1 Introduction and preliminaries

The initial works on double sequences is found in Bromwich [1]. Later on, it was studied by Hardy [2], Moricz [3], Moricz and Rhoades [4], Başarır and Sonalcan [5] and many others. Hardy [2] introduced the notion of regular convergence for double sequences. Quite recently, Zeltser [6] in her PhD thesis has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [7] have recently introduced the statistical convergence which was further studied in locally solid Riesz spaces [8]. Nextly, Mursaleen [9] and Mursaleen and Savas [10] have defined the almost regularity and almost strong regularity of matrices for double sequences and applied these matrices to establish core theorems and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences x=( x k , l ) into one whose core is a subset of the M-core of x. More recently, Altay and Başar [11] have defined the spaces BS, BS(t), C S p , C S b p , C S r and BV of double sequences consisting of all double series whose sequence of partial sums are in the spaces M u , M u (t), C p , C b p , C r and L u , respectively and also examined some properties of these sequence spaces and determined the α-duals of the spaces BS, BV, C S b p and the β(v)-duals of the spaces C S b p and C S r of double series. Recently Başar and Sever [12] have introduced the Banach space L q of double sequences corresponding to the well known space q of single sequences and examined some properties of the space  L q . Now, recently Raj and Sharma [13] have introduced entire double sequence spaces. By the convergence of a double sequence we mean the convergence in the Pringsheim sense i.e. a double sequence x=( x k , l ) has Pringsheim limit L (denoted by P-limx=L) provided that given ϵ>0 there exists nN such that | x k , l L|<ϵ whenever k,l>n, see [14]. The double sequence x=( x k , l ) is bounded if there exists a positive number M such that | x k , l |<M for all k and l.

Throughout this paper, ℕ and ℂ denote the set of positive integers and complex numbers, respectively. A complex double sequence is a function x from N×N into ℂ and briefly denoted by { x k , l }. If for all ϵ>0, there is n ϵ N such that | x k , l a|<ϵ where k> n ϵ and l> n ϵ , then a double sequence { x k , l } is said to be convergent to aC. A real double sequence { x k , l } is non-decreasing, if x k , l x p , q for (k,l)<(p,q). A double series is infinite sum k , l = 1 x k , l and its convergence implies the convergence of partial sums sequence { S n , m }, where S n , m = k = 1 m l = 1 n x k , l (see [15]). For recent development on double sequences, we refer to [1620] and [2123].

A double sequence space E is said to be solid if { x k , l y k , l }E for all double sequences { y k , l } of scalars such that | y k , l |<1 for all k,lN whenever { x k , l }E.

Let x={ x k , l } be a double sequence. A set S(x) is defined by

S(x)= { { X π 1 ( k ) , π 2 ( k ) } : π 1  and  π 2  are permutation of  N } .

If S(x)E for all xE, then E is said to be symmetric. Now let P s be a family of subsets σ having at most elements s in ℕ. Also P s , t denotes the class of subsets σ= σ 1 × σ 2 in N×N such that the element numbers of σ 1 and σ 2 are at most s and t, respectively. Besides { ϕ k , l } is taken as a non-decreasing double sequence of the positive real numbers such that

k ϕ k + 1 , l ( k + 1 ) ϕ k , l , l ϕ k , l + 1 ( l + 1 ) ϕ k , l .

An Orlicz function M:[0,)[0,) is a continuous, non-decreasing, and convex function such that M(0)=0, M(x)>0 for x>0 and M(x) as x.

Lindenstrauss and Tzafriri [24] used the idea of Orlicz function to define the following sequence space:

M = { x w : k = 1 M ( | x k | ρ ) < } ,

which is called an Orlicz sequence space. Also M is a Banach space with the norm

x=inf { ρ > 0 : k = 1 M ( | x k | ρ ) 1 } .

Also, it was shown that every Orlicz sequence space M contains a subspace isomorphic to p (p1). The Δ 2 -condition is equivalent to M(Lx)LM(x), for all L with 0<L<1. An Orlicz function M can always be represented in the following integral form:

M(x)= 0 x η(t)dt,

where η, known as the kernel of M, is right differentiable for t0, η(0)=0, η(t)>0, η is non-decreasing and η(t) as t.

For further reading on Orlicz spaces, we refer to [2529].

Let X be a linear metric space. A function p:XR is called a paranorm if

  1. (1)

    p(x)0 for all xX,

  2. (2)

    p(x)=p(x) for all xX,

  3. (3)

    p(x+y)p(x)+p(y) for all x,yX,

  4. (4)

    if ( λ n ) is a sequence of scalars with λ n λ as n and ( x n ) is a sequence of vectors with p( x n x)0 as n, then p( λ n x n λx)0 as n.

A paranorm p for which p(x)=0 implies x=0 is called a total paranorm and the pair (X,p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30], Theorem 10.4.2, p.183).

The concept of 2-normed spaces was initially developed by Gähler [31] in the mid-1960s, while that of n-normed spaces one can see in Misiak [32]. Since then, many others have studied this concept and obtained various results; see Gunawan [33, 34] and Gunawan and Mashadi [35] and references therein. Let nN and X be a linear space over the field , where is the field of real or complex numbers of dimension d, where dn2. A real valued function ,, on X n satisfying the following four conditions:

  1. (1)

    x 1 , x 2 ,, x n =0 if and only if x 1 , x 2 ,, x n are linearly dependent in X;

  2. (2)

    x 1 , x 2 ,, x n is invariant under permutation;

  3. (3)

    α x 1 , x 2 ,, x n =|α| x 1 , x 2 ,, x n for any αK, and

  4. (4)

    x+ x , x 2 ,, x n x, x 2 ,, x n + x , x 2 ,, x n

is called a n-norm on X, and the pair (X,,,) is called a n-normed space over the field . For example, we may take X= R n being equipped with the Euclidean n-norm x 1 , x 2 , , x n E , the volume of the n-dimensional parallelepiped spanned by the vectors x 1 , x 2 ,, x n which may be given explicitly by the formula

x 1 , x 2 , , x n E =|det( x i j )|,

where x i =( x i 1 , x i 2 ,, x i n ) R n for each i=1,2,,n. Let (X,,,) be a n-normed space of dimension dn2 and { a 1 , a 2 ,, a n } be linearly independent set in X. Then the function , , on X n 1 defined by

x 1 , x 2 , , x n 1 =max { x 1 , x 2 , , x n 1 , a i : i = 1 , 2 , , n }

defines an (n1)-norm on X with respect to { a 1 , a 2 ,, a n }.

A sequence ( x k ) in a n-normed space (X,,,) is said to converge to some LX if

lim k x k L, z 1 ,, z n 1 =0for every  z 1 ,, z n 1 X.

A sequence ( x k ) in a n-normed space (X,,,) is said to be Cauchy if

lim k p x k x p , z 1 ,, z n 1 =0for every  z 1 ,, z n 1 X.

If every Cauchy sequence in X converges to some LX, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

The space m(ϕ) was introduced by Sargent [36]:

m(ϕ)= { x = ( x k ) w : x m ( ϕ ) = sup s 1 , σ P s 1 ϕ s k σ | x k | < } ,

which was further studied in [37, 38] and [39]. Recently, Duyar and Oǧur [40] introduced the sequence space m 2 (M,A,ϕ,p) and studied some of its properties.

Let A=( a i j k l ) be an infinite double matrix of complex numbers, M=( M k , l ) be a sequence of Orlicz functions, and p=( p k , l ) be a bounded double sequence of positive real numbers. In the present paper we define the following sequence space:

m 2 ( M , A , ϕ , p , , , ) = { x = ( x k , l ) w 2 ( X ) : sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <  for some  ρ > 0 } ,

where A(x)=( A i j (x)) if A i j (x)= k , l = 1 a i j k l x k , l converges for each (i,j)N×N.

If p=( p i j )=1, we have

m 2 ( M , A , ϕ , , , ) = { x = ( x k , l ) w 2 ( X ) : sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <  for some  ρ > 0 } .

The following inequality will be used throughout the paper:

| a + b | p i j max ( 1 , 2 H 1 ) ( | a | p i j + | b | p i j ) ,
(1.1)

where a,bC and H=sup{ p i j :(i,j)N×N}.

We examine some topological properties of m 2 (M,A,ϕ,p,,,) and establish some inclusion relations.

2 Main results

Theorem 2.1 Let M=( M k , l ) be a sequence of Orlicz functions and p=( p k , l ) be a bounded sequence of positive real numbers, then the space m 2 (M,A,ϕ,p,,,) is linear space over the field of complex number ℂ.

Proof Let x=( x k , l ),y=( y k , l ) m 2 (M,A,ϕ,p,,,) and α,βC. Then there exist positive numbers ρ 1 and ρ 2 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

Let ρ 3 =max(2|α| ρ 1 ,2|β| ρ 2 ). Since ℳ is a non-decreasing and convex function, we have

i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( α x + β y ) ρ 3 , z 1 , , z n 1 ) p i j i σ 1 j σ 2 k , l = 1 M k , l ( α a i j k l x k , l + β a i j k l y k , l ρ 3 , z 1 , , z n 1 ) p i j i σ 1 j σ 2 k , l = 1 M k , l ( α a i j k l x k , l 2 | α | ρ 1 , z 1 , , z n 1 + β a i j k l y k , l 2 | β | ρ 2 , z 1 , , z n 1 ) p i j = i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 + a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j max ( 1 , 2 H 1 ) ( i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 ) p i j + i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j ) .

Thus, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( α x + β y ) ρ 3 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } max ( 1 , 2 H 1 ) { sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( a i j k l x k , l 2 ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } + sup { 1 ϕ s , t i σ 1 j σ 2 M k , l ( a i j k l y k , l 2 ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } } .

This proves that αx+βy m 2 (M,A,ϕ,p,,,). Hence m 2 (M,A,ϕ,p,,,) is a linear space. This completes the proof of the theorem. □

Theorem 2.2 M=( M k , l ) be a sequence of Orlicz functions and p=( p k , l ) be a bounded sequence of positive real numbers, then the space m 2 (M,A,ϕ,p,,,) is a paranormed space with the paranorm defined by

g ( x ) = inf { ρ p q r H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } 1 ] 1 / H , q N , r N } .

Proof It is clear that g(x)=g(x) and g(x)=0 if x=0. Then there exist positive numbers ρ 1 and ρ 2 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <1

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <1.

Then, by using Minkowski’s inequality, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x + y ) ρ 1 + ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 + ρ 2 , z 1 , , z n 1 + A i j ( y ) ρ 1 + ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ( ρ 1 ρ 1 + ρ 2 ) h { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ 1 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } + ( ρ 2 ρ 1 + ρ 2 ) h { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( y ) ρ 2 , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ,

where h=inf p i j . This shows that g(x+y)g(x)+g(y). Using this triangle inequality we can write

g ( λ n x n λ x ) g ( λ n x n λ n x ) +g ( λ n x λ x ) .

Thus we have

g ( λ n x n λ n x ) = inf { ρ n p q r H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( λ n x n λ n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 σ 2 P s , t } 1 ] 1 / H 1 , q N , r N } = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ( ρ n / | λ n | ) , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } 1 ] 1 / H 1 , q N , r N } = inf { ( λ n ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } max { | λ n | h / H , | λ n | } × inf { ( | λ n | ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x n x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = max { | λ n | h / H , | λ n | } g ( x n x ) .

Thus

g ( λ n x λ x ) = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( ( λ n λ ) x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = inf { ρ n p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ n / | λ n λ | , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } = inf { ( | λ n λ | ρ n ) p q r / H : [ sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ n , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } ] 1 / H 1 , q N , r N } max { | λ n λ | h / H , | λ n λ | } g ( x ) .

Hence g( λ n x n λx)0 where λ n λ and x n x as n. This proves that m 2 (M,A,ϕ,p,,,) is a paranormed space with the paranorm defined by g. This completes the proof of the theorem. □

Theorem 2.3 Let ϕ and ψ be two double sequences then m 2 (M,A,ϕ,p,,,) m 2 (M,A,ψ,p,,,) if and only if sup ( s , t ) ( 1 , 1 ) ( ϕ s , t / ψ s , t )<.

Proof Let K= sup ( s , t ) ( 1 , 1 ) ( ϕ s , t / ψ s , t )<. Then ϕ s , t K ψ s , t for all (s,t)(1,1). If x={ x k , l } m 2 (M,A,ϕ,p,,,), then

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < for some  ρ > 0 .

Thus

sup { 1 K ψ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < for some  ρ > 0 ,

and hence x={ x k , l } m 2 (M,A,ψ,p,,,). This shows that

m 2 ( M , A , ϕ , p , , , ) m 2 ( M , A , ψ , p , , , ) .

Conversely, let m 2 (M,A,ϕ,p,,,) m 2 (M,A,ψ,p,,,) and α s , t = ϕ s , t ψ s , t for all (s,t)(1,1), and suppose sup ( s , t ) ( 1 , 1 ) α s , t =. Then there exists a subsequence { α s i , t i } of { α s , t } such that lim i α s i , t i =. If x={ x k , l } m 2 (M,A,ϕ,p,,,), then we have

sup { 1 ψ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } = sup { α s , t 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } { sup m 1 α s m , t m } sup { 1 ϕ s m , t m i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } = .

This is a contradiction as x={ x k , l } m 2 (M,A,ϕ,p,,,). This completes the proof of the theorem. □

Corollary 2.4 Let ϕ and ψ be two double sequences then m 2 (M,A,ϕ,p,,,)= m 2 (M,A,ψ,p,,,) if and only if sup ( s , t ) ( 1 , 1 ) α s , t < and sup ( s , t ) ( 1 , 1 ) α s , t 1 <.

Proof It is easy to prove so we omit the details. □

Theorem 2.5 Let M=( M k , l ), M =( M k , l ) and M =( M k , l ′′ ) be sequences of Orlicz functions satisfying Δ 2 -condition. Then

  1. (i)

    m 2 (M,ϕ,,,) m 2 (M M ,ϕ,,,),

  2. (ii)

    m 2 ( M ,A,ϕ,p,,,) m 2 ( M ,A,ϕ,p,,,) m 2 ( M + M ,A,ϕ,p,,,).

Proof (i) Let x={ x k , l } m 2 (M,A,ϕ,p,,,). Then there exists ρ>0 such that

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

By the continuity of ℳ, we can take a number δ with 0<δ<1 such that M k , l (t)<ϵ, whenever 0t<δ, for arbitrary 0<ϵ<1. Now let

y i , j = ( A i , j ( x ) ρ , z 1 , , z n 1 ) .

Thus we have

i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i , j = y i , j δ k , l = 1 M k , l ( y i , j ) p i , j + y i , j > δ k , l = 1 M k , l ( y i , j ) p i , j .

By the properties of the Orlicz function we have

y i , j k , l = 1 M k , l ( y i , j ) p i , j max { 1 , M k , l ( 1 ) H } y i , j ( y i , j ) p i , j .

Again, we have

M k , l ( y i , j )< M k , l ( 1 + y i , j δ ) < 1 2 M k , l (2)+ 1 2 M k , l ( 2 y i , j δ )

for y i , j >δ. If ℳ satisfies the Δ 2 -condition, then we have

M k , l ( y i , j )< 1 2 T y i , j δ M k , l (2)+ 1 2 T y i , j δ M k , l (2),

and so

y i , j > δ M k , l ( y i , j ) p i , j max ( 1 , ( T δ M k , l ( 2 ) ) H ) y i , j > δ y i , j .

Hence, we have

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( M k , l ( A i j ( x ) ρ , z 1 , , z n 1 ) ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < max { 1 , M k , l ( 1 ) H } sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < + max ( 1 , ( T δ M k , l ( 2 ) ) H ) × sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( y i , j ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } < .

Thus, we have x={ x k , l } m 2 (M M ,ϕ,,,) and hence m 2 (M,ϕ,,,) m 2 (M M ,ϕ,,,).

  1. (ii)

    Let x={ x k , l } m 2 ( M ,A,ϕ,p,,,) m 2 ( M ,A,ϕ,p,,,). Then there exists a ρ>0 such that

    sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <

and

sup { 1 ϕ s , t i σ 1 j σ 2 k , l = 1 M k , l ′′ ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } <.

By the inequality, we have

i σ 1 j σ 2 k , l = 1 ( M k , l + M k , l ′′ ) ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j max ( 1 , 2 H 1 ) i σ 1 j σ 2 k , l = 1 M k , l ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j + max ( 1 , 2 H 1 ) i σ 1 j σ 2 k , l = 1 M k , l ′′ ( A i , j ( x ) ρ , z 1 , , z n 1 ) p i j .

Hence

m 2 ( M , A , ϕ , p , , , ) m 2 ( M , A , ϕ , p , , , ) m 2 ( M + M , A , ϕ , p , , , ) .

This completes the proof of the theorem. □

Theorem 2.6 The sequence space m 2 (M,ϕ,p,,,) is solid.

Proof Let α={ α k , l } be a double sequence of scalars such that | α k , l |1 and y={ y k , l } m 2 (M,ϕ,p,,,). Then we have

sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( α k , l x k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( α k , l y k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } sup { 1 ϕ s , t k σ 1 l σ 2 M k , l ( y k , l ρ , z 1 , , z n 1 ) p i j : ( s , t ) ( 1 , 1 ) , σ 1 × σ 2 P s , t } .

This implies that { α k , l y k , l } m 2 (M,ϕ,p,,,). This proves that the space m 2 (M,ϕ,p,,,) is a solid. □

Corollary 2.7 The sequence space m 2 (M,ϕ,p,,,) is monotone.

Proof It is trivial so we omit the details. □