1 Introduction

Throughout this paper we will work on R n with Lebesgue measure dx. We denote by C c ( R n ), C c ( R n ) and S( R n ) the space of infinitely differentiable complex-valued functions with compact support on R n , the space of all continuous, complex-valued functions with compact support on R n and the space of infinitely differentiable complex-valued functions on R n that rapidly decrease at infinity, respectively. Let f be a complex-valued measurable function on R n . The translation, character and dilation operators T x , M x and D s are defined by T x f(y)=f(yx), M x f(y)= e 2 π i x , y f(y) and D t p f(y)= t n p f( y t ), respectively, for x,y R n , 0<p,t<. With this notation out of the way, one has, for 1p and 1 p + 1 p =1,

( T x f) g ˆ (ξ)= M x f ˆ (ξ),( M x f) g ˆ (ξ)= T x f ˆ (ξ), ( D t p f ) g ˆ (ξ)= D t 1 p f ˆ (ξ).

For 1p, L p ( R n ) denotes the usual Lebesgue space. A continuous function ω satisfying 1ω(x) and ω(x+y)ω(x)ω(y) for x,y R n will be called a weight function on R n . If ω 1 (x) ω 2 (x) for all x R n , we say that ω 1 ω 2 . For 1p, we set

L ω p ( R n ) = { f : f ω L p ( R n ) } .

It is known that L ω p ( R n ) is a Banach space under the norm

f p , ω = f ω p = { R n | f ( x ) ω ( x ) | p d x } 1 p ,1p<

or

f , ω = f ω = ess sup x R n |f(x)ω(x)|,p=.

The dual of the space L ω p ( R n ) is the space L ω 1 q ( R n ), where 1 p + 1 q =1 and ω 1 (x)= 1 ω ( x ) . We say that a weight function υ s is of polynomial type if υ s (x)= ( 1 + | x | ) s for s0. Let f be a measurable function on R n . If there exist C>0 and NN such that

|f(x)|C ( 1 + x 2 ) N

for all x R n , then f is said to be a slowly increasing function [1]. It is easy to see that polynomial-type weight functions are slowly increasing. For f L 1 ( R n ), the Fourier transform of f is denoted by f ˆ . We know that f ˆ is a continuous function on R n which vanishes at infinity and it has the inequality f ˆ f 1 . We denote by M( R n ) the space of bounded regular Borel measures, by M(ω) the space of μ in M( R n ) such that

μ ω = R n ωd|μ|<.

If μM( R n ), the Fourier-Stieltjes transform of μ is denoted by μ ˆ [2].

The space ( L p ( R n ) ) loc consists of classes of measurable functions f on R n such that f χ K L p ( R n ) for any compact subset K R n , where χ K is the characteristic function of K. Let us fix an open set Q R n with compact closure and 1p,q. The weighted Wiener amalgam space W( L p , L ω q ) consists of all elements f ( L p ( R n ) ) loc such that F f (z)= f χ z + Q p belongs to L ω q ( R n ); the norm of W( L p , L ω q ) is f W ( L p , L ω q ) = F f q , ω [35].

In this paper, P( R n ) denotes the family of all measurable functions p: R n [1,). We put

p = ess inf x R n p(x), p = ess sup x R n p(x).

We shall also use the notation

Ω = { x R n : p ( x ) = } .

The variable exponent Lebesgue spaces (or generalized Lebesgue spaces) L p ( x ) ( R n ) are defined as the set of all (equivalence classes) measurable functions f on R n such that ϱ p (λf)< for some λ>0, equipped with the Luxemburg norm

f p ( x ) =inf { λ > 0 : ϱ p ( f λ ) 1 } .

If p <, then f L p ( x ) ( R n ) if ϱ p (f)<. The set L p ( x ) ( R n ) is a Banach space with the norm p ( x ) . If p(x)=p is a constant function, then the norm p ( x ) coincides with the usual Lebesgue norm p [6]. The spaces L p ( x ) ( R n ) and L p ( R n ) have many common properties. A crucial difference between L p ( x ) ( R n ) and the classical Lebesgue spaces L p ( R n ) is that L p ( x ) ( R n ) is not invariant under translation in general. If p <, then C c ( R n ) is dense in L p ( x ) ( R n ). The space L p ( x ) ( R n ) is a solid space, that is, if f L p ( x ) ( R n ) is given and g L loc 1 ( R n ) satisfies |g(x)||f(x)| a.e., then g L p ( x ) ( R n ) and g p ( x ) f p ( x ) by [6]. In this paper we will assume that p <.

The space ( L p ( x ) ( R n ) ) loc consists of classes of measurable functions f on R n such that f χ K L p ( x ) ( R n ) for any compact subset K R n . Let us fix an open set Q R n with compact closure, p(x)P( R n ) and 1q. The variable exponent amalgam space W( L p ( x ) , L ω q ) consists of all elements f ( L p ( x ) ( R n ) ) loc such that F f (z)= f χ z + Q p ( x ) belongs to L ω q ( R n ); the norm of W( L p ( x ) , L ω q ) is f W ( L p ( x ) , L ω q ) = F f q , ω [7].

2 The bilinear multipliers space BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]

Lemma 2.1 Let 1pq< and ω be a slowly increasing weight function. Then C c ( R n ) is dense in the Wiener amalgam space W( L p , L ω q ).

Proof Since C c ( R n ) ¯ = L ω q ( R n ) [8], we have C c ( R n ) ¯ =W( L p , L ω q ) by a lemma in [9]. Also we have the inclusion

C c ( R n ) C c ( R n ) W ( L p , L ω q ) .

For the proof that C c ( R n ) is dense in W( L p , L ω q ), take any fW( L p , L ω q ). For given ε>0, there exists g C c ( R n ) such that

f g W ( L p , L ω q ) < ε 2 .
(2.1)

Also, since g C c ( R n ) L ω q ( R n ) and C c ( R n ) is dense in L ω q ( R n ), by Lemma 2.1 in [10], there exists h C c ( R n ) such that

g h q , ω < ε 2 .

Furthermore, by using the inequality pq, we write

g h W ( L p , L ω q ) g h q , ω < ε 2
(2.2)

(see [11] and [5]). Combining (2.1) and (2.2), we obtain

f h W ( L p , L ω q ) f g W ( L p , L ω q ) + h g W ( L p , L ω q ) <ε.

This completes the proof. □

Definition 2.1 Let 1 p 1 q 1 <, 1 p 2 q 2 <, 1< p 3 , q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions and m(ξ,η) is a bounded, measurable function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ).

m is said to be a bilinear multiplier on R n of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) if there exists C>0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )

for all f,g C c ( R n ). That means that B m extends to a bounded bilinear operator from W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 ) to W( L p 3 , L ω 3 q 3 ).

We denote by BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the space of all bilinear multipliers of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) and m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B m .

The following theorem is an example to a bilinear multiplier on R n of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )).

Theorem 2.1 Let 1 p 1 + 1 p 2 = 1 p 3 , 1 q 1 + 1 q 2 = 1 q 3 and ω 3 ω 1 . If K L ω 3 1 ( R n ), then m(ξ,η)= K ˆ (ξη) defines a bilinear multiplier and m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) K 1 , ω 3 .

Proof We know by Theorem 2.1 in [10] that for f,g C c ( R n ),

B m (f,g)(t)= R n f(ty)g(t+y)K(y)dy.
(2.3)

Also by Proposition 11.4.1 in [5], T y fW( L p 1 , L ω 1 q 1 ), T y gW( L p 2 , L ω 2 q 2 ). So, we write F T y f L ω 1 q 1 ( R n ), F T y g L ω 2 q 2 ( R n ).

Using the Minkowski inequality and the generalized Hölder inequality, we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = B m ( f , g ) χ Q + x p 3 q 3 , ω 3 = { R n f ( t y ) g ( t + y ) K ( y ) d y } χ Q + x p 3 q 3 , ω 3 R n f ( t y ) g ( t + y ) χ Q + x ( t ) p 3 q 3 , ω 3 | K ( y ) | d y R n f ( t y ) χ Q + x ( t ) p 1 g ( t + y ) χ Q + x ( t ) p 2 q 3 , ω 3 | K ( y ) | d y = R n F T y f ( x ) ω 3 ( x ) F T y g ( x ) q 3 | K ( y ) | d y .
(2.4)

Again, by using Proposition 11.4.1 in [5] and the assumption ω 3 ω 1 , we write

F T y f ω 3 q 1 ω 3 (y) f W ( L p 1 , L ω 1 q 1 ) <.
(2.5)

From this result, we find F T y f L ω 3 q 1 ( R n ). Hence by (2.4), (2.5) and the generalized Hölder inequality, we obtain

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n F T y f ( x ) ω 3 ( x ) q 1 F T y g ( x ) q 2 | K ( y ) | d y R n f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) | K ( y ) | ω 3 ( y ) d y = f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) K 1 , ω 3 = C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) ,
(2.6)

where C= K 1 , ω 3 . Then m(ξ,η)= K ˆ (ξη) defines a bilinear multiplier. Finally, using (2.6), we obtain

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) K 1 , ω 3 .

 □

Definition 2.2 Let 1 p 1 p 2 <, 1 q 1 q 2 <, 1< p 3 , q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Suppose that ω 1 , ω 2 are slowly increasing functions. We denote by M ˜ [( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the space of measurable functions M: R n C such that m(ξ,η)=M(ξη)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], that is to say,

B M (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)M(ξη) e 2 π i ξ + η , x dξdη

extends to a bounded bilinear map from W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 ) to W( L p 3 , L ω 3 q 3 ). We denote M ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B M .

Let ω be a weight function. The continuous function ω 1 cannot be a weight function. But the following lemma can be proved easily by using the technique of the proof of Lemma 2.1.

Lemma 2.2 Let 1pq< and ω be a slowly increasing continuous weight function. Then C c ( R n ) is dense in W( L p , L ω 1 q ) Wiener amalgam space.

Theorem 2.2 Let 1 p 3 + 1 p 3 =1, 1 q 3 + 1 q 3 =1, q 3 p 3 1 and ω 3 be a continuous, symmetric slowly increasing weight function. Then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] if and only if there exists C>0 such that

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 1 q 3 )

for all f,g,h C c ( R n ).

Proof We assume that mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. By Theorem 2.2 in [10], we write, for all f,g,h C c ( R n ),

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = | R n h ( y ) B ˜ m ( f , g ) ( y ) d y | R n | h ( y ) | | B ˜ m ( f , g ) ( y ) | d y ,
(2.7)

where B ˜ m (f,g)(y)= B m (f,g)(y). If we set t=u, we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B ˜ m ( f , g ) Q q 3 , ω 3 = B m ( f , g ) ( u ) χ Q + x ( u ) p 3 q 3 , ω 3 = B m ( f , g ) ( u ) χ Q x ( u ) p 3 q 3 , ω 3 = F B m ( f , g ) Q ( x ) q 3 , ω 3 .
(2.8)

Since ω 3 is a symmetric weight function, if we set x=y, we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B m ( f , g ) Q ( y ) q 3 , ω 3 .
(2.9)

We know from [3] and [5] that the definition of W( L p 3 , L ω 3 q 3 ) is independent of the choice of Q. Then there exists C>0 such that

F B m ( f , g ) Q ( y ) q 3 , ω 3 C 1 F B m ( f , g ) Q ( y ) q 3 , ω 3 .
(2.10)

Hence, by (2.9) and (2.10), we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 1 F B m ( f , g ) Q ( y ) q 3 , ω 3 = C 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) .
(2.11)

Since from the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] the right-hand side of (2.11) is finite, thus B ˜ m (f,g)W( L p 3 , L ω 3 q 3 ). On the other hand, since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], there exists C 2 >0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .
(2.12)

Combining (2.11) and (2.12), we have

B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 1 C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .
(2.13)

If we apply the Hölder inequality to the right-hand side of inequality (2.7) and use inequality (2.13), we obtain

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) h W ( L p 3 , L ω 1 q 3 ) C 1 C 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .

For the proof of converse, assume that there exists a constant C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 )
(2.14)

for all f,g,h C c ( R n ). From the assumption and (2.14), we write

| R n h(y) B ˜ m (f,g)(y)dy|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .
(2.15)

Define a function from C c ( R n )W( L p 3 , L ω 1 q 3 ) to ℂ such that

(h)= R n h(y) B ˜ m (f,g)(y)dy.

is linear and bounded by (2.15). Also, since q 3 p 3 1, we have C c ( R n ) ¯ =W( L p 3 , L ω 3 1 q 3 ) by Lemma 2.2. Thus extends to a bounded function from W( L p 3 , L ω 3 1 q 3 ) to ℂ. Then ( W ( L p 3 , L ω 3 1 q 3 ) ) =W( L p 3 , L ω 3 q 3 ). Again, since the definition of W( L p 3 , L ω 3 q 3 ) is independent of the choice of Q, there exists C 3 >0 such that

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 3 B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) .
(2.16)

Combining (2.15) and (2.16), we obtain

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C 3 B ˜ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = C 3 = C 3 sup h W ( L p 3 , L ω 3 1 q 3 ) 1 | ( h ) | h W ( L p 3 , L ω 3 1 q 3 ) C 3 C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

This completes proof. □

The following theorem is a generalization of Theorem 2.1.

Theorem 2.3 Let 1 p 1 + 1 p 2 = 1 p 3 , 1 q 1 + 1 q 2 = 1 q 3 , ω 3 ω 1 and υ(x)=C ( 1 + x 2 ) N , C0, NN be a weight function. If μM(υ) and m(ξ,η)= μ ˆ (αξ+βη) for α,βR, then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Moreover,

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) μ υ if  | α | 1 , m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) | α | 2 N μ υ if  | α | > 1 .

Proof Let f,g C c ( R n ). By Theorem 2.3 in [10], we have

B m (f,g)(t)= R n f(tαy)g(tβy)dμ(y).
(2.17)

Also by [5] we write the inequalities

T α y f W ( L p 1 , L ω 1 q 1 ) ω 1 (αy) f W ( L p 1 , L ω 1 q 1 )
(2.18)

and

T β y g W ( L p 2 , L ω 2 q 2 ) ω 2 (αy) g W ( L p 2 , L ω 2 q 2 ) .
(2.19)

From these inequalities, we have F T α y f L ω 1 q 1 ( R n ) and F T β y g L ω 2 q 2 ( R n ). If we use the inequality ω 3 ω 1 and set xαt=u, we obtain

F T α y f ω 3 q 1 F T α y f ω 1 q 1 ω 1 (αy) f W ( L p 1 , L ω 1 q 1 ) ,
(2.20)

and hence F T α y f ω 3 L q 1 ( R n ). Then by (2.17), (2.18), (2.19), (2.20) and the Hölder inequality, we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n f ( t α y ) g ( t β y ) χ Q + x ( t ) p 3 d | μ | ( y ) q 3 , ω 3 R n f ( t α y ) χ Q + x ( t ) p 1 g ( t β y ) χ Q + x ( t ) p 2 d | μ | ( y ) q 3 , ω 3 R n F T α y f ( x ) F T β y g ( x ) q 3 , ω 3 d | μ | ( y ) R n F T α y f ( x ) ω 3 ( x ) q 1 F T β y g ( x ) q 2 d | μ | ( y ) R n ω 1 ( α y ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L q 2 ) d | μ | ( y ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) R n ω 1 ( α y ) d | μ | ( y ) .
(2.21)

Now, suppose that α1. Since ω 1 is a slowly increasing weight function, there exist C0 and NN such that

ω 1 (x)C ( 1 + x 2 ) N =υ(x).

Then

R n ω 1 (αy)d|μ|(y) R n C ( 1 + α 2 y 2 ) N d|μ|(y) R n C ( 1 + y 2 ) N d|μ|(y)= μ υ .

Hence by (2.21)

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .
(2.22)

Thus mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.22) we obtain

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .

Similarly, if α>1, then

R n ω 1 (αy)d|μ|(y) R n C ( α 2 + α 2 y 2 ) N d|μ|(y)= α 2 N R n υ(y)d|μ|(y)= α 2 N μ υ .

Therefore by (2.21) we have

B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) α 2 N f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ υ .
(2.23)

Hence, we obtain mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.23)

m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) α 2 N μ υ .

 □

Now, we will give some properties of the space BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Theorem 2.4 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

  1. (a)

    T ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] for each ( ξ 0 , η 0 ) R 2 n and

    T ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .
  2. (b)

    M ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] for each ( ξ 0 , η 0 ) R 2 n and

    M ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

Proof (a) Let f,g C c ( R n ). From Theorem 2.4 in [10], we write the equality

B T ( ξ 0 , η 0 ) m (f,g)(x)= e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f, M η 0 g)(x).
(2.24)

Also the equalities M ξ 0 f W ( L p 1 , L ω 1 q 1 ) = f W ( L p 1 , L ω 1 q 1 ) and M η 0 g W ( L p 2 , L ω 2 q 2 ) = g W ( L p 2 , L ω 2 q 2 ) are satisfied. Then, using equality (2.24) and the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have

B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = e 2 π i ξ 0 + η 0 , x B m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) = B m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )

for some C>0. Thus T ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Moreover, we obtain

T ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = B T ( ξ 0 , η 0 ) m = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) = sup M ξ 0 f W ( L p 1 , L ω 1 q 1 ) 1 , M η 0 g W ( L p 2 , L ω 2 q 2 ) 1 B T ( ξ 0 , η 0 ) m ( M ξ 0 f , M η 0 g ) W ( L p 3 , L ω 3 q 3 ) M ξ 0 f W ( L p 1 , L ω 1 q 1 ) M η 0 g W ( L p 2 , L ω 2 q 2 ) = B m = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

(b) For any f,g C c ( R n ), we write

B M ( ξ 0 , η 0 ) m (f,g)(x)= B m ( T ξ 0 f, T η 0 g)(x)
(2.25)

by Theorem 2.4 in [10]. Also, the inequalities T ξ 0 f W ( L p 1 , L ω 1 q 1 ) ω 1 ( ξ 0 ) f W ( L p 1 , L ω 1 q 1 ) and T η 0 g W ( L p 2 , L ω 2 q 2 ) ω 2 ( η 0 ) g W ( L p 2 , L ω 2 q 2 ) are satisfied [5]. Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], by (2.25) we have

B M ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = B m ( T ξ 0 f , T η 0 g ) W ( L p 3 , L ω 3 q 3 ) B m T ξ 0 f W ( L p 1 , L ω 1 q 1 ) T η 0 g W ( L p 2 , L ω 2 q 2 ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) B m f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 )
(2.26)

and hence M ( ξ 0 , η 0 ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. So, by (2.26) we obtain

M ( ξ 0 , η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) = sup f W ( L p 1 , L ω 1 q 1 ) 1 , g W ( L p 2 , L ω 2 q 2 ) 1 B M ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) ω 1 ( ξ 0 ) ω 2 ( η 0 ) B m = ω 1 ( ξ 0 ) ω 2 ( η 0 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

 □

Lemma 2.3 If ω is a slowly increasing weight function such that ω(x) C 1 ( 1 + x 2 ) N =υ(x) and fW( L p , L ω q ), then D y p fW( L p , L υ q ). Moreover,

D y p f W ( L p , L ω q ) C f W ( L p , L υ q ) if  y 1 , D y p f W ( L p , L ω q ) < C y n q + 2 N f W ( L p , L υ q ) if  y > 1

for some C>0.

Proof Take any fW( L p , L ω q ). If we get t y =u, we obtain

D y p f W ( L p , L ω q ) = { R n | D y p f ( t ) χ Q + x ( t ) | p d t } 1 p q , ω = { R n | y n p f ( t y ) | p χ Q + x ( t ) d t } 1 p q , ω = { R n | f ( u ) | p χ y 1 Q + y 1 x ( u ) d u } 1 p q , ω = F f y 1 Q ( y 1 x ) q , ω .
(2.27)

Again, if we say y 1 x=s and use ω to be slowly increasing, then there exist C 1 >0 and NN such that

D y p f W ( L p , L ω q ) = { R n | F f y 1 Q ( y 1 x ) | q ω ( x ) q d x } 1 q = y n q { R n | F f y 1 Q ( s ) | q ω ( y s ) q d s } 1 q y n q { R n | F f y 1 Q ( s ) | q ( C 1 ( 1 + y 2 s 2 ) N ) q d s } 1 q
(2.28)

by equation (2.27).

Let y1. Using inequality (2.28), we have

D y p f W ( L p , L ω q ) { R n | F f y 1 Q ( s ) | q ( C 1 ( 1 + s 2 ) N ) q d s } 1 q = F f y 1 Q q , υ .
(2.29)

Since y 1 Q is a compact set and the definition of W( L p , L υ q ) is independent of the choice of a compact set Q, then there exists C>0 such that

F f y 1 Q q , υ C F f Q q , υ
(2.30)

by [3, 5]. Then by (2.29) we write

D y p f W ( L p , L ω q ) F f y 1 Q q , υ C F f Q q , υ =C f W ( L p , L υ q ) .

Thus we have D y p fW( L p , L υ q ).

Now, assume that y>1. Similarly, by (2.28) and (2.30), we get

D y p f W ( L p , L ω q ) < y n q { R n | F f y 1 Q ( s ) | q ( C 1 ( y 2 + y 2 s 2 ) N ) q d s } 1 q = y n q + 2 N { R n | F f y 1 Q ( s ) | q υ ( s ) q d s } 1 q y n q + 2 N f W ( L p , L υ q ) .

Hence D y p fW( L p , L υ q ). □

Theorem 2.5 Let υ i (x)= C i ( 1 + x 2 ) N i , C i >0, N i >0 for i=1,2,3, and let ω 3 be a slowly increasing weight function. If 2 q = 1 p 1 + 1 p 2 1 p 3 , 0<y< and mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], then D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )]. Moreover, then

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) if  y 1 , D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) < C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) if  y > 1 .

Proof Let fW( L p 1 , L ω 1 q 1 ) and gW( L p 2 , L ω 2 q 2 ) be given. From Lemma 2.3, we have D y p 1 fW( L p 1 , L ω 1 q 1 ) and D y p 2 gW( L p 2 , L ω 2 q 2 ). Also it is known by Theorem 2.5 in [10] that

B D y q m (f,g)(y)= D y 1 p 3 B m ( D y p 1 f , D y p 2 g ) (y).

If we use this equality, we write

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = { R n | D y 1 p 3 B m ( D y p 1 f , D y p 2 g ) ( t ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 = { R n | y n p 3 B m ( D y p 1 f , D y p 2 g ) ( t y 1 ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 = { R n y n | B m ( D y p 1 f , D y p 2 g ) ( t y ) χ Q + x ( t ) | p 3 d t } 1 p 3 q 3 , ω 3 .

If we say yt=u in the last equality, we have

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = { R n | B m ( D y p 1 f , D y p 2 g ) ( u ) χ y Q + y x ( u ) | p 3 d t } 1 p 3 q 3 , ω 3 = F B m ( D y p 1 f , D y p 2 g ) y Q ( y x ) q 3 , ω 3 .
(2.31)

On the other hand, since ω 3 is a slowly increasing weight function, there exist C 3 >0, N 3 >0 such that ω 3 (x) C 3 ( 1 + x 2 ) N 3 = υ 3 (x). If we make the substitution yx=s in equality (2.31), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) = F B m ( D y p 1 f , D y p 2 g ) y Q ( y x ) q 3 , ω 3 = { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ω 3 ( y 1 s ) q 3 y n d s } 1 q 3 = y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ω 3 ( y 1 s ) q 3 d s } 1 q 3 y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ( C 3 ( 1 + y 2 s 2 ) N 3 ) q 3 d s } 1 q 3 .

We assume that y1. Then

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) y n q 3 { R n | F B m ( D y p 1 f , D y p 2 g ) y Q ( s ) | q 3 ( C 3 ( y 2 + y 2 s 2 ) N 3 ) q 3 d s } 1 q 3 = y n q 3 2 N 3 F B m ( D y p 1 f , D y p 2 g ) y Q q 3 , υ 3 .

Also, since yQ is a compact set, we have

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C y n q 3 2 N 3 F B m ( D y p 1 f , D y p 2 g ) Q q 3 , υ 3 = C y n q 3 2 N 3 B m ( D y p 1 f , D y p 2 g ) W ( L p 3 , L υ 3 q 3 ) .
(2.32)

Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], by Lemma 2.3 and inequality (2.32), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) f W ( L p 1 , L υ 1 q 1 ) g W ( L p 2 , L υ 2 q 2 ) .
(2.33)

Then D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )], and by (2.33) we have

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) C y n q 3 2 N 3 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) .

Now let y>1. Again, since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 )], by Lemma 2.3 and inequality (2.32), we obtain

B D y q m ( f , g ) W ( L p 3 , L ω 3 q 3 ) < C B m ( D y p 1 f , D y p 2 g ) W ( L p 3 , L υ 3 q 3 ) < C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) f W ( L p 1 , L υ 1 q 1 ) g W ( L p 2 , L υ 2 q 2 ) .
(2.34)

Thus D y q mBM[W( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 )], and by (2.34) we have

D y q m ( W ( p 1 , q 1 , υ 1 ; p 2 , q 2 , υ 2 ; p 3 , q 3 , ω 3 ) ) <C y n q 1 + n q 2 + 2 N 1 + 2 N 2 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , υ 3 ) ) .

 □

Theorem 2.6 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

  1. (a)

    If Φ L 1 ( R 2 n ), then ΦmBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

    Φ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .
  2. (b)

    If Φ L ω 1 ( R 2 n ) such that ω(u,υ)= ω 1 (u) ω 2 (υ), then Φ ˆ mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

    Φ ˆ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 , ω m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

Proof (a) Let f,g C c ( R n ) be given. By Proposition 2.5 in [12]

B Φ m (f,g)(y)= R n R n Φ(u,v) B T ( u , v ) m (f,g)(y)dudv.

If we use Theorem 2.4 and the assumption mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have

B Φ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n R n Φ ( u , v ) B T ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v R n R n | Φ ( u , v ) | T ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) < .
(2.35)

Hence ΦmBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], and by (2.35) we obtain

Φ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

(b) Let Φ L ω 1 ( R 2 n ). Take any f,g C c ( R n ). It is known by Proposition 2.5 in [12] that

B Φ ˆ m (f,g)(x)= R n R n Φ(u,v) B M ( u , v ) m (f,g)(x)dudv.

Since mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we have M ( u , v ) mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

M ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) ω 1 (u) ω 2 (v) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) )

by Theorem 2.4. Then

B Φ ˆ m ( f , g ) W ( L p 3 , L ω 3 q 3 ) R n R n Φ ( u , v ) B M ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v R n R n | Φ ( u , v ) | M ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f p 1 , ω 1 g p 2 , ω 2 d u d v R n R n | Φ ( u , v ) | ω 1 ( u ) ω 2 ( υ ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) Φ 1 , ω .
(2.36)

Thus from (2.36) we obtain Φ ˆ mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] and

Φ ˆ m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) Φ 1 , ω m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) .

 □

Theorem 2.7 Let mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. If Q 1 , Q 2 are bounded measurable sets in R n , then

h ( ξ , η ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m ( ξ + u , η + v ) d u d v BM [ W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ] .

Proof Let f,g C c ( R n ). We know by Theorem 2.9 in [10] that

B h (f,g)(x)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m (f,g)(x)dudv.

From Theorem 2.4, we have

B h ( f , g ) W ( L p 3 , L ω 3 q 3 ) 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) W ( L p 3 , L ω 3 q 3 ) d u d v 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 T ( u , v ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) d u d v = 1 μ ( Q 1 × Q 2 ) m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) × f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) μ ( Q 1 × Q 2 ) = m ( W ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ) f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

Hence, we obtain h(ξ,η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. □

Theorem 2.8 Let ω 3 be a continuous, symmetric, slowly increasing weight function, ω(u,v)= ω 1 (u) ω 2 (v), ω 3 ω 1 , 1 q 1 + 1 q 2 = 1 q 3 , 1 p 1 + 1 p 2 = 1 p 3 , 1 p 3 + 1 p 3 =1, 1 q 3 + 1 q 3 =1 and q 3 p 3 . Assume that Φ L ω 1 ( R 2 n ), Ψ 1 L ω 1 1 ( R n ) and Ψ 2 L ω 2 1 ( R n ). If m(ξ,η)= Ψ ˆ 1 (ξ) Φ ˆ (ξ,η) Ψ ˆ 2 (η), then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Proof Take any f,g,h C c ( R n ). Then, by Theorem 2.10 in [10], we write

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη| R n |h(y) B ˜ Φ ˆ (f Ψ 1 ,g Ψ 2 )(y)|dy.

On the other hand, we know that the inequalities

f Ψ 1 W ( L p 1 , L ω 1 q 1 ) C 1 f W ( L p 1 , L ω 1 q 1 ) Ψ 1 1 , ω 1
(2.37)

and

g Ψ 2 W ( L p 2 , L ω 2 q 2 ) C 2 g W ( L p 2 , L ω 2 q 2 ) Ψ 2 1 , ω 2
(2.38)

hold, where C 1 >0, C 2 >0 by [3]. That means f Ψ 1 W( L p 1 , L ω 1 q 1 ) and g Ψ 2 W( L p 2 , L ω 2 q 2 ). Also, every constant function is bilinear multiplier of type (W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )) under the given conditions. So, by Theorem 2.6, we have Φ ˆ BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. Now, if we say that y=u, we have

B ˜ Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( y ) W ( L p 3 , L ω 3 q 3 ) = { R n | B Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( u ) | p 3 χ Q x ( u ) d u } 1 p 3 q 3 , ω 3 = F B Φ ˆ ( f Ψ 1 , g Ψ 2 ) Q ( x ) q 3 , ω 3 .

In this here, we set x=u and use ω 3 to be symmetric. Then we have

B ˜ Φ ˆ ( f Ψ 1 , g Ψ 2 ) ( y ) W ( L p 3 , L ω 3 q 3 ) C 3 F B Φ ˆ ( f Ψ 1 , g Ψ 2 ) Q q 3 , ω 3 = C 3 B Φ ˆ ( f Ψ 1 , g Ψ 2 ) W ( L p 3 , L ω 3 q 3 )
(2.39)

by [5]. Using the Hölder inequality, inequalities (2.37), (2.38), (2.39) and Φ ˆ BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )], we find

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | h W ( L p 3 , L ω 3 1 q 3 ) B Φ ˆ ( f Ψ 1 , g Ψ 2 ) W ( L p 3 , L ω 3 q 3 ) C 1 C 2 C 3 h W ( L p 3 , L ω 3 1 q 3 ) B Φ ˆ Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) .

If we say C= C 1 C 2 C 3 B Φ ˆ Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 , then we obtain

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη|C f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 , L ω 3 1 q 3 ) .

From Theorem 2.2, we have mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. □

Theorem 2.9 Let 1 p 1 , p 2 p2, 1 q 1 , q 2 r2, p 3 p , q 3 r and q 3 p 3 such that 1 p 3 = 1 p 1 + 1 p 2 2 p and 1 q 3 = 1 q 1 + 1 q 2 2 r . Assume that ω 3 is a continuous, bounded, symmetric weight function. If mW( L p ( R 2 n ), L r ( R 2 n )) L ( R 2 n ), then mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )].

Proof Firstly, we show that mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )]. Take any f,g,h C c ( R n ). Let A×B R 2 n be a closed and bounded rectangle. Since the definition of W( L p ( R 2 n ), L r ( R 2 n )) is independent of the choice of a compact set Q, then, by using Fubini’s theorem, we get

f ˆ ( ξ ) g ˆ ( η ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) = F f ˆ g ˆ Q L r ( R 2 n ) C 1 F f ˆ g ˆ A × B L r ( R 2 n ) = C 1 f ˆ χ x + A p g ˆ χ y + B p L r ( R 2 n ) = C 1 F f ˆ A ( x ) F g ˆ B ( y ) L r ( R 2 n ) = C 1 F f ˆ A r F g ˆ B r = C 1 f ˆ W ( L p , L r ) g ˆ W ( L p , L r )
(2.40)

for some C 1 >0. So, we have f ˆ (ξ) g ˆ (η)W( L p ( R 2 n ), L r ( R 2 n )). By using the Hölder inequality, the Hausdorff-Young inequality and equality (2.40), we obtain

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C 1 h 1 f ˆ ( ξ ) g ˆ ( η ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 h 1 f ˆ W ( L p , L r ) g ˆ W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 C 2 h W ( L 1 , L 1 ) f W ( L p , L r ) g W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 1 C 2 ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L p , L ω 1 r ) g W ( L p , L ω 2 r ) h W ( L 1 , L ω 3 1 1 )

for some C 2 >0. Therefore mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] by Theorem 2.2.

Now, we show that mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )]. Again, using Fubini’s theorem, we have

f ˆ ( v ) h ˆ ( u ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 f ˆ ( v ) h ˆ ( u ) χ ( x , y ) + A × B L p ( R 2 n ) L r ( R 2 n ) = C 3 f ˆ χ x A p h ˆ χ y + B p L r ( R 2 n ) = C 3 F f ˆ A ( x ) F h ˆ B ( y ) L r ( R 2 n ) = C 3 F f ˆ A r F h ˆ B r C 3 C 4 f ˆ W ( L p , L r ) h ˆ W ( L p , L r )
(2.41)

for some C 3 >0, C 4 >0. So, f ˆ (v) h ˆ (u)W( L p ( R 2 n ), L r ( R 2 n )). Similarly, we have

m ( v , u + v ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 5 F m ( A ) × ( A + B ) L r ( R 2 n ) C 5 C 6 m W ( L p ( R 2 n ) , L r ( R 2 n ) )
(2.42)

for some C 5 >0, C 6 >0. That means m(v,u+v)W( L p ( R 2 n ), L r ( R 2 n )). We set ξ+η=u and ξ=v. Then, by using the Hölder inequality, the Hausdorff-Young inequality, (2.41) and (2.42), we get

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = | R n R n f ˆ ( v ) g ˆ ( u + v ) h ˆ ( u ) m ( v , u + v ) d u d v | g 1 f ˆ ( v ) g ˆ ( u ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) m ( v , u + v ) W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 C 4 C 5 C 6 g 1 f ˆ W ( L p , L r ) h ˆ W ( L p , L r ) m W ( L p ( R 2 n ) , L r ( R 2 n ) ) C 3 C 4 C 5 C 6 C 7 ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L p , L ω 1 r ) g W ( L 1 , L ω 2 1 ) h W ( L p , L ω 3 1 r ) .

Thus, by Theorem 2.2, we obtain mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )]. Similarly, if we change the variables ξ+η=u and η=v, then

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | = f 1 R n R n | g ˆ ( v ) h ˆ ( u ) | | m ( u + v , v ) | d u d v C ω 3 m W ( L p ( R 2 n ) , L r ( R 2 n ) ) f W ( L 1 , L ω 1 1 ) g W ( L p , L ω 2 r ) h W ( L p , L ω 3 1 r ) .

Hence mBM[W(1,1, ω 1 ;p,r, ω 2 ; p , r , ω 3 )].

We take p ˜ 1 , q ˜ 1 , p ˜ 3 and q ˜ 3 such that 1 p ˜ 1 p, 1 q ˜ 1 r, p p ˜ 3 and r q ˜ 3 . Since mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] and mBM[W(1,1, ω 1 ;p,r, ω 2 ; p , r , ω 3 )], we have mBM[W( p ˜ 1 , q ˜ 1 , ω 1 ;p,r, ω 2 ; p ˜ 3 , q ˜ 3 , ω 3 )] by the interpolation theorem in [13, 14] such that

1 p ˜ 1 = 1 θ p + θ 1 , 1 p ˜ 3 = 1 θ + θ p ,
(2.43)
1 q ˜ 1 = 1 θ r + θ 1 , 1 q ˜ 3 = 1 θ + θ r
(2.44)

for all 0θ1. On the other hand, from equalities (2.43) and (2.44), we obtain the equalities 1 p ˜ 1 1 p ˜ 3 = 1 p and 1 q ˜ 1 1 q ˜ 3 = 1 r . Similarly, we take p ˜ 2 , q ˜ 2 , r ˜ 3 and s ˜ 3 such that 1 p ˜ 2 p, 1 q ˜ 2 r, p r ˜ 3 and r s ˜ 3 . Again, if we use mBM[W(p,r, ω 1 ;p,r, ω 2 ;,, ω 3 )] and mBM[W(p,r, ω 1 ;1,1, ω 2 ; p , r , ω 3 )], we have mBM[W(p,r, ω 1 ; p ˜ 2 , q ˜ 2 , ω 2 ; r ˜ 3 , s ˜ 3 , ω 3 )] by the interpolation theorem in [13, 14] such that

1 p ˜ 2 = 1 θ p + θ 1 , 1 r ˜ 3 = 1 θ + θ p ,
(2.45)
1 q ˜ 2 = 1 θ r + θ 1 , 1 s ˜ 3 = 1 θ + θ r
(2.46)

for all 0θ1. So, from equalities (2.45) and (2.46), we have 1 p ˜ 2 1 r ˜ 3 = 1 p and 1 q ˜ 2 1 s ˜ 3 = 1 r .

Now, we choose p ˜ 1 , p ˜ 2 such that 1 p ˜ 1 p 1 <p and 1 p ˜ 2 p 2 <p. Let these numbers have the following conditions:

1 p 1 1 p =(1θ) ( 1 p ˜ 1 1 p ) ,
(2.47)
1 p 2 1 p =(1θ) ( 1 p ˜ 2 1 p )
(2.48)

for 0<θ<1. Again, we choose q ˜ 1 , q ˜ 2 such that 1 q ˜ 1 q 1 <r and 1 q ˜ 2 q 2 <r. Let these numbers have the following conditions:

1 q 1 1 r =(1θ) ( 1 q ˜ 1 1 r ) ,
(2.49)
1 q 2 1 r =(1θ) ( 1 q ˜ 2 1 r )
(2.50)

for 0<θ<1. If we use equalities (2.45), (2.46), (2.47), (2.48), (2.49) and (2.50), we write

1 p 1 = 1 θ p ˜ 1 + θ p , 1 p 2 = 1 θ p + θ p ˜ 2 ,
(2.51)
1 q 1 = 1 θ q ˜ 1 + θ r , 1 q 2 = 1 θ r + θ q ˜ 2 .
(2.52)

Moreover, using the equalities 1 p ˜ 1 1 p ˜ 3 = 1 p , 1 p ˜ 2 1 r ˜ 3 = 1 p , (2.51) and the assumption 1 p 3 = 1 p 1 + 1 p 2 2 p , we obtain

1 p 3 = 1 θ p ˜ 3 + θ r ˜ 3 .
(2.53)

Similarly, using the equalities 1 q ˜ 1 1 q ˜ 3 = 1 r , 1 q ˜ 2 1 s ˜ 3 = 1 r , (2.52) and the assumption 1 q 3 = 1 q 1 + 1 q 2 2 r , we obtain

1 q 3 = 1 θ q ˜ 3 + θ s ˜ 3 .
(2.54)

Since mBM[W( p ˜ 1 , q ˜ 1 , ω 1 ;p,r, ω 2 ; p ˜ 3 , q ˜ 3 , ω 3 )], mBM[W(p,r, ω 1 ; p ˜ 2 , q ˜ 2 , ω 2 ; r ˜ 3 , s ˜ 3 , ω 3 )], then the bilinear multipliers B m :W( L p ˜ 1 , L ω 1 q ˜ 1 )×W( L p , L ω 2 r )W( L p ˜ 3 , L ω 3 q ˜ 3 ) and B m :W( L p , L ω 1 r )×W( L p ˜ 2 , L ω 2 q ˜ 2 )W( L r ˜ 3 , L ω 3 s ˜ 3 ) are bounded. Also, since 1 p ˜ 1 p 1 <p, 1 q ˜ 1 q 1 <r, 1 q ˜ 2 q 2 <r, 1 p ˜ 2 p 2 <p, by equalities (2.53) and (2.54) and by the interpolation theorem in [13], B m :W( L p 1 , L ω 1 q 1 )×W( L p 2 , L ω 2 q 2 )W( L p 3 , L ω 3 q 3 ) is bounded. That means mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )]. This completes the proof. □

3 The bilinear multipliers space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]

Lemma 3.1 Let 1p(x)q<.

  1. (a)

    If ω is a slowly increasing weight function, then C c ( R n ) is dense in the weighted variable exponent Wiener amalgam space W( L p ( x ) , L ω q ).

  2. (b)

    If ω is a continuous, slowly increasing weight function, then C c ( R n ) is dense in the weighted variable exponent Wiener amalgam space W( L p ( x ) , L ω 1 q ).

This lemma can be proved easily by using the proof technique in Lemma 2.1.

Definition 3.1 Let p 1 (x), p 2 (x), p 3 (x)P( R n ), p 1 <, p 2 <, p 3 <, p 1 (x) q 1 , p 2 (x) q 2 , 1 q 3 and ω 1 , ω 2 , ω 3 be weight functions on R n . Assume that ω 1 , ω 2 are slowly increasing functions and m(ξ,η) is a bounded, measurable function on R n × R n . Define

B m (f,g)(x)= R n R n f ˆ (ξ) g ˆ (η)m(ξ,η) e 2 π i ξ + η , x dξdη

for all f,g C c ( R n ). m is said to be a bilinear multiplier on R n of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) if there exists C>0 such that

B m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) C f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 )

for all f,g C c ( R n ). That means B m extends to a bounded bilinear operator from W( L p 1 ( x ) , L ω 1 q 1 )×W( L p 2 ( x ) , L ω 2 q 2 ) to W( L p 3 ( x ) , L ω 3 q 3 ). We denote by BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] the space of all bilinear multipliers of type (W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )) and

m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = B m .

The following theorem can be proved easily by using Lemma 3.1 and the technique of proof of Theorem 2.2.

Theorem 3.1 Let 1 p 3 ( x ) + 1 p 3 ( x ) =1, 1 q 3 + 1 q 3 =1, q 3 p 3 (x), p 3 (x)= p 3 (x) and ω 3 be a continuous, symmetric, slowly increasing weight function. Then mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] if and only if there exists C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) m ( ξ , η ) d ξ d η | C f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) h W ( L p 3 ( x ) , L ω 3 1 q 3 )

for all f,g,h C c ( R n ).

Now we will give some properties of the space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Since some properties of usual Lebesgue spaces are not true in general in the variable exponent Lebesgue spaces, like translation invariance, then also some properties of the spaces BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 )] do not hold true in general in the spaces BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )].

Theorem 3.2 If mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then T ( ξ 0 , η 0 ) mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] and

T ( ξ 0 , η 0 ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) )

for all ( ξ 0 , η 0 ) R 2 n .

Proof Let f,g C c ( R n ). Then we have

M ξ 0 f W ( L p 1 ( x ) , L ω 1 q 1 ) = e 2 π i ξ 0 , f ( ) χ z + Q ( ) p 1 ( x ) q 1 , ω 1 = f W ( L p 1 ( x ) , L ω 1 q 1 ) .

Similarly, the equality M η 0 g W ( L p 2 ( x ) , L ω 2 q 2 ) = g W ( L p 2 ( x ) , L ω 2 q 2 ) is written. So, by using these results and the assumption mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], we have

B T ( ξ 0 , η 0 ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = B m ( M ξ 0 f , M η 0 g ) W ( L p 3 ( x ) , L ω 3 q 3 ) B m M ξ 0 f W ( L p 1 ( x ) , L ω 1 q 1 ) M η 0 g W ( L p 2 ( x ) , L ω 2 q 2 ) = B m f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) .

Thus T ( ξ 0 , η 0 ) mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Moreover, by using the same technique as in the proof of Theorem 2.4, we obtain

T ( ξ 0 , η 0 ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

 □

Theorem 3.3 Let mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. Then ΦmBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], and there exists C>0 such that

Φ m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) C Φ 1 m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) )

for all Φ L 1 ( R 2 n ).

Proof Take any f,g C c ( R n ). By Proposition 2.5 in [12], we know that

B Φ m (f,g)(x)= R n R n Φ(u,v) B T ( ξ u , η v ) m (f,g)(x)dudv.
(3.1)

Since mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then by Theorem 3.2, T ( u , v ) m in the space BM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] and

T ( u , v ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) = m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

Using (3.1) and the Minkowski inequality in [15], we find C>0 such that

B Φ m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = ( R n R n Φ ( u , v ) B T ( u , v ) m ( f , g ) d u d v ) χ z + Q p 3 ( x ) q 3 , ω 3 C R n R n | Φ ( u , v ) | B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v = C R n R n | Φ ( u , v ) | B T ( u , v ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) d u d v C R n R n | Φ ( u , v ) | T ( u , v ) m BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) d u d v = C m BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) Φ 1 .
(3.2)

Hence ΦmBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], and by (3.2) we have

Φ m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) C Φ 1 m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) .

 □

Theorem 3.4 Let 1 p 3 ( x ) + 1 p 3 ( x ) =1, 1 q 3 + 1 q 3 =1, q 3 p 3 (x), p 3 (x)= p 3 (x) and ω 3 be a continuous, symmetric, slowly increasing weight function. If Ψ 1 L ω 1 1 ( R n ), Ψ 2 L ω 2 1 ( R n ) and mBM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )], then Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )].

Proof Take any f,g,h C c ( R n ). Then, by Theorem 2.10 in [10], we write the following:

| R n R n f ˆ (ξ) g ˆ (η) h ˆ (ξ+η)m(ξ,η)dξdη| R n |h(y) B ˜ m (f Ψ 1 ,g Ψ 2 )(y)|dy.

So, by Theorem 11.7.1 in [5] and inequalities (2.37), (2.38), there exists C>0 such that

| R n R n f ˆ ( ξ ) g ˆ ( η ) h ˆ ( ξ + η ) Ψ ˆ 1 ( ξ ) m ( ξ , η ) Ψ ˆ 2 ( η ) d ξ d η | h W ( L p 3 ( x ) , L ω 1 q 3 ) B ˜ m ( f Ψ 1 , g Ψ 2 ) W ( L p 3 ( x ) , L ω 3 q 3 ) C h W ( L p 3 ( x ) , L ω 1 q 3 ) B m ( f Ψ 1 , g Ψ 2 ) W ( L p 3 ( x ) , L ω 3 q 3 ) C h W ( L p 3 ( x ) , L ω 1 q 3 ) B m f Ψ 1 W ( L p 1 , L ω 1 q 1 ) g Ψ 2 W ( L p 2 , L ω 2 q 2 ) C B m Ψ 1 1 , ω 1 Ψ 2 1 , ω 2 f W ( L p 1 , L ω 1 q 1 ) g W ( L p 2 , L ω 2 q 2 ) h W ( L p 3 ( x ) , L ω 1 q 3 ) .

Hence, Ψ ˆ 1 (ξ)m(ξ,η) Ψ ˆ 2 (η)BM[W( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )] by Theorem 3.1. □

Theorem 3.5 Let mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. If Q 1 , Q 2 R n are bounded sets, then

h ( ξ , η ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 m ( ξ + u , η + v ) d u d v BM [ W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ] .

Proof Let f,g,h C c ( R n ) be given. The equality

B h (f,g)(x)= 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m (f,g)(x)dudv

is known by Theorem 2.9 in [10]. Using Theorem 3.2, there exists C>0 such that

B h ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) = 1 μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q d u d v W ( L p 3 ( x ) , L ω 3 q 3 ) C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) χ z + Q p 3 ( x ) q 3 , ω 3 d u d v = C μ ( Q 1 × Q 2 ) Q 1 × Q 2 B T ( u , v ) m ( f , g ) W ( L p 3 ( x ) , L ω 3 q 3 ) d u d v 1 μ ( Q 1 × Q 2 ) C Q 1 × Q 2 T ( u , v ) m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) × f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) d u d v = C m ( W ( p 1 ( x ) , q 1 , ω 1 ; p 2 ( x ) , q 2 , ω 2 ; p 3 ( x ) , q 3 , ω 3 ) ) f W ( L p 1 ( x ) , L ω 1 q 1 ) g W ( L p 2 ( x ) , L ω 2 q 2 ) .

Hence h(ξ,η)mBM[W( p 1 (x), q 1 , ω 1 ; p 2 (x), q 2 , ω 2 ; p 3 (x), q 3 , ω 3 )]. □

Theorem 3.6 Let r(x)s(x), m(x)q(x), n(x)p(x), sr, qm, pn, υ 3 ω 3 , ω 2 υ 2 , ω 1 υ 1 . Then

BM [ W ( n ( x ) , n , ω 1 ; m ( x ) , m , ω 2 ; s ( x ) , s , ω 3 ) ] BM [ W ( p ( x ) , p , υ 1 ; q ( x ) , q , υ 2 ; r ( x ) , r , υ 3 ) ] .

Proof Take any mBM[W(n(x),n, ω 1 ;m(x),m, ω 2 ;s(x),s, ω 3 )]. Then there exists C 1 >0 such that

B m ( f , g ) W ( L s ( x ) , L ω 3 s ) C 1 f W ( L n ( x ) , L ω 1 n ) g W ( L m ( x ) , L ω 2 m ) .
(3.3)

On the other hand, by Proposition 2.5 in [7] we have W( L s ( x ) , L ω 3 s )W( L r ( x ) , L υ 3 r ), W( L p ( x ) , L υ 1 p )W( L n ( x ) , L ω 1 n ) and W( L q ( x ) , L υ 2 q )W( L m ( x ) , L ω 2 m ). So, there exist C 2 >0, C 3 >0 and C 4 >0 such that

B m ( f , g ) W ( L r ( x ) , L υ 3 r ) C 2 B m ( f , g ) W ( L s ( x ) , L ω 3 s ) ,
(3.4)
f W ( L n ( x ) , L ω 1 n ) C 3 f W ( L p ( x ) , L υ 1 p )
(3.5)

and

g W ( L m ( x ) , L ω 2 m ) C 4 g W ( L q ( x ) , L υ 2 q ) .
(3.6)

Combining (3.3), (3.4), (3.5) and (3.6), we get

B m ( f , g ) W ( L r ( x ) , L υ 3 r ) C 1 C 2 C 3 C 4 f W ( L p ( x ) , L υ 1 p ) g W ( L q ( x ) , L υ 2 q ) .

That means mBM[W(p(x),p, υ 1 ;q(x),q, υ 2 ;r(x),r, υ 3 )]. Hence, we obtain BM[W(n(x),n, ω 1 ;m(x),m, ω 2 ;s(x),s, ω 3 )]BM[W(p(x),p, υ 1 ;q(x),q, υ 2 ;r(x),r, υ 3 )]. □