , x ) ( t x ) 2 ; x ) | ϵ [ n + 2 ] q n G n , q n α , β ( ( t x ) 2 ; x ) + M δ 2 [ n + 2 ] q n G n , q n α , β ( ( t x ) 4 ; x ) 0 ( n ) .

The proof is completed. □